Package 'SIGN'

January 20, 2025

Type Package			
Title Similarity Identification in Gene Expression			
Version 0.1.0			
Date 2018-12-02			
Description Provides a classification framework to use expression patterns of pathways as features to identify similarity between biological samples. It provides a new measure for quantifying similarity between expression patterns of pathways.			
Depends $R(>=3.4)$			
License GPL (>= 3)			
Imports stats, utils, survcomp, survival, GSVA			
Encoding UTF-8			
LazyData true			
NeedsCompilation yes			
biocViews GeneExpression, Classification, Clustering, Survival			
RoxygenNote 6.1.1			
Author Seyed Ali Madani Tonekaboni [aut], Gangesh Beri [aut], Janosch Ortmann [aut], Benjamin Haibe-Kains [aut, cre]			
Maintainer Benjamin Haibe-Kains 			
Repository CRAN			
Date/Publication 2018-12-18 23:11:47 UTC			
Contents			
BubbleSort EventRenaming ExpPheno_Categorize ExpPhen_Matching ExpPhen_Subdividing			

2 BubbleSort

	GeneMatching	5
	Genes_SimCal	6
	GSVA_Calculation	6
	Pathway_Grouping	7
	Pathway_similarity	8
	SIGN_Aggregate	8
	SIGN_Ensemble_SimCal	9
	Similarities_Wrapper	9
	SimSummary_2Class	10
	SurvivalStat_PostProcess	11
	Survival_Stats	11
	TSC	12
Index		13

 ${\tt BubbleSort}$

BubbleSort is a function for calculating bubble sort correlation between two vectors

Description

BubbleSort is a function for calculating bubble sort correlation between two vectors

Usage

BubbleSort(Vec1, Vec2)

Arguments

Vec1 Vector of values of 1st feature across samples

Vec2 Vector of values of 2nd feature across samples

Value

Bubble sort similarity between the two vectors

EventRenaming 3

EventRenaming	EventRenaming is a function for changing annotation of censored samples to 0 and dead samples to 1 for survival analysis
	samples to o and acad samples to 1 for survival analysis

Description

EventRenaming is a function for changing annotation of censored samples to 0 and dead samples to 1 for survival analysis

Usage

```
EventRenaming(EventVec, Censored_Annot)
```

Arguments

EventVec Status vector for all of the samples (patients) including both samples undergone

an event or censored

Censored_Annot Index of samples censored in the dataset

Value

Vector of events including 0 for censoring and 1 for death

ExpPheno_Categorize	ExpPheno_Categorize is a function for grouping samples based on
	their survival to 3 groups of poor, good, and intermediate

Description

ExpPheno_Categorize is a function for grouping samples based on their survival to 3 groups of poor, good, and intermediate

Usage

```
ExpPheno_Categorize(ExpMeta_List, Time_ID, Event_ID, Mad_Factor,
    MinNum_ExClass, Expression_Log2 = FALSE)
```

Arguments

_ ,, , , , ,	T	•		1 . 1 .	
EvnMata Lict	Liet conforming	AVDPACCION	matriv ar	nd metadata	matriv
ExpMeta_List	List containing	CADICASION	illatita ai	iu iiictauata	HIGHTA

Time_ID Index of time to death in metadata matrix

Event_ID Index of event in metadata matrix

Mad_Factor Threshold of mad in time to death values to determine poor survival group

4 ExpPhen_Matching

MinNum_ExClass Minimum number of samples that has to be kept in poor and good group (if

number of samples is lower than this threhold, more samples will be addedd in

order of survival)

Expression_Log2

 $Parameter\ for\ gene\ expsression\ value\ transformation\ to\ logarithmic\ scale\ (log2(expression$

value+1))

Value

List of expression matrices, and time to event as well as event for the patients within each category of poor, intermediate or good survival

ExpPhen_Matching is a function for matching samples between expression matrices and metadata matrix (clinical feature matrix)

Description

ExpPhen_Matching is a function for matching samples between expression matrices and metadata matrix (clinical feature matrix)

Usage

ExpPhen_Matching(ExpMat, MetaMat, SamID_Meta)

Arguments

ExpMat Matrix of expression of genes (samples in columns and genes in rows)

MetaMat Matrix of clinical features (samples in columns)

SamID_Meta Sample ID in MetaMat

Value

List of expression matrix and metadata of the clinical information after matching patiend IDs between the expression and clinical information matrices

ExpPhen_Subdividing 5

ExpPhen_Subdividing	ExpPhen_Subdividing is a function for grouping samples based on a
, – 5	clinical feature available in metadata matrix (clinical feature matrix)

Description

ExpPhen_Subdividing is a function for grouping samples based on a clinical feature available in metadata matrix (clinical feature matrix)

Usage

```
ExpPhen_Subdividing(ExpMeta_List, SubDiv_ID)
```

Arguments

ExpMeta_List List containing expression matrix and metadata matrix

SubDiv_ID Index of the target clinical feature in metadata matrix for samples grouping

Value

List of expression and clinical information of patients grouped based on the specified clinical feature

GeneMatching	GeneMatching is a function to remove uncommon genes between a list
	of expression matrices

Description

GeneMatching is a function to remove uncommon genes between a list of expression matrices

Usage

```
GeneMatching(ExpList)
```

Arguments

ExpList List of expression matrices

Value

List of expression matrices restricted to the common genes between them

6 GSVA_Calculation

Genes_SimCal	Genes_SimCal is a function to calculate similarity between a set of samples and 2 reference groups of samples

Description

Genes_SimCal is a function to calculate similarity between a set of samples and 2 reference groups of samples

Usage

```
Genes_SimCal(ExpMat_Test, ExpMat_Ref1, ExpMat_Ref2, RefIDs, TestClassIter,
    SampleIter)
```

Arguments

ExpMat_Test	Expression matrix for the test samples for which SIGN will indetify the similarity with the 2 reference sataset
ExpMat_Ref1	Expression matrix for the 1st reference set fo samples
ExpMat_Ref2	Expression matrix for the 2nd reference set fo samples
RefIDs	Annotations corresponding to the 2 expression matrices (1st and 2nd names are associated with the 1st and 2nd expression matrix and) $ \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left$
TestClassIter	Index to be matched with RefIDs for removal of test samples from reference expression matrices
SampleIter	Index of samples in the test expression matrix exist in referencece expression matrix 1 or 2 $$

Value

Vector of similarity between the target samples and the 2 reference sets

GSVA_Calculation	GSVA_Calculation is a function for Calculating correlation between
	expression level of pathways between 2 groups using GSVA

Description

 $GSVA_Calculation \ is \ a \ function \ for \ Calculating \ correlation \ between \ expression \ level \ of \ pathways \ between \ 2 \ groups \ using \ GSVA$

Usage

```
GSVA_Calculation(ExpMat1, ExpMat2, GeneVec, GeneSets,
  Name = "SampleComparison")
```

Pathway_Grouping 7

Arguments

ExpMat1 Expression matrix of genes in the 1st group of sampls

ExpMat2 Expression matrix of genes in the 2nd group of sampls

GeneVec Name of genes in the same order as considered in ExpMat1 and ExpMat2

GeneSets List of genes within pathways

2 groups

Value

Similarity of the pathway between the two expression matrices based on pearson correlation, bubble sort, and wilcoxon paaired rank test using GSVA enrichment scores of pathways

Pathway_Grouping is a function to make a pathway list from files containing genes within each pathway

Description

Pathway_Grouping is a function to make a pathway list from files containing genes within each pathway

Usage

Pathway_Grouping(PathwayDir, Pattern)

Arguments

PathwayDir Path of directory including the files of pathways

Pattern Pattern should be used to select the files of pathway genes from PathwayDir

Value

List of genes within the pathway

8 SIGN_Aggregate

Pathway_similarity	Pathway_similarity is a function for calculating correlation between expression level of pathways between 2 groups using all the available approaches in SIGN

Description

Pathway_similarity is a function for calculating correlation between expression level of pathways between 2 groups using all the available approaches in SIGN

Usage

```
Pathway_similarity(ExpMat1, ExpMat2, GeneVec, GeneSets, Name)
```

Arguments

ExpMat1	Expression matrix of genes in the 1st group of sampls
ExpMat2	Expression matrix of genes in the 2nd group of sampls
GeneVec	Name of genes in the same order as considered in ExpMat1 and ExpMat2
GeneSets	List of genes within pathways
Name	Name used for naming the columns of output matrix of correlation between the
	2 groups

Value

Similarity of the pathway between the two expression matrices using pearson correlation, bubble sort, and wilcoxon paaired rank test

SIGN_Aggregate	SIGN_Aggregate is a function to reshape the list of pathway scoring,
	time to death, and event and return a summary list

Description

SIGN_Aggregate is a function to reshape the list of pathway scoring, time to death, and event and return a summary list

Usage

```
SIGN_Aggregate(ScoreList, TimeList, EventList)
```

Arguments

ScoreList	List of similarity scores identified using different methodologies
TimeList	List of time to event (death) for different groups of patients
EventList	List of event vectors (death or censored) for different groups of patients

Value

List of scores identified for each sample as well as time to death and event of that sample

SIGN_Ensemble_SimCal	SIGN_Ensemble_SimCal is a function for Generating list fo similarities based on different pathway quantification methods and similarity measures
	measures

Description

SIGN_Ensemble_SimCal is a function for Generating list fo similarities based on different pathway quantification methods and similarity measures

Usage

```
SIGN_Ensemble_SimCal(ExpList, RefClassID, TestClassID, GeneID, PathwaySets)
```

Arguments

ExpList	List of expression matrices for different groups of samples used in the centroid classification scheme
RefClassID	Names of the matrices in the ExpList
TestClassID	ID of a matrix in ExpList to be used as test set
GeneID	Parameter to determine if gene annotations are provided as Symbols or EntrezIDs
PathwaySets	List of pathways containing gene annotations for each pathways

Value

List of similarities identified in both gene and pathway level

Similarities_Wrapper is wrapper to identify similarities between the expression of genes in target sample and the reference expression matrix
пи

Description

Similarities_Wrapper is wrapper to identify similarities between the expression of genes in target sample and the reference expression matrix

Usage

```
Similarities_Wrapper(ExpMat_Test, ExpMat_Ref, GeneVec, PathwaySet, RefID,
  TestClassIter, SampleIter)
```

Arguments

ExpMat_Test Expression matrix of test samples

ExpMat_Ref Expression matrix of reference samples

GeneVec Vector of gene names

PathwaySet List of pathways containing gene annotations for each pathways

RefID Class of the reference set

TestClassIter Class of the test set (if it is the same as reference set, the target test sample will

be removed fro the reference set)

SampleIter Target test sample in ExpMat_Testto be used for comparison with ExpMat_Ref

Value

List of similarities between the target sample and the expression matrix of reference samples

SimSummary_2Class SimSummary_2Class is a function to calculating similarity between two set of samples

Description

SimSummary_2Class is a function to calculating similarity between two set of samples

Usage

SimSummary_2Class(SimMat1, SimMat2)

Arguments

SimMat1 Matrix of similarity of the target samples with the 1st reference matrix
SimMat2 Matrix of similarity of the target samples with the 2nd reference matrix

Value

Matrix of similarities of samples

SurvivalStat_PostProcess

SurvivalStat_PostProcess is a function to Extract summary statistics of the built cox model

Description

SurvivalStat_PostProcess is a function to Extract summary statistics of the built cox model

Usage

SurvivalStat_PostProcess(StatList)

Arguments

StatList Summary lists of the cox models built using all the

Value

A list including Cindex, Cindex_std and LogTest_pval

Survival_Stats	Survival_Stats is a function for building cox model using all the fea-
	tures and each feature as a separate model

Description

Survival_Stats is a function for building cox model using all the features and each feature as a separate model

Usage

```
Survival_Stats(ScoreMat, TimeVec, EventVec)
```

Arguments

ScoreMat Matrix of feature values used for survival predition

TimeVec Vectore of time to death of samples (patients)

EventVec Vector of events for the samples (patients) as being dead or censored

Value

A list containing summary of a cox model using all of the features and separate cox models for each feature

TSC TSC

TSC	TSC is a function to calculate transcripttional similarity coefficient between two biological pathways

Description

TSC is a function to calculate transcripttional similarity coefficient between two biological pathways

Usage

```
TSC(PathwayExp1, PathwayExp2)
```

Arguments

PathwayExp1	Expression matrix of genes within the chosen pathway in the 1st set of samples
PathwayExp2	Expression matrix of genes within the chosen pathway in the 2nd set of samples

Value

Transcriptional similarity coefficient

Examples

```
Pathway1_ExpMat <- matrix(runif(100,0,10), ncol = 10)
Pathway2_ExpMat <- matrix(runif(100,0,10), ncol = 10)
TSC(Pathway1_ExpMat, Pathway2_ExpMat)</pre>
```

Index

```
BubbleSort, 2
EventRenaming, 3
{\tt ExpPhen\_Matching, 4}
ExpPhen_Subdividing, 5
ExpPheno_Categorize, 3
GeneMatching, 5
Genes_SimCal, 6
GSVA_Calculation, 6
Pathway_Grouping, 7
{\tt Pathway\_similarity}, {\tt 8}
SIGN_Aggregate, 8
{\tt SIGN\_Ensemble\_SimCal}, 9
{\tt Similarities\_Wrapper}, 9
SimSummary_2Class, 10
Survival_Stats, 11
SurvivalStat_PostProcess, 11
TSC, 12
```