Package 'SurvivalClusteringTree'

January 20, 2025

Type Package

Title Clustering Analysis Using Survival Tree and Forest Algorithms

Version 1.1.1 Date 2024-05-15

Maintainer Lu You <lu.you@epi.usf.edu>

Description

An outcome-guided algorithm is developed to identify clusters of samples with similar characteristics and survival rate. The algorithm first builds a random forest and then defines distances between samples based on the fitted random forest. Given the distances, we can apply hierarchical clustering algorithms to define clusters. Details about this method is de-

scribed in <https://github.com/luyouepiusf/SurvivalClusteringTree>.

License GPL (>= 2)

Suggests knitr, rmarkdown, tinytest

Encoding UTF-8 **RoxygenNote** 7.3.1

Imports Rcpp, survival, dplyr, grid, gridtext, formula.tools

LinkingTo Rcpp, RcppArmadillo

VignetteBuilder knitr

NeedsCompilation yes

Author Lu You [aut, cre] (Created the package. Maintains the package.),

Lauric Ferrat [aut] (Added functionality. Revised the package. Wrote the vignette.),

Hemang Parikh [aut] (Checked and revised the package.),

Yanan Huo [aut] (Revised plotting functions of the package.),

Yuting Yang [aut] (Added some data frame features.),

Jeffrey Krischer [ctb] (Supervisor the medical research. Coauthor of the medical manuscript.),

Maria Redondo [ctb] (Principal investigators of the medical research. Coauthor of the medical manuscript.),

Richard Oram [ctb] (Coauthor of the medical manuscript.),

Andrea Steck [ctb] (Coauthor of the medical manuscript.)

Repository CRAN

Date/Publication 2024-05-24 21:10:25 UTC

Contents

	SurvivalClusteringTree-package	2		
	plot_survival_tree			
	predict_distance_forest			
	predict_distance_forest_matrix			
	predict_distance_tree			
	predict_distance_tree_matrix			
	predict_weights			
	predict_weights_matrix			
	survival_forest	12		
	survival_forest_matrix	14		
	survival_tree	15		
	survival_tree_matrix			
Index		19		
SurvivalClusteringTree-package Clustering Analysis Using Survival Tree and Forest Algorithms				

Description

An outcome-guided algorithm is developed to identify clusters of samples with similar characteristics and survival rate. The algorithm first builds a random forest and then defines distances between samples based on the fitted random forest. Given the distances, we can apply hierarchical clustering algorithms to define clusters. Details about this method is described in https://github.com/luyouepiusf/SurvivalClusteringTra

Package Content

Index of help topics:

```
SurvivalClusteringTree-package
                        Clustering Analysis Using Survival Tree and
                        Forest Algorithms
                        Visualize the Fitted Survival Tree
plot_survival_tree
predict_distance_forest
                        Predict Distances Between Samples Based on a
                        Survival Forest Fit (Data Supplied as a
                        Dataframe)
predict_distance_forest_matrix
                        Predict Distances Between Samples Based on a
                        Survival Forest Fit (Data Supplied as Matrices)
predict_distance_tree
                        Predict Distances Between Samples Based on a
                        Survival Tree Fit (Data Supplied as a
                        Dataframe)
predict_distance_tree_matrix
                        Predict Distances Between Samples Based on a
```

plot_survival_tree 3

Survival Tree Fit (Data Supplied as Matrices)

Based on a Survival Tree Fit (Data Supplied as

a Dataframe)

predict_weights_matrix

Predict Weights of Samples in Terminal Nodes Based on a Survival Tree Fit (Data Supplied as

Matrices)

Dataframe)

survival_forest_matrix

Build a Survival Forest (Data Supplied as

Matrices)

survival_tree
Build a Survival Tree (Data Supplied as a

Dataframe)

Matrices)

Maintainer

Lu You <lu.you@epi.usf.edu>

Author(s)

NA

plot_survival_tree

Visualize the Fitted Survival Tree

Description

Visualize the Fitted Survival Tree

Usage

```
plot_survival_tree(survival_tree, cex = 0.75)
```

Arguments

survival_tree a fitted survival tree object.

cex numeric character expansion factor.

Value

No return value, called for generating graphical outputs.

Examples

```
library(survival)
a_survival_tree<-
survival_tree(
survival_outcome=Surv(time,status==2)~1,
numeric_predictor=~age+ph.ecog+ph.karno+pat.karno+meal.cal,
factor_predictor=~as.factor(sex),
data=lung)
plot_survival_tree(a_survival_tree)</pre>
```

predict_distance_forest

Predict Distances Between Samples Based on a Survival Forest Fit (Data Supplied as a Dataframe)

Description

The function predict_distance_forest predicts distances between samples based on a survival forest fit.

Usage

```
predict_distance_forest(
   survival_forest,
   numeric_predictor,
   factor_predictor,
   data,
   missing = "omit"
)
```

Arguments

survival_forest

a fitted survival forest

numeric_predictor

a formula specifying the numeric predictors. As in ~x1+x2+x3, the three numeric variables x1, x2, and x3 are included as numeric predictors. x1[i], x2[i], and x3[i] are the predictors of the ith sample. The best practice is to use the same variables names in the training and testing dataset.

factor_predictor

a formula specifying the numeric predictors. As in ~z1+z2+z3, the three character variables z1, z2, and z3 are included as factor predictors. z1[i], z2[i], and z3[i] are the predictors of the ith sample. The best practice is to use the same variables names in the training and testing dataset.

data

the dataframe (test data) that stores the outcome and predictor variables. Variables in the global environment will be used if data is missing.

missing

a character value that specifies the handling of missing data. If missing=="omit", samples with missing values in the splitting variables will be discarded. If missing=="majority", samples with missing values in the splitting variables will be assigned to the majority node. If missing=="weighted", samples with missing values in the splitting variables will be weighted by the weights of branch nodes. The best practice is to use the same method as the trained random forest.

Details

Predict Distances Between Samples Based on a Survival Forest Fit (Data Supplied as a Dataframe)

Value

A list. mean_distance is the mean distance matrix. sum_distance is the matrix that sums the distances between samples. sum_non_na is the matrix of the number of non NA distances being averaged.

Examples

```
library(survival)
a_survival_forest<-
survival_forest(
    survival_outcome=Surv(time,status==2)~1,
    numeric_predictor=~age+ph.ecog+ph.karno+pat.karno+meal.cal,
    factor_predictor=~as.factor(sex),
    data=lung,nboot=20)
a_distance<-
predict_distance_forest(
    a_survival_forest,
    numeric_predictor=~age+ph.ecog+ph.karno+pat.karno+meal.cal,
    factor_predictor=~as.factor(sex),
    data=lung)</pre>
```

```
predict_distance_forest_matrix
```

Predict Distances Between Samples Based on a Survival Forest Fit (Data Supplied as Matrices)

Description

The function predict_distance_forest_matrix predicts distances between samples based on a survival forest fit.

Usage

```
predict_distance_forest_matrix(
  survival_forest,
 matrix_numeric,
 matrix_factor,
 missing = "omit"
)
```

Arguments

survival forest

a fitted survival forest

matrix_numeric numeric predictors, a numeric matrix.matrix_numeric[i,j] is the jth numeric predictor of the ith sample. The best practice is to have the same column names

in the training and testing dataset.

matrix_factor

factor predictors, a character matrix. matrix_factor[i,j] is the jth predictor of the ith sample. The best practice is to have the same column names in the

training and testing dataset.

missing

a character value that specifies the handling of missing data. If missing=="omit", samples with missing values in the splitting variables will be discarded. If missing=="majority", samples with missing values in the splitting variables will be assigned to the majority node. If missing=="weighted", samples with missing values in the splitting variables will be weighted by the weights of branch nodes. The best practice is to use the same method as the trained random

forest.

Details

Predict Distances Between Samples Based on a Survival Forest Fit (Data Supplied as Matrices) (Works for raw matrices)

Value

A list. mean_distance is the mean distance matrix. sum_distance is the matrix that sums the distances between samples. sum_non_na is the matrix of the number of non NA distances being averaged.

Examples

```
library(survival)
a_survival_forest<-
 survival_forest_matrix(
    time=lung$time,
    event=lung$status==2,
   matrix_numeric=data.matrix(lung[,c(4,6:9),drop=FALSE]),
   matrix_factor=data.matrix(lung[,5,drop=F]),
   nboot=20)
a_distance<-
 predict_distance_forest_matrix(
```

predict_distance_tree 7

```
a_survival_forest,
matrix_numeric=data.matrix(lung[,c(4,6:9),drop=FALSE]),
matrix_factor=data.matrix(lung[,5,drop=F]))
```

predict_distance_tree Predict Distances Between Samples Based on a Survival Tree Fit (Data Supplied as a Dataframe)

Description

The function predict_distance_tree predicts distances between samples based on a survival tree fit.

Usage

```
predict_distance_tree(
   survival_tree,
   numeric_predictor,
   factor_predictor,
   data,
   missing = "omit"
)
```

Arguments

```
survival_tree a fitted survival tree
numeric_predictor
```

a formula specifying the numeric predictors. As in $\sim x1+x2+x3$, the three numeric variables x1, x2, and x3 are included as numeric predictors. x1[i], x2[i], and x3[i] are the predictors of the ith sample. The best practice is to use the same variables names in the training and testing dataset.

factor_predictor

a formula specifying the numeric predictors. As in ~z1+z2+z3, the three character variables z1, z2, and z3 are included as factor predictors. z1[i], z2[i], and z3[i] are the predictors of the ith sample. The best practice is to use the same variables names in the training and testing dataset.

data

the dataframe (test data) that stores the outcome and predictor variables. Variables in the global environment will be used if data is missing.

missing

a character value that specifies the handling of missing data. If missing=="omit", samples with missing values in the splitting variables will be discarded. If missing=="majority", samples with missing values in the splitting variables will be assigned to the majority node. If missing=="weighted", samples with missing values in the splitting variables will be weighted by the weights of branch nodes. The best practice is to use the same method as the trained random tree.

Details

Predict Distances Between Samples Based on a Survival Tree Fit (Data Supplied as a Dataframe)

Value

A list. node_distance gives the distance matrix between nodes. ind_distance gives the distance matrix between samples. ind_weights gives the weights of samples in each node.

Examples

```
library(survival)
a_survival_tree<-
survival_tree(
    survival_outcome=Surv(time, status==2)~1,
    numeric_predictor=~age+ph.ecog+ph.karno+pat.karno+meal.cal,
    factor_predictor=~as.factor(sex),
    data=lung)
a_distance<-
predict_distance_tree(
    a_survival_tree,
    numeric_predictor=~age+ph.ecog+ph.karno+pat.karno+meal.cal,
    factor_predictor=~as.factor(sex),
    data=lung)</pre>
```

```
predict_distance_tree_matrix
```

Predict Distances Between Samples Based on a Survival Tree Fit (Data Supplied as Matrices)

Description

The function predict_distance_tree_matrix predicts distances between samples based on a survival tree fit.

Usage

```
predict_distance_tree_matrix(
   survival_tree,
   matrix_numeric,
   matrix_factor,
   missing = "omit"
)
```

Arguments

```
survival_tree a fitted survival tree
```

predict_weights 9

 $\verb|matrix_numeric| | numeric| predictors, a numeric| matrix|. \\ \verb|matrix_numeric| | i,j| is the jth numeric| | i,j| is the jth n$

predictor of the ith sample. The best practice is to have the same column names

in the training and testing dataset.

matrix_factor factor predictors, a character matrix. matrix_factor[i,j] is the jth predictor

of the ith sample. The best practice is to have the same column names in the

training and testing dataset.

missing a character value that specifies the handling of missing data. If missing=="omit",

samples with missing values in the splitting variables will be discarded. If missing="majority", samples with missing values in the splitting variables will be assigned to the majority node. If missing="weighted", samples with missing values in the splitting variables will be weighted by the weights of branch nodes. The best practice is to use the same method as the trained random

tree.

Details

Predict Distances Between Samples Based on a Survival Tree Fit (Data Supplied as Matrices) (Works for raw matrices)

Value

A list. node_distance gives the distance matrix between nodes. ind_distance gives the distance matrix between samples. ind_weights gives the weights of samples in each node.

Examples

```
library(survival)
a_survival_tree<-
survival_tree_matrix(
    time=lung$time,
    event=lung$status==2,
    matrix_numeric=data.matrix(lung[,c(4,6:9),drop=FALSE]),
    matrix_factor=data.matrix(lung[,5,drop=FALSE]))
a_distance<-
predict_distance_tree_matrix(
    a_survival_tree,
    matrix_numeric=data.matrix(lung[,c(4,6:9),drop=FALSE]),
    matrix_factor=data.matrix(lung[,5,drop=FALSE]))</pre>
```

predict_weights

Predict Weights of Samples in Terminal Nodes Based on a Survival Tree Fit (Data Supplied as a Dataframe)

Description

The function predict_weights predicts weights of samples in terminal nodes based on a survival tree fit.

10 predict_weights

Usage

```
predict_weights(
   survival_tree,
   numeric_predictor,
   factor_predictor,
   data,
   missing = "omit"
)
```

Arguments

survival_tree a fitted survival tree
numeric_predictor

a formula specifying the numeric predictors. As in ~x1+x2+x3, the three numeric variables x1, x2, and x3 are included as numeric predictors. x1[i], x2[i], and x3[i] are the predictors of the ith sample. The best practice is to use the same variables names in the training and testing dataset.

factor_predictor

a formula specifying the numeric predictors. As in ~z1+z2+z3, the three character variables z1, z2, and z3 are included as factor predictors. z1[i], z2[i], and z3[i] are the predictors of the ith sample. The best practice is to use the same variables names in the training and testing dataset.

data

the dataframe (test data) that stores the outcome and predictor variables. Variables in the global environment will be used if data is missing.

missing

a character value that specifies the handling of missing data. If missing=="omit", samples with missing values in the splitting variables will be discarded. If missing=="majority", samples with missing values in the splitting variables will be assigned to the majority node. If missing=="weighted", samples with missing values in the splitting variables will be weighted by the weights of branch nodes. The best practice is to use the same method as the trained random tree.

Details

Predict Weights of Samples in Terminal Nodes Based on a Survival Tree Fit (Data Supplied as a Dataframe)

Value

A weight matrix representing the weights of samples in each node.

Examples

```
library(survival)
a_survival_tree<-
survival_tree(
survival_outcome=Surv(time,status==2)~1,
numeric_predictor=~age+ph.ecog+ph.karno+pat.karno+meal.cal,</pre>
```

predict_weights_matrix

```
factor_predictor=~as.factor(sex),
   data=lung)
a_weight<-
predict_weights(
   a_survival_tree,
   numeric_predictor=~age+ph.ecog+ph.karno+pat.karno+meal.cal,
   factor_predictor=~as.factor(sex),
   data=lung)</pre>
```

predict_weights_matrix

Predict Weights of Samples in Terminal Nodes Based on a Survival Tree Fit (Data Supplied as Matrices)

11

Description

The function predict_weights_matrix predicts weights of samples in terminal nodes based on a survival tree fit.

Usage

```
predict_weights_matrix(
   survival_tree,
   matrix_numeric,
   matrix_factor,
   missing = "majority"
)
```

Arguments

survival_tree a fitted survival tree

matrix_numeric numeric predictors, a numeric matrix.matrix_numeric[i,j] is the jth numeric

predictor of the ith sample. The best practice is to have the same column names

in the training and testing dataset.

matrix_factor factor predictors, a character matrix. matrix_factor[i,j] is the jth predictor

of the ith sample. The best practice is to have the same column names in the

training and testing dataset.

missing a character value that specifies the handling of missing data. If missing="omit",

samples with missing values in the splitting variables will be discarded. If missing="majority", samples with missing values in the splitting variables will be assigned to the majority node. If missing="weighted", samples with missing values in the splitting variables will be weighted by the weights of branch nodes. The best practice is to use the same method as the trained tree.

Details

Predict Weights of Samples in Terminal Nodes Based on a Survival Tree Fit (Data Supplied as Matrices)

12 survival_forest

Value

A weight matrix representing the weights of samples in each node.

Examples

```
library(survival)
a_survival_tree<-
survival_tree_matrix(
    time=lung$time,
    event=lung$status==2,
    matrix_numeric=data.matrix(lung[,c(4,6:9),drop=FALSE]),
    matrix_factor=data.matrix(lung[,5,drop=FALSE]))
a_weight<-
predict_weights_matrix(
    a_survival_tree,
    matrix_numeric=data.matrix(lung[,c(4,6:9),drop=FALSE]),
    matrix_factor=data.matrix(lung[,5,drop=FALSE]))</pre>
```

survival_forest

Build a Survival Forest (Data Supplied as a Dataframe)

Description

The function survival_forest build a survival forest given the survival outcomes and predictors of numeric and factor variables.

Usage

```
survival_forest(
   survival_outcome,
   numeric_predictor,
   factor_predictor,
   weights = NULL,
   data,
   significance = 0.05,
   min_weights = 50,
   missing = "omit",
   test_type = "univariate",
   cut_type = 0,
   nboot = 100,
   seed = 0
)
```

Arguments

```
survival_outcome
```

a Surv object of right-censored outcomes. In Surv(time, event), time[i] is the survival time of the ith sample. event[i] is the survival event of the ith sample.

survival_forest 13

numeric_predictor

a formula specifying the numeric predictors. As in $\sim x1+x2+x3$, the three numeric variables x1, x2, and x3 are included as numeric predictors. x1[i], x2[i], and x3[i] are the predictors of the ith sample.

factor_predictor

a formula specifying the numeric predictors. As in \sim z1+z2+z3, the three character variables z1, z2, and z3 are included as factor predictors. z1[i], z2[i],

and z3[i] are the predictors of the ith sample.

weights sample weights, a numeric vector. weights[i] is the weight of the ith sample.

data the dataframe that stores the outcome and predictor variables. Variables in the

global environment will be used if data is missing.

significance significance threshold, a numeric value. Stop the splitting algorithm when no

splits give a p-value smaller than significance.

min_weights minimum weight threshold, a numeric value. The weights in a node are greater

than min_weights.

missing a character value that specifies the handling of missing data. If missing="omit",

samples with missing values in the splitting variables will be discarded. If missing=="majority", samples with missing values in the splitting variables will be assigned to the majority node. If missing=="weighted", samples with missing values in the splitting variables will be weighted by the weights of

branch nodes.

test_type a character value that specifies the type of statistical tests. If test_type=="univariate",

then it performs a log-rank test without p-value adjustments. If test_type is in p.adjust.methods, i.e., one of holm, hochberg, hommel, bonferroni, BH, BY, or fdr, then the p-values will be adjusted using the corresponding method.

cut_type an integer value that specifies how to cut between two numeric values. If cut_type==0,

then cut at the ends. If cut_type==1, then cut from the middle. If cut_type==2,

then cut randomly between the two values.

nboot an integer value that specifies the number of bootstrap replications.

seed an integer value that specifies the seed.

Details

Build a Survival Forest (Data Supplied as a Dataframe)

Value

A list containing the information of the survival forest fit.

Examples

```
library(survival)
a_survival_forest<-
survival_forest(
   survival_outcome=Surv(time, status==2)~1,
   numeric_predictor=~age+ph.ecog+ph.karno+pat.karno+meal.cal,
   factor_predictor=~as.factor(sex),</pre>
```

```
data=lung,nboot=20)
```

```
survival_forest_matrix
```

Build a Survival Forest (Data Supplied as Matrices)

Description

The function survival_forest_matrix build a survival forest given the survival outcomes and predictors of numeric and factor variables.

Usage

```
survival_forest_matrix(
    time,
    event,
    matrix_numeric,
    matrix_factor,
    weights = rep(1, length(time)),
    significance = 0.05,
    min_weights = 50,
    missing = "omit",
    test_type = "univariate",
    cut_type = 0,
    nboot = 100,
    seed = 0
)
```

Arguments

time	survival times, a numeric vector. time[i] is the survival time of the ith sample.
event	survival events, a logical vector. event $[i]$ is the survival event of the ith sample.
matrix_numeric	numeric predictors, a numeric matrix. $matrix_numeric[i,j]$ is the jth numeric predictor of the ith sample.
matrix_factor	factor predictors, a character matrix. $matrix_factor[i,j]$ is the jth predictor of the ith sample.
weights	sample weights, a numeric vector. weights[i] is the weight of the ith sample.
significance	significance threshold, a numeric value. Stop the splitting algorithm when no splits give a p-value smaller than significance.
min_weights	minimum weight threshold, a numeric value. The weights in a node are greater than $\min_{w \in \mathbb{R}} \mathbb{R}$

survival_tree 15

missing a character value that specifies the handling of missing data. If missing="omit", samples with missing values in the splitting variables will be discarded. If missing="majority", samples with missing values in the splitting variables will be assigned to the majority node. If missing="weighted", samples with missing values in the splitting variables will be weighted by the weights of branch nodes.

test_type a character value that specifies the type of statistical tests. If test_type=="univariate",

then it performs a log-rank test without p-value adjustments. If test_type is in p.adjust.methods, i.e., one of holm, hochberg, hommel, bonferroni, BH, BY, or fdr, then the p-values will be adjusted using the corresponding method.

cut_type an integer value that specifies how to cut between two numeric values. If cut_type==0,

then cut at the ends. If cut_type==1, then cut from the middle. If cut_type==2,

then cut randomly between the two values.

nboot an integer value that specifies the number of bootstrap replications.

seed an integer value that specifies the seed.

Details

Build a Survival Forest (Data Supplied as Matrices)

Value

A list containing the information of the survival forest fit.

Examples

```
library(survival)
a_survival_forest<-
survival_forest_matrix(
   time=lung$time,
   event=lung$status==2,
   matrix_numeric=data.matrix(lung[,c(4,6:9),drop=FALSE]),
   matrix_factor=data.matrix(lung[,5,drop=FALSE]),
   nboot=20)</pre>
```

survival_tree

Build a Survival Tree (Data Supplied as a Dataframe)

Description

The function survival_tree build a survival tree given the survival outcomes and predictors of numeric and factor variables.

16 survival_tree

Usage

```
survival_tree(
   survival_outcome,
   numeric_predictor,
   factor_predictor,
   weights = NULL,
   data,
   significance = 0.05,
   min_weights = 50,
   missing = "omit",
   test_type = "univariate",
   cut_type = 0
)
```

Arguments

survival_outcome

a Surv object of right-censored outcomes. In Surv(time, event), time[i] is the survival time of the ith sample. event[i] is the survival event of the ith sample.

numeric_predictor

a formula specifying the numeric predictors. As in $\sim x1+x2+x3$, the three numeric variables x1, x2, and x3 are included as numeric predictors. x1[i], x2[i], and x3[i] are the predictors of the ith sample.

factor_predictor

a formula specifying the numeric predictors. As in ~z1+z2+z3, the three character variables z1, z2, and z3 are included as factor predictors. z1[i], z2[i], and z3[i] are the predictors of the ith sample.

weights sample weights, a numeric vector. weights[i] is the weight of the ith sample.

data the dataframe that stores the outcome and predictor variables. Variables in the

global environment will be used if data is missing.

significance significance threshold, a numeric value. Stop the splitting algorithm when no

splits give a p-value smaller than significance.

min_weights minimum weight threshold, a numeric value. The weights in a node are greater

than min_weights.

missing a character value that specifies the handling of missing data. If missing=="omit",

samples with missing values in the splitting variables will be discarded. If missing="majority", samples with missing values in the splitting variables will be assigned to the majority node. If missing="weighted", samples with missing values in the splitting variables will be weighted by the weights of

branch nodes.

test_type a character value that specifies the type of statistical tests. If test_type=="univariate",

then it performs a log-rank test without p-value adjustments. If test_type is in p.adjust.methods, i.e., one of holm, hochberg, hommel, bonferroni, BH, BY, or fdr, then the p-values will be adjusted using the corresponding method.

survival_tree_matrix 17

cut_type

an integer value that specifies how to cut between two numeric values. If cut_type==0, then cut at the ends. If cut_type==1, then cut from the middle. If cut_type==2, then cut randomly between the two values.

Details

Build a Survival Tree (Data Supplied as a Dataframe)

Value

A list containing the information of the survival tree fit.

Examples

```
library(survival)
a_survival_tree<-
survival_tree(
   survival_outcome=Surv(time, status==2)~1,
   numeric_predictor=~age+ph.ecog+ph.karno+pat.karno+meal.cal,
   factor_predictor=~as.factor(sex),
   data=lung)</pre>
```

survival_tree_matrix Build a Survival Tree (Data Supplied as Matrices)

Description

The function survival_tree_matrix build a survival tree given the survival outcomes and predictors of numeric and factor variables.

Usage

```
survival_tree_matrix(
   time,
   event,
   matrix_numeric,
   matrix_factor,
   weights = rep(1, length(time)),
   significance = 0.05,
   min_weights = 50,
   missing = "omit",
   test_type = "univariate",
   cut_type = 0
)
```

18 survival_tree_matrix

Arguments

time survival times, a numeric vector. time[i] is the survival time of the ith sample. survival events, a logical vector. event[i] is the survival event of the ith sample. event matrix_numeric numeric predictors, a numeric matrix_numeric[i,j] is the jth numeric predictor of the ith sample. matrix_factor factor predictors, a character matrix. matrix_factor[i,j] is the jth predictor of the ith sample. weights sample weights, a numeric vector. weights[i] is the weight of the ith sample. significance threshold, a numeric value. Stop the splitting algorithm when no significance splits give a p-value smaller than significance. min_weights minimum weight threshold, a numeric value. The weights in a node are greater than min_weights. missing a character value that specifies the handling of missing data. If missing=="omit", samples with missing values in the splitting variables will be discarded. If missing=="majority", samples with missing values in the splitting variables will be assigned to the majority node. If missing=="weighted", samples with missing values in the splitting variables will be weighted by the weights of branch nodes. test_type a character value that specifies the type of statistical tests. If test_type=="univariate", then it performs a log-rank test without p-value adjustments. If test_type is in p.adjust.methods, i.e., one of holm, hochberg, hommel, bonferroni, BH, BY, or fdr, then the p-values will be adjusted using the corresponding method. cut_type

an integer value that specifies how to cut between two numeric values. If cut_type==0,

then cut at the ends. If cut_type==1, then cut from the middle. If cut_type==2,

then cut randomly between the two values.

Details

Build a Survival Tree (Data Supplied as Matrices)

Value

A list containing the information of the survival tree fit.

Index

```
* package
    SurvivalClusteringTree-package, 2
plot_survival_tree, 3
predict_distance_forest, 4
\verb|predict_distance_forest_matrix|, 5
predict_distance_tree, 7
\verb|predict_distance_tree_matrix|, 8
predict_weights, 9
predict_weights_matrix, 11
survival_forest, 12
survival_forest_matrix, 14
survival_tree, 15
survival_tree_matrix, 17
SurvivalClusteringTree
        (SurvivalClusteringTree-package),
{\tt SurvivalClusteringTree-package, 2}
```