Package 'StructuralDecompose'

January 20, 2025

Type Package

Title Decomposes a Level Shifted Time Series

Version 0.1.1

Description

Explains the behavior of a time series by decomposing it into its trend, seasonality and residuals. It is built to perform very well in the presence of significant level shifts. It is designed to play well with any breakpoint algorithm and any smoothing algorithm. Currently defaults to 'lowess' for smoothing and 'strucchange' for breakpoint identification. The package is useful in areas such as trend analysis, time series

decomposition, breakpoint identification and anomaly detection.

License MIT + file LICENSE

URL https://allen-1242.github.io/StructuralDecompose/

Depends R (>= 2.10)

Imports changepoint, segmented, strucchange

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

NeedsCompilation no

Author Allen Sunny [aut, cre]

Maintainer Allen Sunny <allensunny1242@gmail.com>

Repository CRAN

Date/Publication 2023-02-13 09:30:04 UTC

Contents

AnomalyDetection	2
BreakPoints	3
evelCheck	3
MeanCleaning	4
AedianCleaning	5
Vile_dataset	5
Smoothing	6
StructuralDecompose	6
	8

Index

AnomalyDetection Automatic Anomaly detection

Description

Automatic Anomaly detection

Usage

```
AnomalyDetection(
   timeseries,
   frequency = 52,
   conf_level = 1.5,
   breaks,
   window_len = 14
)
```

Arguments

timeseries	Given time series
frequency	Timeseries frequency, defaults to 12 points
conf_level	Confidence level for Anomaly detection
breaks	breakpoints identified
window_len	Window length for anomaly detection

Value

the list of anomalies in the time series, along with the time series plot

Examples

```
AnomalyDetection(timeseries = StructuralDecompose::Nile_dataset[,1], breaks = c(4, 50, 80))
AnomalyDetection(timeseries = runif(n = 50, min = 1, max = 10), breaks = c(4, 20, 30))
```

BreakPoints

Description

Generation of breakpoints

Usage

```
BreakPoints(
   timeseries,
   frequency = 52,
   break_algorithm = "strucchange",
   break_level = 0.05
)
```

Arguments

timeseries	Given time series
frequency	Timeseries frequency, defaults to 12 points
break_algorithm	1
	Breakpoint algorithm to be used. Defaults to strucchange
break_level	Additional parameters for breakpoint algorithm

Value

A list of breakpoints

Examples

```
BreakPoints(timeseries = seq(100), frequency = 52, break_level = 0.05)
BreakPoints(timeseries = StructuralDecompose::Nile_dataset[,1], frequency = 52)
```

LevelCheck Minimum level length checks

Description

Minimum level length checks

Usage

```
LevelCheck(timeseries, level_length = 10, breaks)
```

Arguments

timeseries	Given time series
level_length	Mean distance between two levels
breaks	breakpoints returned

Value

The series cleaned with the minimum level check

Examples

```
LevelCheck(timeseries = StructuralDecompose::Nile_dataset[,1], breaks = c(1,4,5))
```

```
LevelCheck(timeseries = runif(n = 50, min = 1, max = 10), breaks = c(1,4,5))
```

MeanCleaning Mean level checks

Description

Mean level checks

Usage

```
MeanCleaning(timeseries, mean_level = 0.5, breaks, frequency = 52)
```

Arguments

timeseries	Given time series
mean_level	Mean distance between two levels
breaks	breakpoints returned
frequency	Timeseries frequency, defaults to 12 points

Value

The series cleaned with the mean check

Examples

```
MeanCleaning(timeseries = StructuralDecompose::Nile_dataset[,1], breaks = c(1,4,5), frequency = 1)
MeanCleaning(timeseries = runif(n = 50, min = 1, max = 10), breaks = c(1,4,5), frequency = 12)
```

MedianCleaning Median level checks

Description

Median level checks

Usage

MedianCleaning(timeseries, median_level = 0.5, breaks, frequency = 52)

Arguments

timeseries	Given time series
median_level	Median distance between two levels
breaks	Breaks identified
frequency	Timeseries frequency, defaults to 12 points

Value

The series cleaned with the median check

Examples

```
MedianCleaning(timeseries = StructuralDecompose::Nile_dataset[,1], breaks = c(1,4,5))
MedianCleaning(timeseries = runif(n = 50, min = 1, max = 10), breaks = c(1,4,5))
```

Nile_dataset Nile River Dataset

Description

Nile River Dataset

Smoothing

Description

Smoothening of the time series

Usage

```
Smoothing(timeseries, frequency = 52, smoothening_algorithm = "lowess", breaks)
```

Arguments

timeseries	Given time series
frequency	Timeseries frequency, defaults to 12 points
smoothening_alg	orithm Smoothening algorithm required
breaks	Breakpoints identified by the previous algorithm
lowess	Lowess smoothener

Value

The smoothened time series

Examples

```
Smoothing(timeseries = StructuralDecompose::Nile_dataset[,1], breaks = c(4, 50, 80))
Smoothing(timeseries = runif(n = 50, min = 1, max = 10), breaks = c(4, 20, 30))
```

StructuralDecompose Main decomposition algorithm

Description

Main decomposition algorithm

StructuralDecompose

Usage

```
StructuralDecompose(
   Data,
   frequency = 12,
   break_algorithm = "strucchange",
   smoothening_algorithm = "lowess",
   break_level = 0.05,
   median_level = 0.5,
   mean_level = 0.5,
   level_length = 12,
   conf_level = 0.5,
   window_len = 12,
   plot = FALSE
)
```

Arguments

Data	Time series required	
frequency	Frequency of the tine series	
break_algorithm		
	breakpoints algorithm used. Defaults to strucchange	
<pre>smoothening_algorithm</pre>		
	Smoothing algorithm used. Defaults to lowess	
break_level	Break level for the breakpoints algorithm	
median_level	Average median distance between two level	
mean_level	Average mean distance between a group of points near breakpoints	
level_length	Minimum number of points required to determine a level	
conf_level	Confidence level for Anomaly detection, best to keep this a static value	
window_len	Length of the Moving window for Anomaly Detection	
plot	True of False indicating if you want the internal plots to be generated	

Value

The decomposed time series along with a host of other metrics

Examples

```
StructuralDecompose(Data = StructuralDecompose::Nile_dataset[,1])
```

StructuralDecompose(Data = runif(n = 50, min = 1, max = 10))

Index

* datasets
 Nile_dataset, 5

AnomalyDetection, 2

BreakPoints, 3

LevelCheck, 3

MeanCleaning, 4 MedianCleaning, 5

 ${\tt Nile_dataset, 5}$

Smoothing, 6 StructuralDecompose, 6