
Package ‘Rmpfr’
November 18, 2024

Title Interface R to MPFR - Multiple Precision Floating-Point Reliable

Version 1.0-0

Date 2024-11-15

DateNote Previous CRAN version 0.9-5 on 2024-01-20

Type Package

Description Arithmetic (via S4 classes and methods) for
arbitrary precision floating point numbers, including transcendental
(``special'') functions. To this end, the package interfaces to
the 'LGPL' licensed 'MPFR' (Multiple Precision Floating-Point Reliable) Library
which itself is based on the 'GMP' (GNU Multiple Precision) Library.

SystemRequirements gmp (>= 4.2.3), mpfr (>= 3.1.0), pdfcrop (part of
TexLive) is required to rebuild the vignettes.

SystemRequirementsNote 'MPFR' (MP Floating-Point Reliable Library,
https://www.mpfr.org/) and 'GMP' (GNU Multiple Precision
library, https://gmplib.org/), see >> README.md

Depends gmp (>= 0.6-1), R (>= 3.6.0)

Imports stats, utils, methods

Suggests DPQmpfr, MASS, Bessel, polynom, sfsmisc (>= 1.1-14)

SuggestsNote MASS, polynom, sfsmisc: only for vignette;

Enhances dfoptim, pracma, DPQ

EnhancesNote mentioned in Rd xrefs | used in example

URL https://rmpfr.r-forge.r-project.org/

BugReports https://r-forge.r-project.org/tracker/?group_id=386

License GPL (>= 2)

Encoding UTF-8

NeedsCompilation yes

Author Martin Maechler [aut, cre] (<https://orcid.org/0000-0002-8685-9910>),
Richard M. Heiberger [ctb] (formatHex(), *Bin, *Dec),
John C. Nash [ctb] (hjkMpfr(), origin of unirootR()),

1

https://rmpfr.r-forge.r-project.org/
https://r-forge.r-project.org/tracker/?group_id=386
https://orcid.org/0000-0002-8685-9910

2 Contents

Hans W. Borchers [ctb] (optimizeR(*, ``GoldenRatio''); origin of
hjkMpfr()),

Mikael Jagan [ctb] (safer convert.c,
<https://orcid.org/0000-0002-3542-2938>)

Maintainer Martin Maechler <maechler@stat.math.ethz.ch>

Repository CRAN

Date/Publication 2024-11-18 08:30:02 UTC

Contents
Rmpfr-package . 3
array_or_vector-class . 6
asNumeric-methods . 7
atomicVector-class . 8
Bernoulli . 9
Bessel_mpfr . 10
bind-methods . 11
chooseMpfr . 12
factorialMpfr . 14
formatHex . 16
formatMpfr . 18
frexpMpfr . 21
gmp-conversions . 23
hjkMpfr . 24
igamma . 27
integrateR . 28
is.whole . 31
log1mexp . 32
matmult . 34
Mnumber-class . 35
mpfr . 36
mpfr-class . 39
mpfr-distr-etc . 44
mpfr-special-functions . 46
mpfr-utils . 47
mpfr.utils . 52
mpfrArray . 54
mpfrMatrix . 55
mpfrMatrix-utils . 58
num2bigq . 59
optimizeR . 60
pbetaI . 63
pmax . 66
qnormI . 67
Rmpfr-workarounds . 69
roundMpfr . 70
sapplyMpfr . 71

https://orcid.org/0000-0002-3542-2938

Rmpfr-package 3

seqMpfr . 73
str.mpfr . 74
sumBinomMpfr . 75
unirootR . 77

Index 81

Rmpfr-package R MPFR - Multiple Precision Floating-Point Reliable

Description

Rmpfr provides S4 classes and methods for arithmetic including transcendental ("special") func-
tions for arbitrary precision floating point numbers, here often called “mpfr - numbers”. To this
end, it interfaces to the LGPL’ed MPFR (Multiple Precision Floating-Point Reliable) Library which
itself is based on the GMP (GNU Multiple Precision) Library.

Details

Package: Rmpfr
Title: Interface R to MPFR - Multiple Precision Floating-Point Reliable
Version: 1.0-0
Date: 2024-11-15
DateNote: Previous CRAN version 0.9-5 on 2024-01-20
Type: Package
Authors@R: c(person("Martin","Maechler", role = c("aut","cre"), email = "maechler@stat.math.ethz.ch", comment = c(ORCID="0000-0002-8685-9910")) , person(c("Richard", "M."), "Heiberger", role = "ctb", email="rmh@temple.edu", comment = "formatHex(), *Bin, *Dec") , person(c("John", "C."), "Nash", role = "ctb", email="nashjc@uottawa.ca", comment = "hjkMpfr(), origin of unirootR()") , person(c("Hans", "W."), "Borchers", role = "ctb", email="hwborchers@googlemail.com", comment = "optimizeR(*, \"GoldenRatio\"); origin of hjkMpfr()") , person("Mikael", "Jagan", role = "ctb", comment = c("safer convert.c", ORCID = "0000-0002-3542-2938")))
Description: Arithmetic (via S4 classes and methods) for arbitrary precision floating point numbers, including transcendental ("special") functions. To this end, the package interfaces to the ’LGPL’ licensed ’MPFR’ (Multiple Precision Floating-Point Reliable) Library which itself is based on the ’GMP’ (GNU Multiple Precision) Library.
SystemRequirements: gmp (>= 4.2.3), mpfr (>= 3.1.0), pdfcrop (part of TexLive) is required to rebuild the vignettes.
SystemRequirementsNote: ’MPFR’ (MP Floating-Point Reliable Library, https://www.mpfr.org/) and ’GMP’ (GNU Multiple Precision library, https://gmplib.org/), see » README.md
Depends: gmp (>= 0.6-1), R (>= 3.6.0)
Imports: stats, utils, methods
Suggests: DPQmpfr, MASS, Bessel, polynom, sfsmisc (>= 1.1-14)
SuggestsNote: MASS, polynom, sfsmisc: only for vignette;
Enhances: dfoptim, pracma, DPQ
EnhancesNote: mentioned in Rd xrefs | used in example
URL: https://rmpfr.r-forge.r-project.org/
BugReports: https://r-forge.r-project.org/tracker/?group_id=386
License: GPL (>= 2)
Encoding: UTF-8
Author: Martin Maechler [aut, cre] (<https://orcid.org/0000-0002-8685-9910>), Richard M. Heiberger [ctb] (formatHex(), *Bin, *Dec), John C. Nash [ctb] (hjkMpfr(), origin of unirootR()), Hans W. Borchers [ctb] (optimizeR(*, "GoldenRatio"); origin of hjkMpfr()), Mikael Jagan [ctb] (safer convert.c, <https://orcid.org/0000-0002-3542-2938>)
Maintainer: Martin Maechler <maechler@stat.math.ethz.ch>

Index of help topics:

.bigq2mpfr Conversion Utilities gmp <-> Rmpfr
Bernoulli Bernoulli Numbers in Arbitrary Precision

4 Rmpfr-package

Bessel_mpfr Bessel functions of Integer Order in multiple
precisions

Mnumber-class Class "Mnumber" and "mNumber" of "mpfr" and
regular numbers and arrays from them

Rmpfr-package R MPFR - Multiple Precision Floating-Point
Reliable

array_or_vector-class Auxiliary Class "array_or_vector"
asNumeric-methods Methods for 'asNumeric(<mpfr>)'
atomicVector-class Virtual Class "atomicVector" of Atomic Vectors
c.mpfr MPFR Number Utilities
cbind "mpfr" '...' - Methods for Functions cbind(),

rbind()
chooseMpfr Binomial Coefficients and Pochhammer Symbol aka

Rising Factorial
determinant.mpfrMatrix

Functions for mpfrMatrix Objects
factorialMpfr Factorial 'n!' in Arbitrary Precision
formatHex Flexibly Format Numbers in Binary, Hex and

Decimal Format
formatMpfr Formatting MPFR (multiprecision) Numbers
frexpMpfr Base-2 Representation and Multiplication of

Mpfr Numbers
getPrec Rmpfr - Utilities for Precision Setting,

Printing, etc
hjkMpfr Hooke-Jeeves Derivative-Free Minimization R

(working for MPFR)
igamma Incomplete Gamma Function
integrateR One-Dimensional Numerical Integration - in pure

R
is.whole.mpfr Whole ("Integer") Numbers
log1mexp Compute f(a) = log(1 +/- exp(-a)) Numerically

Optimally
matmult (MPFR) Matrix (Vector) Multiplication
mpfr Create "mpfr" Numbers (Objects)
mpfr-class Class "mpfr" of Multiple Precision Floating

Point Numbers
mpfrArray Construct "mpfrArray" almost as by 'array()'
mpfrMatrix-class Classes "mpfrMatrix" and "mpfrArray"
num2bigq BigQ / BigRational Approximation of Numbers
optimizeR High Precision One-Dimensional Optimization
outer Base Functions etc, as an Rmpfr version
pbetaI Accurate Incomplete Beta / Beta Probabilities

For Integer Shapes
pmax Parallel Maxima and Minima
pnorm Distribution Functions with MPFR Arithmetic
qnormI Gaussian / Normal Quantiles 'qnorm()' via

Inversion
roundMpfr Rounding to Binary bits, "mpfr-internally"

Rmpfr-package 5

sapplyMpfr Apply a Function over a "mpfr" Vector
seqMpfr "mpfr" Sequence Generation
str.mpfr Compactly Show STRucture of Rmpfr Number Object
sumBinomMpfr (Alternating) Binomial Sums via Rmpfr
unirootR One Dimensional Root (Zero) Finding - in pure R
zeta Special Mathematical Functions (MPFR)

Further information is available in the following vignettes:

Maechler_useR_2011-abstr useR-2011-abstract (source)
Rmpfr-pkg Arbitrarily Accurate Computation with R Package Rmpfr (source)
log1mexp-note Accurately Computing log(1 - exp(.)) – Assessed by Rmpfr (source)

The following (help pages) index does not really mention that we provide many methods for mathe-
matical functions, including gamma, digamma, etc, namely, all of R’s (S4) Math group (with the only
exception of trigamma), see the list in the examples. Additionally also pnorm, the “error function”,
and more, see the list in zeta, and further note the first vignette (below).

Partial index:

mpfr Create "mpfr" Numbers (Objects)
mpfrArray Construct "mpfrArray" almost as by array()
mpfr-class Class "mpfr" of Multiple Precision Floating Point Numbers
mpfrMatrix-class Classes "mpfrMatrix" and "mpfrArray"

Bernoulli Bernoulli Numbers in Arbitrary Precision
Bessel_mpfr Bessel functions of Integer Order in multiple precisions
c.mpfr MPFR Number Utilities
cbind "mpfr" ... - Methods for Functions cbind(), rbind()
chooseMpfr Binomial Coefficients and Pochhammer Symbol aka

Rising Factorial
factorialMpfr Factorial ’n!’ in Arbitrary Precision
formatMpfr Formatting MPFR (multiprecision) Numbers
getPrec Rmpfr - Utilities for Precision Setting, Printing, etc
roundMpfr Rounding to Binary bits, "mpfr-internally"
seqMpfr "mpfr" Sequence Generation
sumBinomMpfr (Alternating) Binomial Sums via Rmpfr
zeta Special Mathematical Functions (MPFR)

integrateR One-Dimensional Numerical Integration - in pure R
unirootR One Dimensional Root (Zero) Finding - in pure R
optimizeR High Precisione One-Dimensional Optimization
hjkMpfr Hooke-Jeeves Derivative-Free Minimization R (working for MPFR)

Further information is available in the following vignettes:

6 array_or_vector-class

Rmpfr-pkg Arbitrarily Accurate Computation with R: The ’Rmpfr’ package (source, pdf)
log1mexp-note Acccurately Computing log(1 - exp(.)) – Assessed by Rmpfr (source, pdf)

Author(s)

Martin Maechler

References

MPFR (MP Floating-Point Reliable Library), https://www.mpfr.org/

GMP (GNU Multiple Precision library), https://gmplib.org/

and see the vignettes mentioned above.

See Also

The R package gmp for big integer gmp and rational numbers (bigrational) on which Rmpfr
depends.

Examples

Using "mpfr" numbers instead of regular numbers...
n1.25 <- mpfr(5, precBits = 256)/4
n1.25

and then "everything" just works with the desired chosen precision:hig
n1.25 ^ c(1:7, 20, 30) ## fully precise; compare with
print(1.25 ^ 30, digits=19)

exp(n1.25)

Show all math functions which work with "MPFR" numbers (1 exception: trigamma)
getGroupMembers("Math")

We provide *many* arithmetic, special function, and other methods:
showMethods(classes = "mpfr")
showMethods(classes = "mpfrArray")

array_or_vector-class Auxiliary Class "array_or_vector"

Description

"array_or_vector" is the class union of c("array", "matrix", "vector") and exists for its use
in signatures of method definitions.

https://www.mpfr.org/
https://gmplib.org/
https://CRAN.R-project.org/package=gmp

asNumeric-methods 7

Details

Using "array_or_vector" instead of just "vector" in a signature makes an important difference:
E.g., if we had setMethod(crossprod, c(x="mpfr", y="vector"), function(x,y) CPR(x,y)),
a call crossprod(x, matrix(1:6, 2,3)) would extend into a call of CPR(x, as(y, "vector"))
such that CPR()’s second argument would simply be a vector instead of the desired 2× 3 matrix.

Objects from the Class

A virtual Class: No objects may be created from it.

Examples

showClass("array_or_vector")

asNumeric-methods Methods for asNumeric(<mpfr>)

Description

Methods for function asNumeric (in package gmp).

Usage

S4 method for signature 'mpfrArray'
asNumeric(x)

Arguments

x a “number-like” object, here, a mpfr or typically mpfrArrayone.

Value

an R object of type (typeof) "numeric", a matrix or array if x had non-NULL dimension dim().

Methods

signature(x = "mpfrArray") this method also dispatches for mpfrMatrix and returns a numeric
array.

signature(x = "mpfr") for non-array/matrix, asNumeric(x) is basically the same as as.numeric(x).

Author(s)

Martin Maechler

See Also

our lower level (non-generic) toNum(). Further, asNumeric (package gmp), standard R’s as.numeric().

https://CRAN.R-project.org/package=gmp

8 atomicVector-class

Examples

x <- (0:7)/8 # (exact)
X <- mpfr(x, 99)
stopifnot(identical(asNumeric(x), x),

identical(asNumeric(X), x))

m <- matrix(1:6, 3,2)
(M <- mpfr(m, 99) / 5) ##-> "mpfrMatrix"
asNumeric(M) # numeric matrix
stopifnot(all.equal(asNumeric(M), m/5),

identical(asNumeric(m), m))# remains matrix

atomicVector-class Virtual Class "atomicVector" of Atomic Vectors

Description

The class "atomicVector" is a virtual class containing all atomic vector classes of base R, as also
implicitly defined via is.atomic.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

In the Matrix package, the "atomicVector" is used in signatures where typically “old-style” "ma-
trix" objects can be used and can be substituted by simple vectors.

Extends

The atomic classes "logical", "integer", "double", "numeric", "complex", "raw" and "character"
are extended directly. Note that "numeric" already contains "integer" and "double", but we want
all of them to be direct subclasses of "atomicVector".

Author(s)

Martin Maechler

See Also

is.atomic, integer, numeric, complex, etc.

Examples

showClass("atomicVector")

Bernoulli 9

Bernoulli Bernoulli Numbers in Arbitrary Precision

Description

Computes the Bernoulli numbers in the desired (binary) precision. The computation happens via
the zeta function and the formula

Bk = −kζ(1− k),

and hence the only non-zero odd Bernoulli number is B1 = +1/2. (Another tradition defines it,
equally sensibly, as −1/2.)

Usage

Bernoulli(k, precBits = 128)

Arguments

k non-negative integer vector

precBits the precision in bits desired.

Value

an mpfr class vector of the same length as k, with i-th component the k[i]-th Bernoulli number.

Author(s)

Martin Maechler

References

https://en.wikipedia.org/wiki/Bernoulli_number

See Also

zeta is used to compute them.

The next version of package gmp is to contain BernoulliQ(), providing exact Bernoulli numbers
as big rationals (class "bigq").

Examples

Bernoulli(0:10)
plot(as.numeric(Bernoulli(0:15)), type = "h")

curve(-x*zeta(1-x), -.2, 15.03, n=300,
main = expression(-x %.% zeta(1-x)))

legend("top", paste(c("even","odd "), "Bernoulli numbers"),
pch=c(1,3), col=2, pt.cex=2, inset=1/64)

abline(h=0,v=0, lty=3, col="gray")

https://en.wikipedia.org/wiki/Bernoulli_number
https://CRAN.R-project.org/package=gmp

10 Bessel_mpfr

k <- 0:15; k[1] <- 1e-4
points(k, -k*zeta(1-k), col=2, cex=2, pch=1+2*(k%%2))

They pretty much explode for larger k :
k2 <- 2*(1:120)
plot(k2, abs(as.numeric(Bernoulli(k2))), log = "y")
title("Bernoulli numbers exponential growth")

Bernoulli(10000)# - 9.0494239636 * 10^27677

Bessel_mpfr Bessel functions of Integer Order in multiple precisions

Description

Bessel functions of integer orders, provided via arbitrary precision algorithms from the MPFR li-
brary.

Note that the computation can be very slow when n and x are large (and of similar magnitude).

Usage

Ai(x)
j0(x)
j1(x)
jn(n, x, rnd.mode = c("N","D","U","Z","A"))
y0(x)
y1(x)
yn(n, x, rnd.mode = c("N","D","U","Z","A"))

Arguments

x a numeric or mpfr vector.

n non-negative integer (vector).

rnd.mode a 1-letter string specifying how rounding should happen at C-level conversion
to MPFR, see mpfr.

Value

Computes multiple precision versions of the Bessel functions of integer order, Jn(x) and Yn(x),
and—when using MPFR library 3.0.0 or newer—also of the Airy function Ai(x). Note that cur-
rently Ai(x) is very slow to compute for large x.

See Also

besselJ, and besselY compute the same bessel functions but for arbitrary real order and only
precision of a bit more than ten digits.

bind-methods 11

Examples

x <- (0:100)/8 # (have exact binary representation)
stopifnot(exprs = {

all.equal(besselY(x, 0), bY0 <- y0(x))
all.equal(besselJ(x, 1), bJ1 <- j1(x))
all.equal(yn(0,x), bY0)
all.equal(jn(1,x), bJ1)

})

mpfrVersion() # now typically 4.1.0
if(mpfrVersion() >= "3.0.0") { ## Ai() not available previously

print(aix <- Ai(x))
plot(x, aix, log="y", type="l", col=2)
stopifnot(
all.equal(Ai (0) , 1/(3^(2/3) * gamma(2/3)))
, # see https://dlmf.nist.gov/9.2.ii
all.equal(Ai(100), mpfr("2.6344821520881844895505525695264981561e-291"), tol=1e-37)

)
two3rd <- 2/mpfr(3, 144)
print(all.equal(Ai(0), 1/(3^two3rd * gamma(two3rd)), tol=0)) # 1.7....e-40
if(Rmpfr:::doExtras()) withAutoprint({ # slowish:

system.time(ai1k <- Ai(1000)) # 1.4 sec (on 2017 lynne)
stopifnot(all.equal(print(log10(ai1k)),

-9157.031193409585185582, tol=2e-16)) # seen 8.8..e-17 | 1.1..e-16
})

} # ver >= 3.0

bind-methods "mpfr" ’...’ - Methods for Functions cbind(), rbind()

Description

cbind and rbind methods for signature ... (see dotsMethods are provided for class Mnumber, i.e.,
for binding numeric vectors and class "mpfr" vectors and matrices ("mpfrMatrix") together.

Usage

cbind(..., deparse.level = 1)
rbind(..., deparse.level = 1)

Arguments

... matrix-/vector-like R objects to be bound together, see the base documentation,
cbind.

deparse.level integer determining under which circumstances column and row names are built
from the actual arguments’ ‘expression’, see cbind.

12 chooseMpfr

Value

typically a ‘matrix-like’ object, here typically of class "mpfrMatrix".

Methods

... = "Mnumber" is used to (c|r)bind multiprecision “numbers” (inheriting from class "mpfr")
together, maybe combined with simple numeric vectors.

... = "ANY" reverts to cbind and rbind from package base.

Author(s)

Martin Maechler

See Also

cbind2, cbind, Documentation in base R’s methods package

Examples

cbind(1, mpfr(6:3, 70)/7, 3:0)

chooseMpfr Binomial Coefficients and Pochhammer Symbol aka Rising Factorial

Description

Compute binomial coefficients, chooseMpfr(a,n) being mathematically the same as choose(a,n),
but using high precision (MPFR) arithmetic.

chooseMpfr.all(n) means the vector choose(n, 1:n), using enough bits for exact computation
via MPFR. However, chooseMpfr.all() is now deprecated in favor of chooseZ from package
gmp, as that is now vectorized.

pochMpfr() computes the Pochhammer symbol or “rising factorial”, also called the “Pochhammer
function”, “Pochhammer polynomial”, “ascending factorial”, “rising sequential product” or “upper
factorial”,

x(n) = x(x+ 1)(x+ 2) · · · (x+ n− 1) =
(x+ n− 1)!

(x− 1)!
=

Γ(x+ n)

Γ(x)
.

Usage

chooseMpfr (a, n, rnd.mode = c("N","D","U","Z","A"))
chooseMpfr.all(n, precBits=NULL, k0=1, alternating=FALSE)
pochMpfr(a, n, rnd.mode = c("N","D","U","Z","A"))

chooseMpfr 13

Arguments

a a numeric or mpfr vector.

n an integer vector; if not of length one, n and a are recycled to the same length.

rnd.mode a 1-letter string specifying how rounding should happen at C-level conversion
to MPFR, see mpfr.

precBits integer or NULL for increasing the default precision of the result.

k0 integer scalar

alternating logical, for chooseMpfr.all(), indicating if alternating sign coefficients should
be returned, see below.

Value

For

chooseMpfr(), pochMpfr(): an mpfr vector of length max(length(a),length(n));

chooseMpfr.all(n, k0): a mpfr vector of length n-k0+1, of binomial coefficients Cn,m or, if
alternating is true, (−1)m · Cn,m for m ∈ k0:n.

Note

Currently this works via a (C level) for(i in 1:n)-loop which really slow for large n, say 106, with
computational cost O(n2). In such cases, if you need high precision choose(a,n) (or Pochham-
mer(a,n)) for large n, preferably work with the corresponding factorial(mpfr(..)), or gamma(mpfr(..))
terms.

See Also

choose(n,m) (base R) computes the binomial coefficient Cn,m which can also be expressed via
Pochhammer symbol as Cn,m = (n−m+ 1)(m)/m!.

chooseZ from package gmp; for now, factorialMpfr.

For (alternating) binomial sums, directly use sumBinomMpfr, as that is potentially more efficient.

Examples

pochMpfr(100, 4) == 100*101*102*103 # TRUE
a <- 100:110
pochMpfr(a, 10) # exact (but too high precision)
x <- mpfr(a, 70)# should be enough
(px <- pochMpfr(x, 10)) # the same as above (needing only 70 bits)
stopifnot(pochMpfr(a, 10) == px,

px[1] ==prod(mpfr(100:109, 100)))# used to fail

(c1 <- chooseMpfr(1000:997, 60)) # -> automatic "correct" precision
stopifnot(all.equal(c1, choose(1000:997, 60), tolerance=1e-12))

--- Experimenting & Checking
n.set <- c(1:10, 20, 50:55, 100:105, 200:203, 300:303, 500:503,

699:702, 999:1001)

14 factorialMpfr

if(!Rmpfr:::doExtras()) { ## speed up: smaller set
n. <- n.set[-(1:10)]
n.set <- c(1:10, n.[c(TRUE, diff(n.) > 1)])

}
C1 <- C2 <- numeric(length(n.set))
for(i.n in seq_along(n.set)) {

cat(n <- n.set[i.n],":")
C1[i.n] <- system.time(c.c <- chooseMpfr.all(n))[1]
C2[i.n] <- system.time(c.2 <- chooseMpfr(n, 1:n))[1]
stopifnot(is.whole(c.c), c.c == c.2,

if(n > 60) TRUE else all.equal(c.c, choose(n, 1:n), tolerance = 1e-15))
cat(" [Ok]\n")

}
matplot(n.set, cbind(C1,C2), type="b", log="xy",

xlab = "n", ylab = "system.time(.) [s]")
legend("topleft", c("chooseMpfr.all(n)", "chooseMpfr(n, 1:n)"),

pch=as.character(1:2), col=1:2, lty=1:2, bty="n")

Currently, chooseMpfr.all() is faster only for large n (>= 300)
That would change if we used C-code for the *.all() version

If you want to measure more:
measureMore <- TRUE
measureMore <- FALSE
if(measureMore) { ## takes ~ 2 minutes (on "lynne", Intel i7-7700T, ~2019)

n.s <- 2^(5:20)
r <- lapply(n.s, function(n) {

N <- ceiling(10000/n)
cat(sprintf("n=%9g => N=%d: ",n,N))
ct <- system.time(C <- replicate(N, chooseMpfr(n, n/2)))
cat("[Ok]\n")
list(C=C, ct=ct/N)

})
print(ct.n <- t(sapply(r, `[[`, "ct")))
hasSfS <- requireNamespace("sfsmisc")
plot(ct.n[,"user.self"] ~ n.s, xlab=quote(n), ylab="system.time(.) [s]",

main = "CPU Time for chooseMpfr(n, n/2)",
log ="xy", type = "b", axes = !hasSfS)

if(hasSfS) for(side in 1:2) sfsmisc::eaxis(side)
summary(fm <- lm(log(ct.n[,"user.self"]) ~ log(n.s), subset = n.s >= 10^4))
--> slope ~= 2 ==> It's O(n^2)
nn <- 2^seq(11,21, by=1/16) ; Lcol <- adjustcolor(2, 1/2)
bet <- coef(fm)
lines(nn, exp(predict(fm, list(n.s = nn))), col=Lcol, lwd=3)
text(500000,1, substitute(AA %*% n^EE,

list(AA = signif(exp(bet[1]),3),
EE = signif(bet[2], 3))), col=2)

} # measure more

factorialMpfr Factorial ’n!’ in Arbitrary Precision

factorialMpfr 15

Description

Efficiently compute n! in arbitrary precision, using the MPFR-internal implementation. This is
mathematically (but not numerically) the same as Γ(n+ 1).

factorialZ (package gmp) should typically be used instead of factorialMpfr() nowadays.
Hence, factorialMpfr now is somewhat deprecated.

Usage

factorialMpfr(n, precBits = max(2, ceiling(lgamma(n+1)/log(2))),
rnd.mode = c("N","D","U","Z","A"))

Arguments

n non-negative integer (vector).

precBits desired precision in bits (“binary digits”); the default sets the precision high
enough for the result to be exact.

rnd.mode a 1-letter string specifying how rounding should happen at C-level conversion
to MPFR, see mpfr.

Value

a number of (S4) class mpfr.

See Also

factorial and gamma in base R.

factorialZ (package gmp), to replace factorialMpfr, see above.

chooseMpfr() and pochMpfr() (on the same page).

Examples

factorialMpfr(200)

n <- 1000:1010
f1000 <- factorialMpfr(n)
stopifnot(1e-15 > abs(as.numeric(1 - lfactorial(n)/log(f1000))))

Note that---astonishingly--- measurements show only
small efficiency gain of ~ 10% : over using the previous "technique"
system.time(replicate(8, f1e4 <- factorialMpfr(10000)))
system.time(replicate(8, f.1e4 <- factorial(mpfr(10000,

prec=1+lfactorial(10000)/log(2)))))

16 formatHex

formatHex Flexibly Format Numbers in Binary, Hex and Decimal Format

Description

Show numbers in binary, hex and decimal format. The resulting character-like objects can be back-
transformed to "mpfr" numbers via mpfr().

Usage

formatHex(x, precBits = min(getPrec(x)), style = "+", expAlign = TRUE)

formatBin(x, precBits = min(getPrec(x)), scientific = TRUE,
left.pad = "_", right.pad = left.pad, style = "+", expAlign = TRUE)

formatDec(x, precBits = min(getPrec(x)), digits = decdigits,
nsmall = NULL, scientific = FALSE, style = "+",
decimalPointAlign = TRUE, ...)

Arguments

x a numeric or mpfr R object.

precBits integer, the number of bits of precision, typically derived from x, see getPrec.
Numeric, i.e., double precision numbers have 53 bits. For more detail, see mpfr.

style a single character, to be used in sprintf’s format (fmt), immediately after the "
sets a sign in the output, i.e., "+" or "-", where as style = " " may seem more
standard.

expAlign logical indicating if for scientific (“exponential”) representations the expo-
nents should be aligned to the same width, i.e., zero-padded to the same number
of digits.

scientific logical indicating that formatBin should display the binary representation in
scientific notation (mpfr(3, 5) is displayed as +0b1.1000p+1). When FALSE,
formatBin will display the binary representation in regular format shifted to
align binary points (mpfr(3, 5) is displayed +0b11.000).

... additional optional arguments. formatHex, formatBin: precBits is the only
... argument acted on. Other ... arguments are ignored.
formatDec: precBits is acted on. Any argument accepted by format (except
nsmall) is acted on. Other ... arguments are ignored.

left.pad, right.pad
characters (one-character strings) that will be used for left- and right-padding of
the formatted string when scientific=FALSE. Do not change these unless for
display-only purpose !!

nsmall only used when scientific is false, then passed to format(). If NULL, the
default is computed from the range of the non-zero values of x.

formatHex 17

digits integer; the number of decimal digits displayed is the larger of this argument
and the internally generated value that is a function of precBits. This is related
to but different than digits in format.

decimalPointAlign

logical indicating if padding should be used to ensure that the resulting strings
align on the decimal point (".").

Details

For the hexadecimal representation, when the precision is not larger than double precision, sprintf()
is used directly, otherwise formatMpfr() is used and post processed. For the binary representation,
the hexadecimal value is calculated and then edited by substitution of the binary representation of
the hex characters coded in the HextoBin vector. For binary with scientific=FALSE, the result of
the scientific=TRUE version is edited to align binary points. For the decimal representation, the
hexadecimal value is calculated with the specified precision and then sent to the format function
for scientific=FALSE or to the sprintf function for scientific=TRUE.

Value

a character vector (or matrix) like x, say r, containing the formatted represention of x, with a class
(unless left.pad or right.pad were not "_"). In that case, formatHex() and formatBin() return
class "Ncharacter"; for that, mpfr(.) has a method and will basically return x, i.e., work as inverse
function.

Since Rmpfr version 0.6-2, the S3 class "Ncharacter" extends "character". (class(.) is
now of length two and class(.)[2] is "character".). There are simple [and print methods;
modifying or setting dim works as well.

Author(s)

Richard M. Heiberger <rmh@temple.edu>, with minor tweaking by Martin M.

References

R FAQ 7.31: Why doesn’t R think these numbers are equal? system.file("../../doc/FAQ")

See Also

mpfr, sprintf

Examples

FourBits <- mpfr(matrix(0:31, 8, 4, dimnames = list(0:7, c(0,8,16,24))),
precBits=4) ## 4 significant bits

FourBits

formatHex(FourBits)
formatBin(FourBits, style = " ")
formatBin(FourBits, scientific=FALSE)
formatDec(FourBits)

18 formatMpfr

as "Ncharacter" 'inherits from' "character", this now works too :
data.frame(Dec = c(formatDec(FourBits)), formatHex(FourBits),

Bin = formatBin(FourBits, style = " "))

FBB <- formatBin(FourBits) ; clB <- class(FBB)
(nFBB <- mpfr(FBB))
stopifnot(class(FBB)[1] == "Ncharacter",

all.equal(nFBB, FourBits, tol=0))

FBH <- formatHex(FourBits) ; clH <- class(FBH)
(nFBH <- mpfr(FBH))
stopifnot(class(FBH)[1] == "Ncharacter",

all.equal(nFBH, FourBits, tol=0))

Compare the different "formattings" (details will change, i.e. improve!)%% FIXME
M <- mpfr(c(-Inf, -1.25, 1/(-Inf), NA, 0, .5, 1:2, Inf), 3)
data.frame(fH = formatHex(M), f16 = format(M, base=16),

fB = formatBin(M), f2 = format(M, base= 2),
fD = formatDec(M), f10 = format(M), # base = 10 is default
fSci= format(M, scientific=TRUE),
fFix= format(M, scientific=FALSE))

Other methods ("[", t()) also work :
stopifnot(dim(F1 <- FBB[, 1, drop=FALSE]) == c(8,1), identical(class(F1), clB),

dim(t(F1)) == c(1,8), identical(class(t(F1)),clB),
is.null(dim(F.2 <- FBB[,2])), identical(class(F.2), clB),
dim(F22 <- FBH[1:2, 3:4]) == c(2,2), identical(class(F22), clH),
identical(class(FBH[2,3]), clH), is.null(dim(FBH[2,3])),
identical(FBH[2,3:4], F22[2,]),
identical(FBH[2,3], unname(FBH[,3][2])),
TRUE)

TenFrac <- matrix((1:10)/10, dimnames=list(1:10, expression(1/x)))
TenFrac9 <- mpfr(TenFrac, precBits=9) ## 9 significant bits
TenFrac9
formatHex(TenFrac9)
formatBin(TenFrac9)
formatBin(TenFrac9, scientific=FALSE)
formatDec(TenFrac9)
formatDec(TenFrac9, precBits=10)

formatMpfr Formatting MPFR (multiprecision) Numbers

Description

Flexible formatting of “multiprecision numbers”, i.e., objects of class mpfr. formatMpfr() is also
the mpfr method of the generic format function.

The formatN() methods for mpfr numbers renders them differently than their double precision
equivalents, by appending "_M".

formatMpfr 19

Function .mpfr2str() is the low level work horse for formatMpfr() and hence all print()ing of
"mpfr" objects.

Usage

formatMpfr(x, digits = NULL, trim = FALSE, scientific = NA,
maybe.full = (!is.null(digits) && is.na(scientific)) || isFALSE(scientific),

base = 10, showNeg0 = TRUE, max.digits = Inf,
big.mark = "", big.interval = 3L,
small.mark = "", small.interval = 5L,
decimal.mark = ".",
exponent.char = if(base <= 14) "e" else if(base <= 36) "E" else "|e",
exponent.plus = TRUE,
zero.print = NULL, drop0trailing = FALSE, ...)

S3 method for class 'mpfr'
formatN(x, drop0trailing = TRUE, ...)

.mpfr2str(x, digits = NULL, maybe.full = !is.null(digits), base = 10L)

Arguments

x an MPFR number (vector or array).

digits how many significant digits (in the base chosen!) are to be used in the result.
The default, NULL, uses enough digits to represent the full precision, often one
or two digits more than “you” would expect. For bases 2,4,8,16, or 32, MPFR
requires digits at least 2. For such bases, digits = 1 is changed into 2, with a
message.

trim logical; if FALSE, numbers are right-justified to a common width: if TRUE the
leading blanks for justification are suppressed.

scientific either a logical specifying whether MPFR numbers should be encoded in scien-
tific format (“exponential representation”), or an integer penalty (see options("scipen")).
Missing values correspond to the current default penalty.

maybe.full logical, passed to .mpfr2str().

base an integer in 2, 3, .., 62; the base (“basis”) in which the numbers should be repre-
sented. Apart from the default base 10, binary (base = 2) or hexadecimal (base
= 16) are particularly interesting.

showNeg0 logical indicating if “negative” zeros should be shown with a "-". The default,
TRUE is intentially different from format(<numeric>).

exponent.char the “exponent” character to be used in scientific notation. The default takes into
account that for base B ≥ 15, "e" is part of the (mantissa) digits and the same
is true for "E" when B ≥ 37.

exponent.plus logical indicating if "+" should be for positive exponents in exponential (aka
“scientific”) representation. This used to be hardcoded to FALSE; the new default
is compatible to R’s format()ing of numbers and helps to note visually when
exponents are in use.

20 formatMpfr

max.digits a (large) positive number to limit the number of (mantissa) digits, notably when
digits is NULL (as by default). Otherwise, a numeric digits is preferred to
setting max.digits (which should not be smaller than digits).

big.mark, big.interval, small.mark, small.interval, decimal.mark,
zero.print, drop0trailing

used for prettying decimal sequences, these are passed to prettyNum and that
help page explains the details.

... further arguments passed to or from other methods.

Value

a character vector or array, say cx, of the same length as x. Since Rmpfr version 0.5-3 (2013-09), if
x is an mpfrArray, then cx is a character array with the same dim and dimnames as x.

Note that in scientific notation, the integer exponent is always in decimal, i.e., base 10 (even when
base is not 10), but of course meaning base powers, e.g., in base 32, "u.giE3"is the same as
"ugi0" which is 323 times "u.gi". This is in contrast, e.g., with sprintf("%a", x) where the
powers after "p" are powers of 2.

Note

Currently, formatMpfr(x, scientific = FALSE) does not work correctly, e.g., for x <- Const("pi",
128) * 2^c(-200,200), i.e., it uses the scientific / exponential-style format. This is considered bo-
gous and hopefully will change.

Author(s)

Martin Maechler

References

The MPFR manual’s description of ‘mpfr_get_str()’ which is the C-internal workhorse for .mpfr2str()
(on which formatMpfr() builds).

See Also

mpfr for creation and the mpfr class description with its many methods. The format generic, and
the prettyNum utility on which formatMpfr is based as well. The S3 generic function formatN
from package gmp.

.mpfr_formatinfo(x) provides the (cheap) non-string parts of .mpfr2str(x); the (base 2) exp
exponents are also available via .mpfr2exp(x).

Examples

Printing of MPFR numbers uses formatMpfr() internally.
Note how each components uses the "necessary" number of digits:
(x3 <- c(Const("pi", 168), mpfr(pi, 140), 3.14))
format(x3[3], 15)
format(x3[3], 15, drop0 = TRUE)# "3.14" .. dropping the trailing zeros
x3[4] <- 2^30

frexpMpfr 21

x3[4] # automatically drops trailing zeros
format(x3[1], dig = 41, small.mark = "'") # (41 - 1 =) 40 digits after "."

rbind(formatN(x3, digits = 15),
formatN(as.numeric(x3), digits = 15))

(Zero <- mpfr(c(0,1/-Inf), 20)) # 0 and "-0"
xx <- c(Zero, 1:2, Const("pi", 120), -100*pi, -.00987)
format(xx, digits = 2)
format(xx, digits = 1, showNeg0 = FALSE)# "-0" no longer shown

Output in other bases :
formatMpfr(mpfr(10^6, 40), base=32, drop0trailing=TRUE)
"ugi0"
mpfr("ugi0", base=32) #-> 1'000'000

This now works: The large number shows "as" large integer:
x <- Const("pi", 128) * 2^c(-200,200)
formatMpfr(x, scientific = FALSE) # was 1.955...e-60 5.048...e+60

i32 <- mpfr(1:32, precBits = 64)
format(i32, base= 2, drop0trailing=TRUE)
format(i32, base= 16, drop0trailing=TRUE)
format(1/i32, base= 2, drop0trailing=TRUE)# using scientific notation for [17..32]
format(1/i32, base= 32)
format(1/i32, base= 62, drop0trailing=TRUE)
format(mpfr(2, 64)^-(1:16), base=16, drop0trailing=TRUE)

frexpMpfr Base-2 Representation and Multiplication of Mpfr Numbers

Description

MPFR - versions of the C99 (and POSIX) standard C (and C++) mathlib functions frexp() and
ldexp().

frexpMpfr(x) computes base-2 exponent e and “mantissa”, or fraction r, such that x = r ∗ 2e,
where r ∈ [0.5, 1) (unless when x is in c(0, -Inf, Inf, NaN) where r == x and e is 0), and e is
integer valued.

ldexpMpfr(f, E) is the inverse of frexpMpfr(): Given fraction or mantissa f and integer exponent
E, it returns x = f ∗2E . Viewed differently, it’s the fastest way to multiply or divide MPFR numbers
with 2E .

Usage

frexpMpfr(x, rnd.mode = c("N", "D", "U", "Z", "A"))
ldexpMpfr(f, E, rnd.mode = c("N", "D", "U", "Z", "A"))

22 frexpMpfr

Arguments

x numeric (coerced to double) vector.

f numeric fraction (vector), in [0.5, 1).

E integer valued, exponent of 2, i.e., typically in (-1024-50):1024, otherwise the
result will underflow to 0 or overflow to +/- Inf.

rnd.mode a 1-letter string specifying how rounding should happen at C-level conversion
to MPFR, see mpfr.

Value

frexpMpfr returns a list with named components r (of class mpfr) and e (integer valued, of type
integer is small enough, "double" otherwise).

Author(s)

Martin Maechler

References

On unix-alikes, typically man frexp and man ldexp

See Also

Somewhat related, .mpfr2exp(). frexp() and ldexp() in package DPQ.

Examples

set.seed(47)
x <- c(0, 2^(-3:3), (-1:1)/0,

sort(rlnorm(2^12, 10, 20) * sample(c(-1,1), 512, replace=TRUE)))
head(xM <- mpfr(x, 128), 11)
str(rFM <- frexpMpfr(xM))
d.fr <- with(rFM, data.frame(x=x, r=asNumeric(r), e=e))
head(d.fr , 16)
tail(d.fr)
ar <- abs(rFM$r)
stopifnot(0.5 <= ar[is.finite(x) & x != 0], ar[is.finite(x)] < 1,

is.integer(rFM$e))
ldx <- with(rFM, ldexpMpfr(r, e))
(iN <- which(is.na(x))) # 10
stopifnot(exprs = {

all.equal(xM, ldx, tol = 2^-124) # allow 4 bits loss, but apart from the NA, even:
identical(xM[-iN], ldx[-iN])
is.na(xM [iN])
is.na(ldx[iN])

})

https://CRAN.R-project.org/package=DPQ

gmp-conversions 23

gmp-conversions Conversion Utilities gmp <-> Rmpfr

Description

Coerce from and to big integers (bigz) and mpfr numbers.

Further, coerce from big rationals (bigq) to mpfr numbers.

Usage

.bigz2mpfr(x, precB = NULL, rnd.mode = c('N','D','U','Z','A'))

.bigq2mpfr(x, precB = NULL, rnd.mode = c('N','D','U','Z','A'))

.mpfr2bigz(x, mod = NA)

.mpfr2bigq(x)

Arguments

x an R object of class bigz, bigq or mpfr respectively.

precB precision in bits for the result. The default, NULL, means to use the minimal
precision necessary for correct representation.

rnd.mode a 1-letter string specifying how rounding should happen at C-level conversion
to MPFR, see details of mpfr.

mod a possible modulus, see as.bigz in package gmp.

Details

Note that we also provide the natural (S4) coercions, as(x, "mpfr") for x inheriting from class
"bigz" or "bigq".

Value

a numeric vector of the same length as x, of the desired class.

See Also

mpfr(), as.bigz and as.bigq in package gmp.

Examples

S <- gmp::Stirling2(50,10)
show(S)
SS <- S * as.bigz(1:3)^128
stopifnot(all.equal(log2(SS[2]) - log2(S), 128, tolerance=1e-15),

identical(SS, .mpfr2bigz(.bigz2mpfr(SS))))

.bigz2mpfr(S) # 148 bit precision

24 hjkMpfr

.bigz2mpfr(S, precB=256) # 256 bit

rational --> mpfr:
sq <- SS / as.bigz(2)^100
MP <- as(sq, "mpfr")
stopifnot(identical(MP, .bigq2mpfr(sq)),

SS == MP * as(2, "mpfr")^100)

New since 2024-01-20: mpfr --> big rational "bigq"
Pi <- Const("pi", 128)
m <- Pi* 2^(-5:5)
(m <- c(m, mpfr(2, 128)^(-5:5)))

1 x large num/denom, then 2^(-5:5) as frac
tail(Q <- .mpfr2bigq(m) , 12)
getDenom <- Rmpfr:::getDenom
stopifnot(is.whole(m * (d.m <- getDenom(m))))
stopifnot(all.equal(m, mpfr(Q, 130), tolerance = 2^-130)) # I see even

all.equal(m, mpfr(Q, 130), tolerance = 0) # TRUE

m <- m * mpfr(2, 128)^200 # quite a bit larger
tail(Q. <- .mpfr2bigq(m) , 12) # large integers ..
stopifnot(is.whole(m * (d.m <- getDenom(m))))
stopifnot(all.equal(m, mpfr(Q., 130), tolerance = 2^-130)) # I see even

all.equal(m, mpfr(Q., 130), tolerance = 0) # TRUE

m2 <- m * mpfr(2, 128)^20000 ## really huge
stopifnot(is.whole(m2 * (d.m2 <- getDenom(m2))))
denominator(Q2 <- .mpfr2bigq(m2)) ## all 1 ! (all m2 ~~ 2^20200)
stopifnot(all.equal(m2, mpfr(Q2, 130), tolerance = 2^-130)) # I see even

all.equal(m2, mpfr(Q2, 130), tolerance = 0) # TRUE

hjkMpfr Hooke-Jeeves Derivative-Free Minimization R (working for MPFR)

Description

An implementation of the Hooke-Jeeves algorithm for derivative-free optimization.

This is a slight adaption hjk() from package dfoptim.

Usage

hjkMpfr(par, fn, control = list(), ...)

Arguments

par Starting vector of parameter values. The initial vector may lie on the boundary.
If lower[i]=upper[i] for some i, the i-th component of the solution vector
will simply be kept fixed.

https://CRAN.R-project.org/package=dfoptim

hjkMpfr 25

fn Nonlinear objective function that is to be optimized. A scalar function that takes
a real vector as argument and returns a scalar that is the value of the function at
that point.

control list of control parameters. See Details for more information.

... Additional arguments passed to fn.

Details

Argument control is a list specifing changes to default values of algorithm control parameters.
Note that parameter names may be abbreviated as long as they are unique.

The list items are as follows:

tol Convergence tolerance. Iteration is terminated when the step length of the main loop becomes
smaller than tol. This does not imply that the optimum is found with the same accuracy.
Default is 1.e-06.

maxfeval Maximum number of objective function evaluations allowed. Default is Inf, that is no
restriction at all.

maximize A logical indicating whether the objective function is to be maximized (TRUE) or min-
imized (FALSE). Default is FALSE.

target A real number restricting the absolute function value. The procedure stops if this value is
exceeded. Default is Inf, that is no restriction.

info A logical variable indicating whether the step number, number of function calls, best function
value, and the first component of the solution vector will be printed to the console. Default is
FALSE.

If the minimization process threatens to go into an infinite loop, set either maxfeval or target.

Value

A list with the following components:

par Best estimate of the parameter vector found by the algorithm.

value value of the objective function at termination.

convergence indicates convergence (TRUE) or not (FALSE).

feval number of times the objective fn was evaluated.

niter number of iterations (“steps”) in the main loop.

Note

This algorithm is based on the Matlab code of Prof. C. T. Kelley, given in his book “Iterative
methods for optimization”. It has been implemented for package dfoptim with the permission of
Prof. Kelley.

This version does not (yet) implement a cache for storing function values that have already been
computed as searching the cache makes it slower.

26 hjkMpfr

Author(s)

Hans W Borchers <hwborchers@googlemail.com>; for Rmpfr: John Nash, June 2012. Modifica-
tions by Martin Maechler.

References

C.T. Kelley (1999), Iterative Methods for Optimization, SIAM.

Quarteroni, Sacco, and Saleri (2007), Numerical Mathematics, Springer.

See Also

Standard R’s optim; optimizeR provides one-dimensional minimization methods that work with
mpfr-class numbers.

Examples

simple smooth example:
ff <- function(x) sum((x - c(2:4))^2)
str(rr <- hjkMpfr(rep(mpfr(0,128), 3), ff, control=list(info=TRUE)))

doX <- Rmpfr:::doExtras(); cat("doExtras: ", doX, "\n") # slow parts only if(doX)

Hooke-Jeeves solves high-dim. Rosenbrock function {but slowly!}
rosenbrock <- function(x) {

n <- length(x)
sum (100*((x1 <- x[1:(n-1)])^2 - x[2:n])^2 + (x1 - 1)^2)

}
par0 <- rep(0, 10)
str(rb.db <- hjkMpfr(rep(0, 10), rosenbrock, control=list(info=TRUE)))
if(doX) {
rosenbrook() is quite slow with mpfr-numbers:
str(rb.M. <- hjkMpfr(mpfr(numeric(10), prec=128), rosenbrock,

control = list(tol = 1e-8, info=TRUE)))
}

Hooke-Jeeves does not work well on non-smooth functions
nsf <- function(x) {

f1 <- x[1]^2 + x[2]^2
f2 <- x[1]^2 + x[2]^2 + 10 * (-4*x[1] - x[2] + 4)
f3 <- x[1]^2 + x[2]^2 + 10 * (-x[1] - 2*x[2] + 6)
max(f1, f2, f3)

}
par0 <- c(1, 1) # true min 7.2 at (1.2, 2.4)
h.d <- hjkMpfr(par0, nsf) # fmin=8 at xmin=(2,2)
if(doX) {
and this is not at all better (but slower!)
h.M <- hjkMpfr(mpfr(c(1,1), 128), nsf, control = list(tol = 1e-15))
}
--> demo(hjkMpfr) # -> Fletcher's chebyquad function m = n -- residuals

igamma 27

igamma Incomplete Gamma Function

Description

For MPFR version >= 3.2.0, the following MPFR library function is provided: mpfr_gamma_inc(a,x),
the R interface of which is igamma(a,x), where igamma(a,x) is the “upper” incomplete gamma
function

Γ(a, x) :=: Γ(a)− γ(a, x),

where

γ(a, x) :=

∫ x

0

ta−1e−tdt,

and hence

Γ(a, x) :=

∫ ∞

x

ta−1e−tdt,

and
Γ(a) := γ(a,∞).

As R’s pgamma(x,a) is
pgamma(x, a) := γ(a, x)/Γ(a),

we get

igamma(a,x) == gamma(a) * pgamma(x, a, lower.tail=FALSE)

Usage

igamma(a, x, rnd.mode = c("N", "D", "U", "Z", "A"))

Arguments

a, x an object of class mpfr or numeric.

rnd.mode a 1-letter string specifying how rounding should happen at C-level conversion
to MPFR, see mpfr.

Value

a numeric vector of “common length”, recyling along a and x.

Author(s)

R interface: Martin Maechler

References

NIST Digital Library of Mathematical Functions, section 8.2. https://dlmf.nist.gov/8.2.i

Wikipedia (2019). Incomplete gamma function; https://en.wikipedia.org/wiki/Incomplete_
gamma_function

https://dlmf.nist.gov/8.2.i
https://en.wikipedia.org/wiki/Incomplete_gamma_function
https://en.wikipedia.org/wiki/Incomplete_gamma_function

28 integrateR

See Also

R’s gamma (function) and pgamma (probability distribution).

Examples

show how close pgamma() is :
x <- c(seq(0,20, by=1/4), 21:50, seq(55, 100, by=5))
if(mpfrVersion() >= "3.2.0") { print(
all.equal(igamma(Const("pi", 80), x),

pgamma(x, pi, lower.tail=FALSE) * gamma(pi),
tol=0, formatFUN = function(., ...) format(., digits = 7)) #-> 2.75e-16 (was 3.13e-16)

)
and ensure *some* closeness:
stopifnot(exprs = {

all.equal(igamma(Const("pi", 80), x),
pgamma(x, pi, lower.tail=FALSE) * gamma(pi),
tol = 1e-15)

})
} # only if MPFR version >= 3.2.0

integrateR One-Dimensional Numerical Integration - in pure R

Description

Numerical integration of one-dimensional functions in pure R, with care so it also works for
"mpfr"-numbers.

Currently, only classical Romberg integration of order ord is available.

Usage

integrateR(f, lower, upper, ..., ord = NULL,
rel.tol = .Machine$double.eps^0.25, abs.tol = rel.tol,
max.ord = 19, verbose = FALSE)

Arguments

f an R function taking a numeric or "mpfr" first argument and returning a nu-
meric (or "mpfr") vector of the same length. Returning a non-finite element
will generate an error.

lower, upper the limits of integration. Currently must be finite. Do use "mpfr"-numbers to
get higher than double precision, see the examples.

... additional arguments to be passed to f.

ord integer, the order of Romberg integration to be used. If this is NULL, as per
default, and either rel.tol or abs.tol are specified, the order is increased
until convergence.

integrateR 29

rel.tol relative accuracy requested. The default is 1.2e-4, about 4 digits only, see the
Note.

abs.tol absolute accuracy requested.

max.ord only used, when neither ord or one of rel.tol, abs.tol are specified: Stop
Romberg iterations after the order reaches max.ord; may prevent infinite loops
or memory explosion.

verbose logical or integer, indicating if and how much information should be printed
during computation.

Details

Note that arguments after ... must be matched exactly.

For convergence, both relative and absolute changes must be smaller than rel.tol and abs.tol,
respectively.

rel.tol cannot be less than max(50*.Machine$double.eps, 0.5e-28) if abs.tol <= 0.

Value

A list of class "integrateR" (as from standard R’s integrate()) with a print method and com-
ponents

value the final estimate of the integral.

abs.error estimate of the modulus of the absolute error.

subdivisions for Romberg, the number of function evaluations.

message "OK" or a character string giving the error message.

call the matched call.

Note

f must accept a vector of inputs and produce a vector of function evaluations at those points. The
Vectorize function may be helpful to convert f to this form.

If you want to use higher accuracy, you must set lower or upper to "mpfr" numbers (and typically
lower the relative tolerance, rel.tol), see also the examples.

Note that the default tolerances (rel.tol, abs.tol) are not very accurate, but the same as for
integrate, which however often returns considerably more accurate results than requested. This
is typically not the case for integrateR().

Note

We use practically the same print S3 method as print.integrate, provided by R, with a differ-
ence when the message component is not "Ok".

Author(s)

Martin Maechler

30 integrateR

References

Bauer, F.L. (1961) Algorithm 60 – Romberg Integration, Communications of the ACM 4(6), p.255.

See Also

R’s standard, integrate, is much more adaptive, also allowing infinite integration boundaries, and
typically considerably faster for a given accuracy.

Examples

See more from ?integrate
this is in the region where integrate() can get problems:
integrateR(dnorm,0,2000)
integrateR(dnorm,0,2000, rel.tol=1e-15)
(Id <- integrateR(dnorm,0,2000, rel.tol=1e-15, verbose=TRUE))
Id$value == 0.5 # exactly

Demonstrating that 'subdivisions' is correct:
Exp <- function(x) { .N <<- .N+ length(x); exp(x) }
.N <- 0; str(integrateR(Exp, 0,1, rel.tol=1e-10), digits=15); .N

Using high-precision functions -----

Polynomials are very nice:
integrateR(function(x) (x-2)^4 - 3*(x-3)^2, 0, 5, verbose=TRUE)
n= 1, 2^n= 2 | I = 46.04, abs.err = 98.9583
n= 2, 2^n= 4 | I = 20, abs.err = 26.0417
n= 3, 2^n= 8 | I = 20, abs.err = 7.10543e-15
20 with absolute error < 7.1e-15
Now, using higher accuracy:
I <- integrateR(function(x) (x-2)^4 - 3*(x-3)^2, 0, mpfr(5,128),

rel.tol = 1e-20, verbose=TRUE)
I ; I$value ## all fine

with floats:
integrateR(exp, 0 , 1, rel.tol=1e-15, verbose=TRUE)
with "mpfr":
(I <- integrateR(exp, mpfr(0,200), 1, rel.tol=1e-25, verbose=TRUE))
(I.true <- exp(mpfr(1, 200)) - 1)
true absolute error:
stopifnot(print(as.numeric(I.true - I$value)) < 4e-25)

Want absolute tolerance check only (=> set 'rel.tol' very high, e.g. 1):
(Ia <- integrateR(exp, mpfr(0,200), 1, abs.tol = 1e-6, rel.tol=1, verbose=TRUE))

Set 'ord' (but no '*.tol') --> Using 'ord'; no convergence checking
(I <- integrateR(exp, mpfr(0,200), 1, ord = 13, verbose=TRUE))

is.whole 31

is.whole Whole ("Integer") Numbers

Description

Check which elements of x[] are integer valued aka “whole” numbers,including MPFR numbers
(class mpfr).

Usage

S3 method for class 'mpfr'
is.whole(x)

Arguments

x any R vector, here of class mpfr.

Value

logical vector of the same length as x, indicating where x[.] is integer valued.

Author(s)

Martin Maechler

See Also

is.integer(x) (base package) checks for the internal mode or class, not if x[i] are integer valued.

The is.whole() methods in package gmp.

Examples

is.integer(3) # FALSE, it's internally a double
is.whole(3) # TRUE
x <- c(as(2,"mpfr") ^ 100, 3, 3.2, 1000000, 2^40)
is.whole(x) # one FALSE, only

32 log1mexp

log1mexp Compute f(a) = log(1 +/- exp(-a)) Numerically Optimally

Description

Compute f(a) = log(1 - exp(-a)), respectively g(x) = log(1 + exp(x)) quickly numerically accurately.

Usage

log1mexp(a, cutoff = log(2))
log1pexp(x, c0 = -37, c1 = 18, c2 = 33.3)

Arguments

a numeric (or mpfr) vector of positive values.

x numeric vector, may also be an "mpfr" object.

cutoff positive number; log(2) is “optimal”, but the exact value is unimportant, and
anything in [0.5, 1] is fine.

c0, c1, c2 cutoffs for log1pexp; see below.

Value

log1mexp(a) := f(a) = log(1− exp(−a)) = log1p(− exp(−a)) = log(−expm1(−a))

or, respectively,

log1pexp(x) := g(x) = log(1 + exp(x)) = log1p(exp(x))

computed accurately and quickly.

Author(s)

Martin Maechler, May 2002; log1pexp() in 2012

References

Martin Mächler (2012). Accurately Computing log(1 − exp(−|a|)); https://CRAN.R-project.
org/package=Rmpfr/vignettes/log1mexp-note.pdf.

https://CRAN.R-project.org/package=Rmpfr/vignettes/log1mexp-note.pdf
https://CRAN.R-project.org/package=Rmpfr/vignettes/log1mexp-note.pdf

log1mexp 33

Examples

fExpr <- expression(
DEF = log(1 - exp(-a)),
expm1 = log(-expm1(-a)),
log1p = log1p(-exp(-a)),
F = log1mexp(a))

a. <- 2^seq(-58, 10, length = 256)
a <- a. ; str(fa <- do.call(cbind, as.list(fExpr)))
head(fa)# expm1() works here
tail(fa)# log1p() works here

graphically:
lwd <- 1.5*(5:2); col <- adjustcolor(1:4, 0.4)
op <- par(mfcol=c(1,2), mgp = c(1.25, .6, 0), mar = .1+c(3,2,1,1))

matplot(a, fa, type = "l", log = "x", col=col, lwd=lwd)
legend("topleft", fExpr, col=col, lwd=lwd, lty=1:4, bty="n")
expm1() & log1mexp() work here

matplot(a, -fa, type = "l", log = "xy", col=col, lwd=lwd)
legend("left", paste("-",fExpr), col=col, lwd=lwd, lty=1:4, bty="n")
log1p() & log1mexp() work here

par(op)

aM <- 2^seqMpfr(-58, 10, length=length(a.)) # => default prec = 128
a <- aM; dim(faM <- do.call(cbind, as.list(fExpr))) # 256 x 4, "same" as 'fa'
Here, for small 'a' log1p() and even 'DEF' is still good enough
l_f <- asNumeric(log(-faM))
all.equal(l_f[,"F"], l_f[,"log1p"], tol=0) # see TRUE (Lnx 64-bit)
io <- a. < 80 # for these, the differences are small
all.equal(l_f[io,"F"], l_f[io,"expm1"], tol=0) # see 6.662e-9
all.equal(l_f[io,"F"], l_f[io, "DEF"], tol=0)
stopifnot(exprs = {

all.equal(l_f[,"F"], l_f[,"log1p"], tol= 1e-15)
all.equal(l_f[io,"F"], l_f[io,"expm1"], tol= 1e-7)
all.equal(l_f[io,"F"], l_f[io, "DEF"], tol= 1e-7)

})
For 128-bit prec, if we go down to 2^-130, "log1p" is no longer ok:
aM2 <- 2^seqMpfr(-130, 10, by = 1/2)
a <- aM2; fa2 <- do.call(cbind, as.list(fExpr))
head(asNumeric(fa2), 12)
tail(asNumeric(fa2), 12)

matplot(a, log(-fa2[,1:3]) -log(-fa2[,"F"]), type="l", log="x",
lty=1:3, lwd=2*(3:1)-1, col=adjustcolor(2:4, 1/3))

legend("top", colnames(fa2)[1:3], lty=1:3, lwd=2*(3:1)-1, col=adjustcolor(2:4, 1/3))

cols <- adjustcolor(2:4, 1/3); lwd <- 2*(3:1)-1
matplot(a, 1e-40+abs(log(-fa2[,1:3]) -log(-fa2[,"F"])), type="o", log="xy",

main = "log1mexp(a) -- approximation rel.errors, mpfr(*, prec=128)",
pch=21:23, cex=.6, bg=5:7, lty=1:2, lwd=lwd, col=cols)

legend("top", colnames(fa2)[1:3], bty="n", lty=1:2, lwd=lwd, col=cols,
pch=21:23, pt.cex=.6, pt.bg=5:7)

34 matmult

-------------------------- log1pexp() [simpler] --------------------

curve(log1pexp, -10, 10, asp=1)
abline(0,1, h=0,v=0, lty=3, col="gray")

Cutoff c1 for log1pexp() -- not often "needed":
curve(log1p(exp(x)) - log1pexp(x), 16, 20, n=2049)
need for *some* cutoff:
x <- seq(700, 720, by=2)
cbind(x, log1p(exp(x)), log1pexp(x))

Cutoff c2 for log1pexp():
curve((x+exp(-x)) - x, 20, 40, n=1025)
curve((x+exp(-x)) - x, 33.1, 33.5, n=1025)

matmult (MPFR) Matrix (Vector) Multiplication

Description

Matrix / vector multiplication of mpfr (and “simple” numeric) matrices and vectors.

matmult (x,y, fPrec = 2) or crossprod(x,y, fPrec = 2) use higher precision in underlying
computations.

Usage

matmult(x, y, ...)

Arguments

x, y numeric or mpfrMatrix-classed R objects, i.e. semantically numeric matrices
or vectors.

... arguments passed to the hidden underlying .matmult.R() work horse which
is also underlying the %*%, crossprod(), and tcrossprod() methods, see the
mpfrMatrix class documentation:

fPrec a multiplication factor, a positive number determining the number of bits
precBits used for the underlying multiplication and summation arithmetic.
The default is fPrec = 1. Setting fPrec = 2 doubles the precision which has
been recommended, e.g., by John Nash.

precBits the number of bits used for the underlying multiplication and summa-
tion arithmetic; by default precBits = fPrec * max(getPrec(x), getPrec(y))
which typically uses the same accuracy as regular mpfr-arithmetic would
use.

Mnumber-class 35

Value

a (base R) matrix or mpfrMatrix, depending on the classes of x and y.

Note

Using matmult(x,y) instead of x %*% y, makes sense mainly if you use non-default fPrec or
precBits arguments.

The crossprod(), and tcrossprod() function have the identical optional arguments fPrec or
precBits.

Author(s)

Martin Maechler

See Also

%*%, crossprod, tcrossprod.

Examples

FIXME: add example

1) matmult() <--> %*%

2) crossprod() , tcrossprod() %% <--> ./mpfrMatrix-class.Rd examples (!)

Mnumber-class Class "Mnumber" and "mNumber" of "mpfr" and regular numbers and
arrays from them

Description

Classes "Mnumber" "mNumber" are class unions of "mpfr" and regular numbers and arrays from
them.
Its purpose is for method dispatch, notably defining a cbind(...) method where ... contains
objects of one of the member classes of "Mnumber".

Classes "mNumber" is considerably smaller is it does not contain "matrix" and "array" since
these also extend "character" which is not really desirable for generalized numbers. It extends
the simple "numericVector" class by mpfr* classes.

Methods

%*% signature(x = "mpfrMatrix", y = "Mnumber"): ...

crossprod signature(x = "mpfr", y = "Mnumber"): ...

tcrossprod signature(x = "Mnumber", y = "mpfr"): ...

etc. These are documented with the classes mpfr and or mpfrMatrix.

36 mpfr

See Also

the array_or_vector sub class; cbind-methods.

Examples

"Mnumber" encompasses (i.e., "extends") quite a few
"vector / array - like" classes:
showClass("Mnumber")
stopifnot(extends("mpfrMatrix", "Mnumber"),

extends("array", "Mnumber"))

Mnsub <- names(getClass("Mnumber")@subclasses)
(mNsub <- names(getClass("mNumber")@subclasses))
mNumber has *one* subclass which is not in Mnumber:
setdiff(mNsub, Mnsub)# namely "numericVector"
The following are only subclasses of "Mnumber", but not of "mNumber":
setdiff(Mnsub, mNsub)

mpfr Create "mpfr" Numbers (Objects)

Description

Create multiple (i.e. typically high) precision numbers, to be used in arithmetic and mathematical
computations with R.

Usage

mpfr(x, precBits, ...)
Default S3 method:
mpfr(x, precBits, base = 10,

rnd.mode = c("N","D","U","Z","A"), scientific = NA, ...)

Const(name = c("pi", "gamma", "catalan", "log2"), prec = 120L,
rnd.mode = c("N","D","U","Z","A"))

is.mpfr(x)

Arguments

x a numeric, mpfr, bigz, bigq, or character vector or array.

precBits, prec a number, the maximal precision to be used, in bits; i.e. 53 corresponds to
double precision. Must be at least 2. If missing, getPrec(x) determines a
default precision.

base (only when x is character) the base with respect to which x[i] represent num-
bers; base b must fulfill 2 ≤ b ≤ 62.

mpfr 37

rnd.mode a 1-letter string specifying how rounding should happen at C-level conversion
to MPFR, see details.

scientific (used only when x is the result of formatBin(), i.e., of class "Bcharacter":)
logical indicating that the binary representation of x is in scientific notation.
When TRUE, mpfr() will substitute 0 for _; when NA, mpfr() will guess, and use
TRUE when finding a "p" in x; see also formatBin.

name a string specifying the mpfrlib - internal constant computation. "gamma" is Eu-
ler’s gamma (γ), and "catalan" Catalan’s constant.

... potentially further arguments passed to and from methods.

Details

The "mpfr" method of mpfr() is a simple wrapper around roundMpfr().

MPFR supports the following rounding modes,

GMP_RNDN: round to nearest (roundTiesToEven in IEEE 754-2008).

GMP_RNDZ: round toward zero (roundTowardZero in IEEE 754-2008).

GMP_RNDU: round toward plus infinity (“Up”, roundTowardPositive in IEEE 754-2008).

GMP_RNDD: round toward minus infinity (“Down”, roundTowardNegative in IEEE 754-2008).

GMP_RNDA: round away from zero (new since MPFR 3.0.0).

The ‘round to nearest’ ("N") mode, the default here, works as in the IEEE 754 standard: in case
the number to be rounded lies exactly in the middle of two representable numbers, it is rounded to
the one with the least significant bit set to zero. For example, the number 5/2, which is represented
by (10.1) in binary, is rounded to (10.0)=2 with a precision of two bits, and not to (11.0)=3. This
rule avoids the "drift" phenomenon mentioned by Knuth in volume 2 of The Art of Computer
Programming (Section 4.2.2).

When x is character, mpfr() will detect the precision of the input object.

Value

an object of (S4) class mpfr, or for mpfr(x) when x is an array, mpfrMatrix, or mpfrArray which
the user should just as a normal numeric vector or array.

is.mpfr() returns TRUE or FALSE.

Author(s)

Martin Maechler

References

The MPFR team. (202x). GNU MPFR – The Multiple Precision Floating-Point Reliable Library;
see https://www.mpfr.org/mpfr-current/#doc or directly https://www.mpfr.org/mpfr-current/
mpfr.pdf.

https://www.mpfr.org/mpfr-current/#doc
https://www.mpfr.org/mpfr-current/mpfr.pdf
https://www.mpfr.org/mpfr-current/mpfr.pdf

38 mpfr

See Also

The class documentation mpfr contains more details. Use asNumeric() from gmp to transform
back to double precision ("numeric").

Examples

mpfr(pi, 120) ## the double-precision pi "translated" to 120-bit precision

pi. <- Const("pi", prec = 260) # pi "computed" to correct 260-bit precision
pi. # nicely prints 80 digits [260 * log10(2) ~= 78.3 ~ 80]

Const("gamma", 128L) # 0.5772...
Const("catalan", 128L) # 0.9159...

x <- mpfr(0:7, 100)/7 # a more precise version of k/7, k=0,..,7
x
1 / x

character input :
mpfr("2.718281828459045235360287471352662497757") - exp(mpfr(1, 150))
~= -4 * 10^-40
Also works for NA, NaN, ... :
cx <- c("1234567890123456", 345, "NA", "NaN", "Inf", "-Inf")
mpfr(cx)

with some 'base' choices :
print(mpfr("111.1111", base=2)) * 2^4

mpfr("af21.01020300a0b0c", base=16)
68 bit prec. 44833.00393694653820642

mpfr("ugi0", base = 32) == 10^6 ## TRUE

--- Large integers from package 'gmp':
Z <- as.bigz(7)^(1:200)
head(Z, 40)
mfpr(Z) by default chooses the correct *maximal* default precision:
mZ. <- mpfr(Z)
more efficiently chooses precision individually
m.Z <- mpfr(Z, precBits = frexpZ(Z)$exp)
the precBits chosen are large enough to keep full precision:
stopifnot(identical(cZ <- as.character(Z),

as(mZ.,"character")),
identical(cZ, as(m.Z,"character")))

compare mpfr-arithmetic with exact rational one:
stopifnot(all.equal(mpfr(as.bigq(355,113), 99),

mpfr(355, 99) / 113,tol = 2^-98))

look at different "rounding modes":
sapply(c("N", "D","U","Z","A"), function(RND)

mpfr(c(-1,1)/5, 20, rnd.mode = RND), simplify=FALSE)

https://CRAN.R-project.org/package=gmp

mpfr-class 39

symnum(sapply(c("N", "D","U","Z","A"),
function(RND) mpfr(0.2, prec = 5:15, rnd.mode = RND) < 0.2))

mpfr-class Class "mpfr" of Multiple Precision Floating Point Numbers

Description

"mpfr" is the class of Multiple Precision Floatingpoint numbers with Reliable arithmetic.

sFor the high-level user, "mpfr" objects should behave as standard R’s numeric vectors. They
would just print differently and use the prespecified (typically high) precision instead of the double
precision of ‘traditional’ R numbers (with class(.) == "numeric" and typeof(.) == "double").

hypot(x,y) computes the hypothenuse length z in a rectangular triangle with “leg” side lengths x
and y, i.e.,

z = hypot(x, y) =
√

x2 + y2,

in a numerically stable way.

Usage

hypot(x,y, rnd.mode = c("N","D","U","Z","A"))

Arguments

x, y an object of class mpfr.

rnd.mode a 1-letter string specifying how rounding should happen at C-level conversion
to MPFR, see mpfr.

Objects from the Class

Objects are typically created by mpfr(<number>, precBits).

summary(<mpfr>) returns an object of class "summaryMpfr" which contains "mpfr" but has its
own print method.

Slots

Internally, "mpfr" objects just contain standard R lists where each list element is of class "mpfr1",
representing one MPFR number, in a structure with four slots, very much parallelizing the C struc
in the mpfr C library to which the Rmpfr package interfaces.

An object of class "mpfr1" has slots

prec: "integer" specifying the maxmimal precision in bits.

exp: "integer" specifying the base-2 exponent of the number.

sign: "integer", typically -1 or 1, specifying the sign (i.e. sign(.)) of the number.

d: an "integer" vector (of 32-bit “limbs”) which corresponds to the full mantissa of the number.

40 mpfr-class

Methods

abs signature(x = "mpfr"): ...

atan2 signature(y = "mpfr", x = "ANY"), and

atan2 signature(x = "ANY", y = "mpfr"): compute the arc-tangent of two arguments: atan2(y,
x) returns the angle between the x-axis and the vector from the origin to (x, y), i.e., for positive
arguments atan2(y, x) == atan(y/x).

lbeta signature(a = "ANY", b = "mpfrArray"), is log(|B(a, b)|) where B(a, b) is the Beta func-
tion, beta(a,b).

beta signature(a = "mpfr", b = "ANY"),

beta signature(a = "mpfr", b = "mpfr"), . . . , etc: Compute the beta function B(a, b), using
high precision, building on internal gamma or lgamma. See the help for R’s base function beta
for more. Currently, there, a, b ≥ 0 is required. Here, we provide (non-NaN) for all numeric
a, b.
When either a, b, or a + b is a negative integer, Γ(.) has a pole there and is undefined (NaN).
However the Beta function can be defined there as “limit”, in some cases. Following other soft-
ware such as SAGE, Maple or Mathematica, we provide finite values in these cases. However,
note that these are not proper limits (two-dimensional in (a, b)), but useful for some applica-
tions. E.g., B(a, b) is defined as zero when a + b is a negative integer, but neither a nor b is.
Further, if a > b > 0 are integers, B(−a, b) = B(b,−a) can be seen as (−1)b∗B(a−b+1, b).

dim<- signature(x = "mpfr"): Setting a dimension dim on an "mpfr" object makes it into an
object of class "mpfrArray" or (more specifically) "mpfrMatrix" for a length-2 dimension,
see their help page; note that t(x) (below) is a special case of this.

Ops signature(e1 = "mpfr", e2 = "ANY"): ...

Ops signature(e1 = "ANY", e2 = "mpfr"): ...

Arith signature(e1 = "mpfr", e2 = "missing"): ...

Arith signature(e1 = "mpfr", e2 = "mpfr"): ...

Arith signature(e1 = "mpfr", e2 = "integer"): ...

Arith signature(e1 = "mpfr", e2 = "numeric"): ...

Arith signature(e1 = "integer", e2 = "mpfr"): ...

Arith signature(e1 = "numeric", e2 = "mpfr"): ...

Compare signature(e1 = "mpfr", e2 = "mpfr"): ...

Compare signature(e1 = "mpfr", e2 = "integer"): ...

Compare signature(e1 = "mpfr", e2 = "numeric"): ...

Compare signature(e1 = "integer", e2 = "mpfr"): ...

Compare signature(e1 = "numeric", e2 = "mpfr"): ...

Logic signature(e1 = "mpfr", e2 = "mpfr"): ...

Summary signature(x = "mpfr"): The S4 Summary group functions, max, min, range, prod,
sum, any, and all are all defined for MPFR numbers. mean(x, trim) for non-0 trim works
analogously to mean.default.

median signature(x = "mpfr"): works via

quantile signature(x = "mpfr"): a simple wrapper of the quantile.default method from stats.

mpfr-class 41

summary signature(object = "mpfr"): modeled after summary.default, ensuring to provide
the full "mpfr" range of numbers.

Math signature(x = "mpfr"): All the S4 Math group functions are defined, using multiple preci-
sion (MPFR) arithmetic, from getGroupMembers("Math"), these are (in alphabetical order):
abs, sign, sqrt, ceiling, floor, trunc, cummax, cummin, cumprod, cumsum, exp, expm1,
log, log10, log2, log1p, cos, cosh, sin, sinh, tan, tanh, acos, acosh, asin, asinh, atan,
atanh, cospi, sinpi, tanpi, gamma, lgamma, digamma, and trigamma.
Currently, trigamma is not provided by the MPFR library and hence not yet implemented.
Further, the cum*() methods are not yet implemented.

factorial signature(x = "mpfr"): this will round the result when x is integer valued. Note how-
ever that factorialMpfr(n) for integer n is slightly more efficient, using the MPFR function
‘mpfr_fac_ui’.

Math2 signature(x = "mpfr"): round(x,digits) and signif(x, digits) methods. Note that
these do not change the formal precision ('prec' slot), and you may often want to apply
roundMpfr() in addition or preference.

as.numeric signature(x = "mpfr"): ...

as.vector signature(x = "mpfrArray"): as for standard arrays, this “drops” the dim (and dimnames),
i.e., transforms x into an ‘MPFR’ number vector, i.e., class mpfr.

[[signature(x = "mpfr", i = "ANY"), and

[signature(x = "mpfr", i = "ANY", j = "missing", drop = "missing"): subsetting aka “index-
ing” happens as for numeric vectors.

format signature(x = "mpfr"), further arguments digits = NULL, scientific = NA, etc: re-
turns character vector of same length as x; when digits is NULL, with enough digits to
recreate x accurately. For details, see formatMpfr.

is.finite signature(x = "mpfr"): ...

is.infinite signature(x = "mpfr"): ...

is.na signature(x = "mpfr"): ...

is.nan signature(x = "mpfr"): ...

log signature(x = "mpfr"): ...

show signature(object = "mpfr"): ...

sign signature(x = "mpfr"): ...

Re, Im signature(z = "mpfr"): simply return z or 0 (as "mpfr" numbers of correct precision),
as mpfr numbers are ‘real’ numbers.

Arg, Mod, Conj signature(z = "mpfr"): these are trivial for our ‘real’ mpfr numbers, but de-
fined to work correctly when used in R code that also allows complex number input.

all.equal signature(target = "mpfr", current = "mpfr"),

all.equal signature(target = "mpfr", current = "ANY"), and

all.equal signature(target = "ANY", current = "mpfr"): methods for numerical (approximate)
equality, all.equal of multiple precision numbers. Note that the default tolerance (argu-
ment) is taken to correspond to the (smaller of the two) precisions when both main arguments
are of class "mpfr", and hence can be considerably less than double precision machine epsilon
.Machine$double.eps.

42 mpfr-class

coerce signature(from = "numeric", to = "mpfr"): as(., "mpfr") coercion methods are avail-
able for character strings, numeric, integer, logical, and even raw. Note however, that
mpfr(., precBits, base) is more flexible.

coerce signature(from = "mpfr", to = "bigz"): coerces to biginteger, see bigz in package gmp.

coerce signature(from = "mpfr", to = "numeric"): ...

coerce signature(from = "mpfr", to = "character"): ...

unique signature(x = "mpfr"), and corresponding S3 method (such that unique(<mpfr>) works
inside base functions), see unique.
Note that duplicated() works for "mpfr" objects without the need for a specific method.

t signature(x = "mpfr"): makes x into an n× 1 mpfrMatrix.

which.min signature(x = "mpfr"): gives the index of the first minimum, see which.min.

which.max signature(x = "mpfr"): gives the index of the first maximum, see which.max.

Note

Many more methods (“functions”) automagically work for "mpfr" number vectors (and matrices,
see the mpfrMatrix class doc), notably sort, order, quantile, rank.

Author(s)

Martin Maechler

See Also

The "mpfrMatrix" class, which extends the "mpfr" one.

roundMpfr to change precision of an "mpfr" object which is typically desirable instead of or in
addition to signif() or round(); is.whole() from gmp, etc.

Special mathematical functions such as some Bessel ones, e.g., jn; further, zeta(.) (= ζ(.)), Ei()
etc. Bernoulli numbers and the Pochhammer function pochMpfr.

Examples

30 digit precision
(x <- mpfr(c(2:3, pi), prec = 30 * log2(10)))
str(x) # str() displays *compact*ly => not full precision
x^2
x[1] / x[2] # 0.66666... ~ 30 digits

indexing - as with numeric vectors
stopifnot(exprs = {

identical(x[2], x[[2]])
indexing "outside" gives NA (well: "mpfr-NaN" for now):
is.na(x[5])
whereas "[[" cannot index outside:
inherits(tryCatch(x[[5]], error=identity), "error")
and only select *one* element:
inherits(tryCatch(x[[2:3]], error=identity), "error")

})

https://CRAN.R-project.org/package=gmp

mpfr-class 43

factorial() & lfactorial would work automagically via [l]gamma(),
but factorial() additionally has an "mpfr" method which rounds
f200 <- factorial(mpfr(200, prec = 1500)) # need high prec.!
f200
as.numeric(log2(f200))# 1245.38 -- need precBits >~ 1246 for full precision

##--> see factorialMpfr() for more such computations.

##--- "Underflow" **much** later -- exponents have 30(+1) bits themselves:

mpfr.min.exp2 <- - (2^30 + 1)
two <- mpfr(2, 55)
stopifnot(two ^ mpfr.min.exp2 == 0)
whereas
two ^ (mpfr.min.exp2 * (1 - 1e-15))
2.38256490488795107e-323228497 ["typically"]

##--- "Assert" that {sort}, {order}, {quantile}, {rank}, all work :

p <- mpfr(rpois(32, lambda=500), precBits=128)^10
np <- as.numeric(log(p))
(sp <- summary(p))# using the print.summaryMpfr() method
stopifnot(all(diff(sort(p)) >= 0),

identical(order(p), order(np)),
identical(rank (p), rank (np)),
all.equal(sapply(1:9, function(Typ) quantile(np, type=Typ, names=FALSE)),

sapply(lapply(1:9, function(Typ) quantile(p, type=Typ, names=FALSE)),
function(x) as.numeric(log(x))),
tol = 1e-3),# quantiles: interpolated in orig. <--> log scale

TRUE)

m0 <- mpfr(numeric(), 99)
xy <- expand.grid(x = -2:2, y = -2:2) ; x <- xy[,"x"] ; y <- xy[,"y"]
a2. <- atan2(y,x)

stopifnot(identical(which.min(m0), integer(0)),
identical(which.max(m0), integer(0)),

all.equal(a2., atan2(as(y,"mpfr"), x)),
max(m0) == mpfr(-Inf, 53), # (53 is not a feature, but ok)
min(m0) == mpfr(+Inf, 53),
sum(m0) == 0, prod(m0) == 1)

unique(), now even base::factor() "works" on <mpfr> :
set.seed(17)
p <- rlnorm(20) * mpfr(10, 100)^-999
pp <- sample(p, 50, replace=TRUE)
str(unique(pp)) # length 18 .. (from originally 20)
Class 'mpfr' [package "Rmpfr"] of length 18 and precision 100
5.56520587824e-999 4.41636588227e-1000 ..
facp <- factor(pp)
str(facp) # the factor *levels* are a bit verbose :
Factor w/ 18 levels "new(\"mpfr1\",)" ...

44 mpfr-distr-etc

At least *some* factor methods work :
stopifnot(exprs = {

is.factor(facp)
identical(unname(table(facp)),

unname(table(asNumeric(pp * mpfr(10,100)^1000))))
})

((unfortunately, the expressions are wrong; should integer "L"))
#
More useful: levels with which to *invert* factor() :
-- this is not quite ok:
simplified from 'utils' :
deparse1 <- function(x, ...) paste(deparse(x, 500L, ...), collapse = " ")
if(FALSE) {
str(pp.levs <- vapply(unclass(sort(unique(pp))), deparse1, ""))
facp2 <- factor(pp, levels = pp.levs)

}

mpfr-distr-etc Distribution Functions with MPFR Arithmetic

Description

For some R standard (probability) density, distribution or quantile functions, we provide MPFR
versions.

Usage

dpois (x, lambda, log = FALSE, useLog =)
dbinom (x, size, prob, log = FALSE, useLog =)
dnbinom(x, size, prob, mu, log = FALSE, useLog = any(x > 1e6))
dnorm (x, mean = 0, sd = 1, log = FALSE)
dgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE)
dt (x, df, ncp, log = FALSE)

pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

Arguments

x, q, lambda, size, prob, mu, mean, sd, shape, rate, scale, df, ncp
numeric or mpfr vectors. All of these are “recycled” to the length of the longest
one. For their meaning/definition, see the corresponding standard R (stats pack-
age) function.

log, log.p, lower.tail
logical, see pnorm, dpois, etc.

useLog logical with default depending on x etc, indicating if log-scale computation
should be used even when log = FALSE, for performance or against overflow /
underflow.

mpfr-distr-etc 45

Details

pnorm() is based on erf() and erfc() which have direct MPFR counter parts and are both
reparametrizations of pnorm, erf(x) = 2*pnorm(sqrt(2)*x) and erfc(x) = 2* pnorm(sqrt(2)*x,
lower=FALSE).

Value

A vector of the same length as the longest of x,q, ..., of class mpfr with the high accuracy results
of the corresponding standard R function.

Note

E.g., for pnorm(*, log.p = TRUE) to be useful, i.e., not to underflow or overflow, you may want to
extend the exponential range of MPFR numbers, using .mpfr_erange_set(), see the examples.

See Also

pnorm, dt, dbinom, dnbinom, dgamma, dpois in standard package stats.

pbetaI(x, a,b) is a mpfr version of pbeta only for integer a and b.

Examples

x <- 1400+ 0:10
print(dpois(x, 1000), digits =18) ## standard R's double precision
(px <- dpois(mpfr(x, 120), 1000))## more accuracy for the same
px. <- dpois(mpfr(x, 120), 1000, useLog=TRUE)# {failed in 0.8-8}
stopifnot(all.equal(px, px., tol = 1e-31))
dpois(0:5, mpfr(10000, 80)) ## very small exponents (underflowing in dbl.prec.)

print(dbinom(0:8, 8, pr = 4 / 5), digits=18)
dbinom(0:8, 8, pr = 4/mpfr(5, 99)) -> dB; dB

print(dnorm(-5:5), digits=18)
dnorm(mpfr(-5:5, prec=99))

For pnorm() in the extreme tails, need an exponent range
larger than the (MPFR and Rmpfr) default:
(old_eranges <- .mpfr_erange()) # typically -/+ 2^30:
log2(abs(old_eranges)) # 30 30
.mpfr_erange_set(value = (1-2^-52)*.mpfr_erange(c("min.emin","max.emax")))
log2(abs(.mpfr_erange()))# 62 62 *if* setup -- 2023-01: *not* on Winbuilder, nor
other Windows where long is 4 bytes (32 bit) and the erange typically cannot be extended.
tens <- mpfr(10^(4:7), 128)
pnorm(tens, lower.tail=FALSE, log.p=TRUE) # "works" (iff ...)
"the" boundary:
pnorm(mpfr(- 38581.371, 128), log.p=TRUE) # still does not underflow {but *.372 does}
-744261105.599283824811986753129188937418 (iff ...)
.mpfr_erange()*log(2) # the boundary
Emin Emax
-3.196577e+18 3.196577e+18 (iff ...)

46 mpfr-special-functions

reset to previous
.mpfr_erange_set(, old_eranges)
pnorm(tens, lower.tail=FALSE, log.p=TRUE) # all but first underflow to -Inf

mpfr-special-functions

Special Mathematical Functions (MPFR)

Description

Special Mathematical Functions, supported by the MPFR Library.

Note that additionally, all the Math and Math2 group member functions are “mpfr-ified”, too; ditto,
for many more standard R functions. See see the methods listed in mpfr (aka ?`mpfr-class`).

Usage

zeta(x)
Ei(x)
Li2(x)

erf(x)
erfc(x)

Arguments

x a numeric or mpfr vector.

Details

zeta(x) computes Riemann’s Zeta function ζ(x) important in analytical number theory and related
fields. The traditional definition is

ζ(x) =

∞∑
n=1

1

nx
.

Ei(x) computes the exponential integral, ∫ x

−∞

et

t
dt.

Li2(x) computes the dilogarithm, ∫ x

0

−log(1− t)

t
dt.

erf(x) and erfc(x) are the error, respectively complementary error function which are both
reparametrizations of pnorm, erf(x) = 2*pnorm(sqrt(2)*x) and erfc(x) = 2* pnorm(sqrt(2)*x,
lower=FALSE), and hence Rmpfr provides its own version of pnorm.

mpfr-utils 47

Value

A vector of the same length as x, of class mpfr.

See Also

pnorm in standard package stats; the class description mpfr mentioning the generic arithmetic and
mathematical functions (sin, log, . . . , etc) for which "mpfr" methods are available.

Note the (integer order, non modified) Bessel functions j0(), yn(), etc, named j0, yn etc, and Airy
function Ai() in Bessel_mpfr.

Examples

curve(Ei, 0, 5, n=2001)

As we now require (mpfrVersion() >= "2.4.0"):
curve(Li2, 0, 5, n=2001)
curve(Li2, -2, 13, n=2000); abline(h=0,v=0, lty=3)
curve(Li2, -200,400, n=2000); abline(h=0,v=0, lty=3)

curve(erf, -3,3, col = "red", ylim = c(-1,2))
curve(erfc, add = TRUE, col = "blue")
abline(h=0, v=0, lty=3)
legend(-3,1, c("erf(x)", "erfc(x)"), col = c("red","blue"), lty=1)

mpfr-utils Rmpfr – Utilities for Precision Setting, Printing, etc

Description

This page documents utilities from package Rmpfr which are typically not called by the user, but
may come handy in some situations.

Notably, the (base-2) maximal (and minimal) precision and the “erange”, the range of possible
(base-2) exponents of mpfr-numbers can be queried and partly extended.

Usage

getPrec(x, base = 10, doNumeric = TRUE, is.mpfr = NA, bigq. = 128L)
.getPrec(x)
getD(x)
mpfr_default_prec(prec)
S3 method for class 'mpfrArray'
print(x, digits = NULL, drop0trailing = FALSE,

right = TRUE,
max.digits = getOption("Rmpfr.print.max.digits", 999L),
exponent.plus = getOption("Rmpfr.print.exponent.plus", TRUE),
...)

S3 method for class 'mpfr'

48 mpfr-utils

print(x, digits = NULL, drop0trailing = TRUE,
right = TRUE,
max.digits = getOption("Rmpfr.print.max.digits", 999L),
exponent.plus = getOption("Rmpfr.print.exponent.plus", TRUE),
...)

toNum(from, rnd.mode = c('N','D','U','Z','A'))
.mpfr2d(from)
.mpfr2i(from)

mpfr2array(x, dim, dimnames = NULL, check = FALSE)

.mpfr2list(x, names = FALSE)

mpfrXport(x, names = FALSE)
mpfrImport(mxp)

.mpfr_formatinfo(x)

.mpfr2exp(x)

.mpfr_erange(kind = c("Emin", "Emax"), names = TRUE)

.mpfr_erange_set(kind = c("Emin", "Emax"), value)

.mpfr_erange_kinds

.mpfr_erange_is_int()

.mpfr_maxPrec()

.mpfr_minPrec()

.mpfr_gmp_numbbits()

.mpfrVersion()

Really Internal and low level, no error checking (for when you know ..)
.mpfr (x, precBits)
.mpfr.(x, precBits, rnd.mode)
.getSign(x)

.mpfr_negative(x)

.mpfr_sign(x)

..bigq2mpfr(x, precB = NULL, rnd.mode = c("N", "D", "U", "Z", "A"))

..bigz2mpfr(x, precB = NULL, rnd.mode = c("N", "D", "U", "Z", "A"))

Arguments

x, from typically, an R object of class "mpfr", or "mpfrArray", respectively. For getPrec(),
any number-like R object, or NULL.

base (only when x is character) the base with respect to which x[i] represent num-
bers; base b must fulfill 2 ≤ b ≤ 62.

doNumeric logical indicating integer or double typed x should be accepted and a default
precision be returned. Should typically be kept at default TRUE.

mpfr-utils 49

is.mpfr logical indicating if class(x) is already known to be "mpfr"; typically should
be kept at default, NA.

bigq. for getPrec(), the precision to use for a big rational (class "bigq"); if not
specified gives warning when used.

prec, precB, precBits
a positive integer, or missing.

drop0trailing logical indicating if trailing "0"s should be omitted.

right logical indicating print()ing should right justify the strings; see print.default()
to which it is passed.

digits, ... further arguments to print methods.

max.digits a number (possibly Inf) to limit the number of (mantissa) digits to be printed,
simply passed to formatMpfr(). The default is finite to protect from printing
very long strings which is often undesirable, notably in interactive use.

exponent.plus logical, simply passed to formatMpfr(). Was FALSE hardwired in Rmpfr ver-
sions before 0.8-0, and hence is allowed to be tweaked by an options() setting.

rnd.mode a 1-letter string specifying how rounding should happen at C-level conversion
to MPFR, see details of mpfr.

dim, dimnames for "mpfrArray" construction.

check logical indicating if the mpfrArray construction should happen with internal
safety check. Previously, the implicit default used to be true.

names (for .mpfr2list()) logical or character vector, indicating if the list returned
should have names. If character, it specifies the names; if true, the names are set
to format(x).

mxp an "mpfrXport" object, as resulting from mpfrXport().

kind a character string or vector, specifying the kind of “erange” value; must be
an element of .mpfr_erange_kinds, i.e., one of "Emin", "Emax", "min.emin",
"max.emin", "min.emax", "max.emax".

value numeric, for .mpfr_erange_set() one number per kind. Must be in range
specified by the *."emin" and *."emax" erange values.

Details

The print method is currently built on the format method for class mpfr. This, currently does not
format columns jointly which leads to suboptimally looking output. There are plans to change this.

Note that formatMpfr() which is called by print() (or show() or R’s implicit printing) uses
max.digits = Inf, differing from our print()’s default on purpose. If you do want to see the full
accuracy even in cases it is large, use options(Rmpfr.print.max.digits = Inf) or (.. = 1e7),
say.

The .mpfr_erange* functions (and variable) allow to query and set the allowed range of values for
the base-2 exponents of "mpfr" numbers. See the examples below and GNU MPFR library docu-
mentation on the C functions mpfr_get_emin(), mpfr_set_emin(.), mpfr_get_emin_min(), and
mpfr_get_emin_max(), (and those four with ‘_emin’ replaced by ‘_emax’ above).

50 mpfr-utils

Value

getPrec(x) returns a integer vector of length one or the same length as x when that is positive,
whereas getPrec(NULL) returns mpfr_default_prec(), see below. If you need to change the
precision of x, i.e., need something like “setPrec”, use roundMpfr().

.getPrec(x) is a simplified version of getPrec() which only works for "mpfr" objects x.

getD(x) is intended to be a fast version of x@.Data, and should not be used outside of lower level
functions.

mpfr_default_prec() returns the current MPFR default precision, an integer. This is currently
not made use of much in package Rmpfr, where functions have their own default precision where
needed, and otherwise we’d rather not be dependent of such a global setting.
mpfr_default_prec(prec) sets the current MPFR default precision and returns the previous one;
see above.

.mpfr_maxPrec() and (less interestingly) .mpfr_minPrec() give the maximal and minimal base-2
precision allowed in the current version of the MPFR library linked to by R package Rmpfr. The
maximal precision is typically 263, i.e.,

all.equal(.mpfr_maxPrec(), 2^63)

is typically true.

toNum(m) returns a numeric array or matrix, when m is of class "mpfrArray" or "mpfrMatrix",
respectively. It should be equivalent to as(m, "array") or ... "matrix". Note that the slightly
more general asNumeric() from gmp is preferred now. .mpfr2d() is similar to but simpler than
toNum(), whereas .mpfr2i() is an analogue low level utility for as.integer(<mpfr>).

mpfr2array() a slightly more flexible alternative to dim(.) <- dd.

.mpfr2exp(x) returns the base-2 (integer valued) exponents of x, i.e., it is the R interface to
MPFR C’s mpfr_get_exp(). The result is integer iff .mpfr_erange_is_int() is true, other-
wise double. Note that the MPFR (4.0.1) manual says about mpfr_get_exp(): The behavior for
NaN, infinity or zero is undefined.

.mpfr_erange_is_int() returns TRUE iff the .mpfr_erange(c("Emin","Emax")) range lies in-
side the range of R’s integer limits, i.e., has absolute values not larger than .Machine$integer.max
(= 231 − 1).

.mpfr_erange_set() invisibly (see invisible()) returns TRUE iff the change was successful.

.mpfr_gmp_numbbits() returns the ‘GMP’ library “numb” size, which is either 32 or 64 bit (as
integer, i.e., 64L or 32L). If it is not 64, you typically cannot enlarge the exponential range of mpfr
numbers via .mpfr_erange(), see above.

.mpfrVersion() returns a string, the version of the ‘MPFR’ library we are linking to.

.mpfr_formatinfo(x) returns conceptually a subset of .mpfr2str()’s result, a list with three
components

exp the base-2 exponents of x, identical to .mpfr2exp(x).

finite logical identical to is.finite(x).

is.0 logical indicating if the corresponding x[i] is zero; identical to mpfrIs0(x).

https://CRAN.R-project.org/package=gmp

mpfr-utils 51

(Note that .mpfr2str(x, .., base)$exp is wrt base and is not undefined but ...)

.mpfr_sign(x) only works for mpfr objects, then identical to sign(x). Analogously, .mpfr_negative(x)
is -x in that case. .getSign(x) is a low-level version of sign(x) returning -1 or +1, but not 0.
Finally, ..bigq2mpfr(x, ..) and ..bigz2mpfr(x, ..) are fast ways to coerce bigz and bigq
number objects (created by package gmp’s functionality) to our "mpfr" class.

Note

mpfrXport() and mpfrImport() are experimental and used to explore reported platform incom-
patibilities of save()d and load()ed "mpfr" objects between Windows and non-Windows plat-
forms.

In other words, the format of the result of mpfrXport() and hence the mxp argument to mpfrImport()
are considered internal, not part of the API and subject to change.

See Also

Start using mpfr(..), and compute with these numbers.

mpfrArray(x) is for numeric (“non-mpfr”) x, whereas mpfr2array(x) is for "mpfr" classed x,
only.

Examples

getPrec(as(c(1,pi), "mpfr")) # 128 for both

(opr <- mpfr_default_prec()) ## typically 53, the MPFR system default
stopifnot(opr == (oprec <- mpfr_default_prec(70)),

70 == mpfr_default_prec())
and reset it:
mpfr_default_prec(opr)

Explore behavior of rounding modes 'rnd.mode':
x <- mpfr(10,99)^512 # too large for regular (double prec. / numeric):
sapply(c("N", "D", "U", "Z", "A"), function(RM)

sapply(list(-x,x), function(.) toNum(., RM)))
N D U Z A
-Inf -Inf -1.797693e+308 -1.797693e+308 -Inf
Inf 1.797693e+308 Inf 1.797693e+308 Inf

Printing of "MPFR" matrices is less nice than R's usual matrix printing:
m <- outer(c(1, 3.14, -1024.5678), c(1, 1e-3, 10,100))
m[3,3] <- round(m[3,3])
m
mpfr(m, 50)

B6 <- mpfr2array(Bernoulli(1:6, 60), c(2,3),
dimnames = list(LETTERS[1:2], letters[1:3]))

B6

Ranges of (base 2) exponents of MPFR numbers:
.mpfr_erange() # the currently active range of possible base 2 exponents:

https://CRAN.R-project.org/package=gmp

52 mpfr.utils

A factory fresh setting fulfills
.mpfr_erange(c("Emin","Emax")) == c(-1,1) * (2^30 - 1)

There are more 'kind's, the latter 4 showing how you could change the first two :
.mpfr_erange_kinds
.mpfr_erange(.mpfr_erange_kinds)
eLimits <- .mpfr_erange(c("min.emin", "max.emin", "min.emax", "max.emax"))
Typically true in MPFR versions *iff* long is 64-bit, i.e. *not* on Windows
if(.Machine$sizeof.long == 8L) {

eLimits == c(-1,1, -1,1) * (2^62 - 1)
} else if(.Machine$sizeof.long == 4L) # on Windows

eLimits == c(-1,1, -1,1) * (2^30 - 1)

Looking at internal representation [for power users only!]:

i8 <- mpfr(-2:5, 32)
x4 <- mpfr(c(NA, NaN, -Inf, Inf), 32)
stopifnot(exprs = {

identical(x4[1], x4[2])
is.na(x4[1] == x4[2]) # <- was *wrong* in Rmpfr <= 0.9-4
is.na(x4[1] != x4[2]) # (ditto)
identical(x4 < i8[1:4], c(NA,NA, TRUE,FALSE))
!is.finite(x4)
identical(is.infinite(x4), c(FALSE,FALSE, TRUE,TRUE))

})
The output of the following depends on the GMP "numb" size
(32 bit vs. 64 bit), *and* additionally
on sizeof.long (mostly non-Windows <-> Windows, see above):
str(.mpfr2list(i8))
str(.mpfr2list(x4, names = TRUE))

str(xp4 <- mpfrXport(x4, names = TRUE))
stopifnot(identical(x4, mpfrImport(mpfrXport(x4))),

identical(i8, mpfrImport(mpfrXport(i8))))
FIXME, need c(.), as dim(.) "get lost":
stopifnot(identical(c(B6), mpfrImport(mpfrXport(B6))))

mpfr.utils MPFR Number Utilities

Description

mpfrVersion() returns the version of the MPFR library which Rmpfr is currently linked to.

c(x,y,...) can be used to combine MPFR numbers in the same way as regular numbers IFF the
first argument x is of class mpfr.

mpfrIs0(.) uses the MPFR library in the documented way to check if (a vector of) MPFR numbers
are zero. It was called mpfr.is.0 which is strongly deprecated now.

mpfr.utils 53

.mpfr.is.whole(x) uses the MPFR library in the documented way to check if (a vector of) MPFR
numbers is integer valued. This is equivalent to x == round(x), but not at all to is.integer(as(x,
"numeric")).
You should typically rather use (the "mpfr" method of the generic function) is.whole(x) from
gmp instead. The former name mpfr.is.integer is deprecated now.

Usage

mpfrVersion()
mpfrIs0(x)
S3 method for class 'mpfr'
c(...)
S3 method for class 'mpfr'
diff(x, lag = 1L, differences = 1L, ...)

Arguments

x an object of class mpfr.
... for diff, further mpfr class objects or simple numbers (numeric vectors) which

are coerced to mpfr with default precision of 128 bits.
lag, differences

for diff(): exact same meaning as in diff()’s default method, diff.default.

Value

mpfrIs0 returns a logical vector of length length(x) with values TRUE iff the corresponding x[i]
is an MPFR representation of zero (0).
Similarly, .mpfr.is.whole and is.whole return a logical vector of length length(x).

mpfrVersion returns an object of S3 class "numeric_version", so it can be used in comparisons.

The other functions return MPFR number (vectors), i.e., extending class mpfr.

See Also

str.mpfr for the str method. erf for special mathematical functions on MPFR.

The class description mpfr page mentions many generic arithmetic and mathematical functions for
which "mpfr" methods are available.

Examples

mpfrVersion()

(x <- c(Const("pi", 64), mpfr(-2:2, 64)))
mpfrIs0(x) # one of them is
x[mpfrIs0(x)] # but it may not have been obvious..
str(x)

x <- rep(-2:2, 5)
stopifnot(is.whole(mpfr(2, 500) ^ (1:200)),

all.equal(diff(x), diff(as.numeric(x))))

https://CRAN.R-project.org/package=gmp

54 mpfrArray

mpfrArray Construct "mpfrArray" almost as by ’array()’

Description

Utility to construct an R object of class mpfrArray, very analogously to the numeric array function.

Usage

mpfrArray(x, precBits, dim = length(x), dimnames = NULL,
rnd.mode = c("N","D","U","Z","A"))

Arguments

x numeric(like) vector, typically of length prod(dim) or shorter in which case it
is recycled.

precBits a number, the maximal precision to be used, in bits; i.e., 53 corresponds to
double precision. Must be at least 2.

dim the dimension of the array to be created, that is a vector of length one or more
giving the maximal indices in each dimension.

dimnames either NULL or the names for the dimensions. This is a list with one component
for each dimension, either NULL or a character vector of the length given by dim
for that dimension.

rnd.mode a 1-letter string specifying how rounding should happen at C-level conversion
to MPFR, see details of mpfr.

Value

an object of class "mpfrArray", specifically "mpfrMatrix" when length(dim) == 2.

See Also

mpfr, array; asNumeric() from gmp as “inverse” of mpfrArray(), to get back a numeric array.

mpfr2array(x) is for "mpfr" classed x, only, whereas mpfrArray(x) is for numeric (“non-mpfr”)
x.

Examples

preallocating is possible here too
ma <- mpfrArray(NA, prec = 80, dim = 2:4)
validObject(A2 <- mpfrArray(1:24, prec = 64, dim = 2:4))

recycles, gives an "mpfrMatrix" and dimnames :
mat <- mpfrArray(1:5, 64, dim = c(5,3), dimnames=list(NULL, letters[1:3]))
mat
asNumeric(mat)
stopifnot(identical(asNumeric(mat),

https://CRAN.R-project.org/package=gmp

mpfrMatrix 55

matrix(1:5 +0, 5,3, dimnames=dimnames(mat))))

Testing the apply() method :
apply(mat, 2, range)
apply(A2, 1:2, range)
apply(A2, 2:3, max)
(fA2 <- apply(A2, 2, fivenum))
a2 <- as(A2, "array")
stopifnot(as(apply(A2, 2, range), "matrix") ==

apply(a2, 2, range)
, all.equal(fA2, apply(a2, 2, fivenum))
, all.equal(apply(A2, 2, quantile),

apply(a2, 2, quantile))
, all.equal(A2, apply(A2, 2:3, identity) -> aA2, check.attributes=FALSE)
, dim(A2) == dim(aA2)

)

mpfrMatrix Classes "mpfrMatrix" and "mpfrArray"

Description

The classes "mpfrMatrix" and "mpfrArray" are, analogously to the base matrix and array func-
tions and classes simply “numbers” of class mpfr with an additional Dim and Dimnames slot.

Objects from the Class

Objects should typically be created by mpfrArray(), but can also be created by new("mpfrMatrix",
...) or new("mpfrArray", ...), or also by t(x), dim(x) <- dd, or mpfr2array(x, dim=dd)
where x is a an mpfr “number vector”.

A (slightly more flexible) alternative to dim(x) <- dd is mpfr2array(x, dd, dimnames).

Slots

.Data: as for the mpfr class, a "list" of mpfr1 numbers.

Dim: of class "integer", specifying the array dimension.

Dimnames: of class "list" and the same length as Dim, each list component either NULL or a
character vector of length Dim[j].

Extends

Class "mpfrMatrix" extends "mpfrArray", directly.

Class "mpfrArray" extends class "mpfr", by class "mpfrArray", distance 2; class "list", by class
"mpfrArray", distance 3; class "vector", by class "mpfrArray", distance 4.

56 mpfrMatrix

Methods

Arith signature(e1 = "mpfr", e2 = "mpfrArray"): ...

Arith signature(e1 = "numeric", e2 = "mpfrArray"): ...

Arith signature(e1 = "mpfrArray", e2 = "mpfrArray"): ...

Arith signature(e1 = "mpfrArray", e2 = "mpfr"): ...

Arith signature(e1 = "mpfrArray", e2 = "numeric"): ...

as.vector signature(x = "mpfrArray", mode = "missing"): drops the dimension ‘attribute’, i.e.,
transforms x into a simple mpfr vector. This is an inverse of t(.) or dim(.) <- * on such a
vector.

atan2 signature(y = "ANY", x = "mpfrArray"): ...

atan2 signature(y = "mpfrArray", x = "mpfrArray"): ...

atan2 signature(y = "mpfrArray", x = "ANY"): ...

[<- signature(x = "mpfrArray", i = "ANY", j = "ANY", value = "ANY"): ...

[signature(x = "mpfrArray", i = "ANY", j = "ANY", drop = "ANY"): ...

[signature(x = "mpfrArray", i = "ANY", j = "missing", drop = "missing"): "mpfrArray"s
can be subset (“indexed”) as regular R arrays.

%*% signature(x = "mpfr", y = "mpfrMatrix"): Compute the matrix/vector product xy when
the dimensions (dim) of x and y match. If x is not a matrix, it is treated as a 1-row or 1-column
matrix (aka “row vector” or “column vector”) depending on which one makes sense, see the
documentation of the base function %*%.

%*% signature(x = "mpfr", y = "Mnumber"): method definition for cases with one mpfr and
any “number-like” argument are to use MPFR arithmetic as well.

%*% signature(x = "mpfrMatrix", y = "mpfrMatrix"),

%*% signature(x = "mpfrMatrix", y = "mpfr"), etc. Further method definitions with identi-
cal semantic.

crossprod signature(x = "mpfr", y = "missing"): Computes x′x, i.e., t(x) %*% x, typically
more efficiently.

crossprod signature(x = "mpfr", y = "mpfrMatrix"): Computes x′y, i.e., t(x) %*% y, typi-
cally more efficiently.

crossprod signature(x = "mpfrMatrix", y = "mpfrMatrix"): ...

crossprod signature(x = "mpfrMatrix", y = "mpfr"): ...

tcrossprod signature(x = "mpfr", y = "missing"): Computes xx′, i.e., x %*% t(x), typically
more efficiently.

tcrossprod signature(x = "mpfrMatrix", y = "mpfrMatrix"): Computes xy′, i.e., x %*% t(y),
typically more efficiently.

tcrossprod signature(x = "mpfrMatrix", y = "mpfr"): ...

tcrossprod signature(x = "mpfr", y = "mpfrMatrix"): ...

coerce signature(from = "mpfrArray", to = "array"): coerces from to a numeric array of the
same dimension.

coerce signature(from = "mpfrArray", to = "vector"): as for standard arrays, this “drops”
the dim (and dimnames), i.e., returns an mpfr vector.

mpfrMatrix 57

Compare signature(e1 = "mpfr", e2 = "mpfrArray"): ...

Compare signature(e1 = "numeric", e2 = "mpfrArray"): ...

Compare signature(e1 = "mpfrArray", e2 = "mpfr"): ...

Compare signature(e1 = "mpfrArray", e2 = "numeric"): ...

dim signature(x = "mpfrArray"): ...

dimnames<- signature(x = "mpfrArray"): ...

dimnames signature(x = "mpfrArray"): ...

show signature(object = "mpfrArray"): ...

sign signature(x = "mpfrArray"): ...

norm signature(x = "mpfrMatrix", type = "character"): computes the matrix norm of x, see
norm or the one in package Matrix.

t signature(x = "mpfrMatrix"): tranpose the mpfrMatrix.

aperm signature(a = "mpfrArray"): aperm(a,perm) is a generalization of t(.) to permute the
dimensions of an mpfrArray; it has the same semantics as the standard aperm() method for
simple R arrays.

Author(s)

Martin Maechler

See Also

mpfrArray, also for more examples.

Examples

showClass("mpfrMatrix")

validObject(mm <- new("mpfrMatrix"))
validObject(aa <- new("mpfrArray"))

v6 <- mpfr(1:6, 128)
m6 <- new("mpfrMatrix", v6, Dim = c(2L, 3L))
validObject(m6)
m6
which(m6 == 3, arr.ind = TRUE) # |--> (1, 2)
Coercion back to "vector": Both of these work:
stopifnot(identical(as(m6, "mpfr"), v6),

identical(as.vector(m6), v6)) # < but this is a "coincidence"

S2 <- m6[,-3] # 2 x 2
S3 <- rbind(m6, c(1:2,10)) ; s3 <- asNumeric(S3)
det(S2)
str(determinant(S2))
det(S3)
stopifnot(all.equal(det(S2), det(asNumeric(S2)), tol=1e-15),

all.equal(det(S3), det(s3), tol=1e-15))

58 mpfrMatrix-utils

2-column matrix indexing and replacement:
(sS <- S3[i2 <- cbind(1:2, 2:3)])
stopifnot(identical(asNumeric(sS), s3[i2]))
C3 <- S3; c3 <- s3
C3[i2] <- 10:11
c3[i2] <- 10:11
stopifnot(identical(asNumeric(C3), c3))

AA <- new("mpfrArray", as.vector(cbind(S3, -S3)), Dim=c(3L,3:2))
stopifnot(identical(AA[,,1] , S3), identical(AA[,,2] , -S3))
aa <- asNumeric(AA)

i3 <- cbind(3:1, 1:3, c(2L, 1:2))
ii3 <- Rmpfr:::.mat2ind(i3, dim(AA), dimnames(AA))
stopifnot(aa[i3] == new("mpfr", getD(AA)[ii3]))
stopifnot(identical(aa[i3], asNumeric(AA[i3])))
CA <- AA; ca <- aa
ca[i3] <- ca[i3] ^ 3
CA[i3] <- CA[i3] ^ 3

scale():
S2. <- scale(S2)
stopifnot(all.equal(abs(as.vector(S2.)), rep(sqrt(1/mpfr(2, 128)), 4),

tol = 1e-30))

norm() :
norm(S2)
stopifnot(identical(norm(S2), norm(S2, "1")),

norm(S2, "I") == 6,
norm(S2, "M") == 4,
abs(norm(S2, "F") - 5.477225575051661) < 1e-15)

mpfrMatrix-utils Functions for mpfrMatrix Objects

Description

determinant(x, ..) computes the determinant of the mpfr square matrix x. May work via co-
ercion to "numeric", i.e., compute determinant(asNumeric(x), logarithm), if asNumeric is
true, by default, if the dimension is larger than three. Otherwise, use precision precBits for the
“accumulator” of the result, and use the recursive mathematical definition of the determinant (with
computational complexity n!, where n is the matrix dimension, i.e., very inefficient for all but small
matrices!)

Usage

S3 method for class 'mpfrMatrix'
determinant(x, logarithm = TRUE,

asNumeric = (d[1] > 3), precBits = max(.getPrec(x)), ...)

num2bigq 59

Arguments

x an mpfrMatrix object of square dimension.

logarithm logical indicating if the log of the absolute determinant should be returned.

asNumeric logical if rather determinant(asNumeric(x), ...) should be computed.

precBits the number of binary digits for the result (and the intermediate accumulations).

... unused (potentially further arguments passed to methods).

Value

as determinant(), an object of S3 class "det", a list with components

modulus the (logarithm of) the absolute value (abs) of the determinant of x.

sign the sign of the determinant.

Author(s)

Martin Maechler

See Also

determinant in base R, which relies on a fast LU decomposition. mpfrMatrix

Examples

m6 <- mpfrArray(1:6, prec=128, dim = c(2L, 3L))
m6
S2 <- m6[,-3] # 2 x 2
S3 <- rbind(m6, c(1:2,10))
det(S2)
str(determinant(S2))
det(S3)
stopifnot(all.equal(det(S2), det(asNumeric(S2)), tolerance=1e-15),

all.equal(det(S3), det(asNumeric(S3)), tolerance=1e-15))

num2bigq BigQ / BigRational Approximation of Numbers

Description

num2bigq(x) searches for “small” denominator bigq aka ‘bigRational’ approximations to numeric
or "mpfr" x.

It uses the same continued fraction approximation as package MASS’ fractions(), but using big
integer, rational and mpfr-arithmetic from packages Rmpfr and gmp.

Usage

num2bigq(x, cycles = 50L, max.denominator = 2^25, verbose = FALSE)

https://CRAN.R-project.org/package=MASS
https://CRAN.R-project.org/package=Rmpfr
https://CRAN.R-project.org/package=gmp

60 optimizeR

Arguments

x numeric or mpfr-number like

cycles a positive integer, the maximal number of approximation cycles, or equivalently,
continued fraction terms to be used.

max.denominator

an approximate bound on the maximal denominator used in the approximation.
If small, the algorithm may use less than cycles cycles.

verbose a logical indicating if some intermediate results should be printed during the
iterative approximation.

Value

a big rational, i.e., bigq (from gmp) vector of the same length as x.

Author(s)

Bill Venables and Brian Ripley, for the algorithm in fractions(); Martin Maechler, for the port to
use Rmpfr and gmp arithmetic.

See Also

.mpfr2bigq() seems similar but typically uses much larger denominators in order to get full accu-
racy.

Examples

num2bigq(0.33333)

num2bigq(pi, max.denominator = 200) # 355/113
num2bigq(pi) # much larger
num2bigq(pi, cycles=10) # much larger

optimizeR High Precision One-Dimensional Optimization

Description

optimizeR searches the interval from lower to upper for a minimum of the function f with respect
to its first argument.

Usage

optimizeR(f, lower, upper, ..., tol = 1e-20,
method = c("Brent", "GoldenRatio"),
maximum = FALSE,
precFactor = 2.0, precBits = -log2(tol) * precFactor,
maxiter = 1000, trace = FALSE)

https://CRAN.R-project.org/package=gmp

optimizeR 61

Arguments

f the function to be optimized. f(x) must work “in Rmpfr arithmetic” for optimizer()
to make sense. The function is either minimized or maximized over its first ar-
gument depending on the value of maximum.

... additional named or unnamed arguments to be passed to f.

lower the lower end point of the interval to be searched.

upper the upper end point of the interval to be searched.

tol the desired accuracy, typically higher than double precision, i.e., tol < 2e-16.

method character string specifying the optimization method.

maximum logical indicating if f() should be maximized or minimized (the default).

precFactor only for default precBits construction: a factor to multiply with the number of
bits directly needed for tol.

precBits number of bits to be used for mpfr numbers used internally.

maxiter maximal number of iterations to be used.

trace integer or logical indicating if and how iterations should be monitored; if an
integer k, print every k-th iteration.

Details

"Brent": Brent(1973)’s simple and robust algorithm is a hybrid, using a combination of the golden
ratio and local quadratic (“parabolic”) interpolation. This is the same algorithm as standard
R’s optimize(), adapted to high precision numbers.
In smooth cases, the convergence is considerably faster than the golden section or Fibonacci
ratio algorithms.

"GoldenRatio": The golden ratio method, aka ‘golden-section search’ works as follows: from a
given interval containing the solution, it constructs the next point in the golden ratio between
the interval boundaries.

Value

A list with components minimum (or maximum) and objective which give the location of the
minimum (or maximum) and the value of the function at that point; iter specifiying the number of
iterations, the logical convergence indicating if the iterations converged and estim.prec which is
an estimate or an upper bound of the final precision (in x). method the string of the method used.

Author(s)

"GoldenRatio" is based on Hans Werner Borchers’ golden_ratio (package pracma); modifica-
tions and "Brent" by Martin Maechler.

See Also

R’s standard optimize; for multivariate optimization, Rmpfr’s hjkMpfr(); for root finding, Rmpfr’s
unirootR.

https://CRAN.R-project.org/package=pracma

62 optimizeR

Examples

The minimum of the Gamma (and lgamma) function (for x > 0):
Gmin <- optimizeR(gamma, .1, 3, tol = 1e-50)
str(Gmin, digits = 8)
high precision chosen for "objective"; minimum has "estim.prec" = 1.79e-50
Gmin[c("minimum","objective")]
it is however more accurate to 59 digits:
asNumeric(optimizeR(gamma, 1, 2, tol = 1e-100)$minimum - Gmin$minimum)

iG5 <- function(x) -exp(-(x-5)^2/2)
curve(iG5, 0, 10, 200)
o.dp <- optimize (iG5, c(0, 10)) #-> 5 of course
oM.gs <- optimizeR(iG5, 0, 10, method="Golden")
oM.Br <- optimizeR(iG5, 0, 10, method="Brent", trace=TRUE)
oM.gs$min ; oM.gs$iter
oM.Br$min ; oM.Br$iter
(doExtras <- Rmpfr:::doExtras())
if(doExtras) {## more accuracy {takes a few seconds}
oM.gs <- optimizeR(iG5, 0, 10, method="Golden", tol = 1e-70)
oM.Br <- optimizeR(iG5, 0, 10, tol = 1e-70)

}
rbind(Golden = c(err = as.numeric(oM.gs$min -5), iter = oM.gs$iter),

Brent = c(err = as.numeric(oM.Br$min -5), iter = oM.Br$iter))

==> Brent is orders of magnitude more efficient !

Testing on the sine curve with 40 correct digits:
sol <- optimizeR(sin, 2, 6, tol = 1e-40)
str(sol)
sol <- optimizeR(sin, 2, 6, tol = 1e-50,

precFactor = 3.0, trace = TRUE)
pi.. <- 2*sol$min/3
print(pi.., digits=51)
stopifnot(all.equal(pi.., Const("pi", 256), tolerance = 10*1e-50))

if(doExtras) { # considerably more expensive

a harder one:
f.sq <- function(x) sin(x-2)^4 + sqrt(pmax(0,(x-1)*(x-4)))*(x-2)^2
curve(f.sq, 0, 4.5, n=1000)
msq <- optimizeR(f.sq, 0, 5, tol = 1e-50, trace=5)
str(msq) # ok
stopifnot(abs(msq$minimum - 2) < 1e-49)

find the other local minimum: -- non-smooth ==> Golden ratio -section is used
msq2 <- optimizeR(f.sq, 3.5, 5, tol = 1e-50, trace=10)
stopifnot(abs(msq2$minimum - 4) < 1e-49)

and a local maximum:
msq3 <- optimizeR(f.sq, 3, 4, maximum=TRUE, trace=2)
stopifnot(abs(msq3$maximum - 3.57) < 1e-2)

pbetaI 63

}#end {doExtras}

##----- "impossible" one to get precisely ------------------------

ff <- function(x) exp(-1/(x-8)^2)
curve(exp(-1/(x-8)^2), -3, 13, n=1001)
(opt. <- optimizeR(function(x) exp(-1/(x-8)^2), -3, 13, trace = 5))
-> close to 8 {but not very close!}
ff(opt.$minimum) # gives 0
if(doExtras) {
try harder ... in vain ..
str(opt1 <- optimizeR(ff, -3,13, tol = 1e-60, precFactor = 4))
print(opt1$minimum, digits=20)
still just 7.99998038 or 8.000036655 {depending on method}

}

pbetaI Accurate Incomplete Beta / Beta Probabilities For Integer Shapes

Description

For integers a, b, Ix(a, b) aka pbeta(x, a,b) is a polynomial in x with rational coefficients, and
hence arbitarily accurately computable.

TODO (not yet): It’s sufficient for one of a, b to be integer such that the result is a finite sum (but
the coefficients will no longer be rational, see Abramowitz and Stegun, 26.5.6 and *.7, p.944).

Usage

pbetaI(q, shape1, shape2, ncp = 0, lower.tail = TRUE, log.p = FALSE,
precBits = NULL,
useRational = !log.p && !is.mpfr(q) && is.null(precBits) && int2,
rnd.mode = c("N","D","U","Z","A"))

Arguments

q called x, above; vector of quantiles, in [0, 1]; can be numeric, or of class "mpfr"
or also "bigq" (“big rational” from package gmp); in the latter case, if log.p =
FALSE as by default, all computations are exact, using big rational arithmetic.

shape1, shape2 the positive Beta “shape” parameters, called a, b, above. Must be integer valued
for this function.

ncp unused, only for compatibility with pbeta, must be kept at its default, 0.

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

log.p logical; if TRUE, probabilities p are given as log(p).

precBits the precision (in number of bits) to be used in sumBinomMpfr().

https://CRAN.R-project.org/package=gmp

64 pbetaI

useRational optional logical, specifying if we should try to do everything in exact rational
arithmetic, i.e, using package gmp functionality only, and return bigq (from
gmp) numbers instead of mpfr numbers.

rnd.mode a 1-letter string specifying how rounding should happen at C-level conversion
to MPFR, see mpfr.

Value

an "mpfr" vector of the same length as q.

Note

For upper tail probabilities, i.e., when lower.tail=FALSE, we may need large precBits, because
the implicit or explicit 1− P computation suffers from severe cancellation.

Author(s)

Martin Maechler

References

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover.
https://en.wikipedia.org/wiki/Abramowitz_and_Stegun provides links to the full text which
is in public domain.

See Also

pbeta, sumBinomMpfr chooseZ.

Examples

x <- (0:12)/16 # not all the way up ..
a <- 7; b <- 788

p. <- pbetaI(x, a, b) ## a bit slower:
system.time(
pp <- pbetaI(x, a, b, precBits = 2048)
) # 0.23 -- 0.50 sec
Currently, the lower.tail=FALSE are computed "badly":
lp <- log(pp) ## = pbetaI(x, a, b, log.p=TRUE)
lIp <- log1p(-pp) ## = pbetaI(x, a, b, lower.tail=FALSE, log.p=TRUE)
Ip <- 1 - pp ## = pbetaI(x, a, b, lower.tail=FALSE)

if(Rmpfr:::doExtras()) { ## somewhat slow
system.time(
stopifnot(exprs = {

all.equal(lp, pbetaI(x, a, b, precBits = 2048, log.p=TRUE))
all.equal(lIp, pbetaI(x, a, b, precBits = 2048, lower.tail=FALSE, log.p=TRUE),

tolerance = 1e-230)
all.equal(Ip, pbetaI(x, a, b, precBits = 2048, lower.tail=FALSE))

})

https://CRAN.R-project.org/package=gmp
https://CRAN.R-project.org/package=gmp
https://en.wikipedia.org/wiki/Abramowitz_and_Stegun

pbetaI 65

) # 0.375 sec -- "slow" ???
}

rErr <- function(approx, true, eps = 1e-200) {
true <- as.numeric(true) # for "mpfr"
ifelse(Mod(true) >= eps,

relative error, catching '-Inf' etc :
ifelse(true == approx, 0, 1 - approx / true),

else: absolute error (e.g. when true=0)
true - approx)

}

cbind(x
, pb = rErr(pbeta(x, a, b), pp)
, pbUp = rErr(pbeta(x, a, b, lower.tail=FALSE), Ip)
, ln.p = rErr(pbeta(x, a, b, log.p = TRUE), lp)
, ln.pUp= rErr(pbeta(x, a, b, lower.tail=FALSE, log.p=TRUE), lIp)

)

a.EQ <- function(..., tol=1e-15) all.equal(..., tolerance=tol)
stopifnot(

a.EQ(pp, pbeta(x, a, b)),
a.EQ(lp, pbeta(x, a, b, log.p=TRUE)),
a.EQ(lIp, pbeta(x, a, b, lower.tail=FALSE, log.p=TRUE)),
a.EQ(Ip, pbeta(x, a, b, lower.tail=FALSE))
)

When 'q' is a bigrational (i.e., class "bigq", package 'gmp'), everything
is computed *exactly* with bigrational arithmetic:
(q4 <- as.bigq(1, 2^(0:4)))
pb4 <- pbetaI(q4, 10, 288, lower.tail=FALSE)
stopifnot(is.bigq(pb4))
mpb4 <- as(pb4, "mpfr")
mpb4[1:2]
getPrec(mpb4) # 128 349 1100 1746 2362
(pb. <- pbeta(asNumeric(q4), 10, 288, lower.tail=FALSE))
stopifnot(mpb4[1] == 0,

all.equal(mpb4, pb., tolerance = 4e-15))

qbetaI. <- function(p, shape1, shape2, ncp = 0, lower.tail = TRUE, log.p = FALSE,
precBits = NULL, rnd.mode = c("N", "D", "U", "Z", "A"),
tolerance = 1e-20, ...)

{
if(is.na(a <- as.integer(shape1))) stop("a = shape1 is not coercable to finite integer")
if(is.na(b <- as.integer(shape2))) stop("b = shape2 is not coercable to finite integer")
unirootR(function(q) pbetaI(q, a, b, lower.tail=lower.tail, log.p=log.p,

precBits=precBits, rnd.mode=rnd.mode) - p,
interval = if(log.p) c(-double.xmax, 0) else 0:1,
tol = tolerance, ...)

} # end{qbetaI}

(p <- 1 - mpfr(1,128)/20) # 'p' must be high precision
q95.1.3 <- qbetaI.(p, 1,3, tolerance = 1e-29) # -> ~29 digits accuracy

66 pmax

str(q95.1.3) ; roundMpfr(q95.1.3$root, precBits = 29 * log2(10))
relative error is really small:
(relE <- asNumeric(1 - pbetaI(q95.1.3$root, 1,3) / p)) # -5.877e-39
stopifnot(abs(relE) < 1e-28)

pmax Parallel Maxima and Minima

Description

Returns the parallel maxima and minima of the input values.

The functions pmin and pmax have been made S4 generics, and this page documents the “...
method for class "mNumber"”, i.e., for arguments that are numeric or from class "mpfr".

Usage

pmax(..., na.rm = FALSE)
pmin(..., na.rm = FALSE)

Arguments

... numeric or arbitrary precision numbers (class mpfr).

na.rm a logical indicating whether missing values should be removed.

Details

See pmax, the documentation of the base functions, i.e., default methods.

Value

vector-like, of length the longest of the input vectors; typically of class mpfr, for the methods here.

Methods

... = "ANY" the default method, really just base::pmin or base::pmax, respectively.

... = "mNumber" the method for mpfr arguments, mixed with numbers; designed to follow the
same semantic as the default method.

See Also

The documentation of the base functions, pmin and pmax; also min and max; further,

range (both min and max).

Examples

(pm <- pmin(1.35, mpfr(0:10, 77)))
stopifnot(pm == pmin(1.35, 0:10))

qnormI 67

qnormI Gaussian / Normal Quantiles qnorm() via Inversion

Description

Compute Gaussian or Normal Quantiles qnorm(p, *) via inversion of our “mpfr-ified” arbitrary
accurate pnorm(), using our unirootR() root finder.

Usage

qnormI(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE,
trace = 0, verbose = as.logical(trace),
tol,
useMpfr = any(prec > 53),
give.full = FALSE,
...)

Arguments

p vector of probabilities.

mean vector of means.

sd vector of standard deviations.

log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x] otherwise, P [X > x].

trace integer passed to unirootR(). If positive, information about a search interval
extension will be printed to the console.

verbose logical indicating if progress details should be printed to the console.

tol optionally the desired accuracy (convergence tolerance); if missing or not finite,
it is computed as 2−pr + 2 where the precision pr is basically max(getPrec(p+mean+sd)).

useMpfr logical indicating if mpfr arithmetic should be used.

give.full logical indicating if the full result of unirootR() should be returned (when ap-
plicable).

... optional further arguments passed to unirootR() such as maxiter, verbDigits,
check.conv, warn.no.convergence, and epsC.

Value

If give.full is true, return a list, say r, of unirootR(.) results, with length(r) == length(p).

Otherwise, return a “numeric vector” like p, e.g., of class "mpfr" when p is.

Author(s)

Martin Maechler

68 qnormI

See Also

Standard R’s qnorm.

Examples

doX <- Rmpfr:::doExtras() # slow parts only if(doX)
cat("doExtras: ", doX, "\n")
p <- (0:32)/32
lp <- -c(1000, 500, 200, 100, 50, 20:1, 2^-(1:8))
if(doX) {

tol1 <- 2.3e-16
tolM <- 1e-20
tolRIlog <- 4e-14

} else { # use one more than a third of the points:
ip <- c(TRUE,FALSE, rep_len(c(TRUE,FALSE,FALSE), length(p)-2L))
p <- p[ip]
lp <- lp[ip]
tol1 <- 1e-9
tolM <- 1e-12
tolRIlog <- 25*tolM

}

f.all.eq <- function(a,b)
sub("^Mean relative difference:", '', format(all.equal(a, b, tol=0)))

for(logp in c(FALSE,TRUE)) {
pp <- if(logp) lp else p
mp <- mpfr(pp, precBits = if(doX) 80 else 64) # precBits = 128 gave "the same" as 80
for(l.tail in c(FALSE,TRUE)) {

qn <- qnorm (pp, lower.tail = l.tail, log.p = logp)
qnI <- qnormI(pp, lower.tail = l.tail, log.p = logp, tol = tol1)
qnM <- qnormI(mp, lower.tail = l.tail, log.p = logp, tol = tolM)
cat(sprintf("Accuracy of qnorm(*, lower.t=%-5s, log.p=%-5s): %s || qnI: %s\n",

l.tail, logp, f.all.eq(qnM, qn),
f.all.eq(qnM, qnI)))

stopifnot(exprs = {
all.equal(qn, qnI, tol = if(logp) tolRIlog else 4*tol1)
all.equal(qnM, qnI, tol = tol1)

})
}

}

useMpfr, using mpfr() :
if(doX) {

p2 <- 2^-c(1:27, 5*(6:20), 20*(6:15))
e2 <- 88

} else {
p2 <- 2^-c(1:2, 7, 77, 177, 307)
e2 <- 60

}
system.time(pn2 <- pnorm(qnormI(mpfr(p2, e2)))) # 4.1 or 0.68

all.equal(p2, pn2, tol = 0) # 5.48e-29 // 5.2e-18
2^-e2

Rmpfr-workarounds 69

stopifnot(all.equal(p2, pn2, tol = 6 * 2^-e2)) # '4 *' needed

Boundary -- from limits in mpfr maximal exponent range!
1) Use maximal ranges:
(old_eranges <- .mpfr_erange()) # typically -/+ 2^30
(myERng <- (1-2^-52) * .mpfr_erange(c("min.emin","max.emax")))
(doIncr <- !isTRUE(all.equal(unname(myERng), unname(old_eranges)))) # ==>
TRUE only if long is 64-bit, i.e., *not* on Windows
if(doIncr) .mpfr_erange_set(value = myERng)

log2(abs(.mpfr_erange()))# 62 62 if(doIncr) i.e. not on Windows
(lrgOK <- all(log2(abs(.mpfr_erange())) >= 62)) # FALSE on Windows
The largest quantile for which our mpfr-ized qnorm() does *NOT* underflow :
cM <- if(doX) { "2528468770.343293436810768159197281514373932815851856314908753969469064"

} else "2528468770.34329343681"
1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3
10 20 30 40 50 60 70
(qM <- mpfr(cM))
(pM <- pnorm(-qM)) # precision if(doX) 233 else 70 bits of precision ;
|--> 0 on Windows {limited erange}; otherwise and if(doX) :
7.64890682545699845135633468495894619457903458325606933043966616334460003e-1388255822130839040
log(pM) # 233 bits: -3196577161300663205.8575919621115614148120323933633827052786873078552904

if(lrgOK) withAutoprint({

try(qnormI(pM)) ## Error: lower < upper not fulfilled (evt. TODO)
but this works
print(qnI <- qnormI(log(pM), log.p=TRUE)) # -2528468770.343293436
all.equal(-qM, qnI, tol = 0) # << show how close; seen 1.084202e-19
stopifnot(all.equal(-qM, qnI, tol = 1e-18))

})

if(FALSE) # this (*SLOW*) gives 21 x the *same* (wrong) result --- FIXME!
qnormI(log(pM) * (2:22), log.p=TRUE)

if(doX) ## Show how bad it is (currently ca. 220 iterations, and then *wrong*)
str(qnormI(round(log(pM)), log.p=TRUE, trace=1, give.full = TRUE))

if(requireNamespace("DPQ"))
new("mpfr", as(DPQ::qnormR(pM, trace=1), "mpfr")) # as(*, "mpfr") also works for +/- Inf
qnormR1(p= 0, m=0, s=1, l.t.= 1, log= 0): q = -0.5
somewhat close to 0 or 1: r := sqrt(-lp) = 1.7879e+09
r > 5, using rational form R_3(t), for t=1.787897e+09 -- that is *not* accurate
[1] -94658744.369295865460462720............

reset to previous status if needed
if(doIncr) .mpfr_erange_set(, old_eranges)

Rmpfr-workarounds Base Functions etc, as an Rmpfr version

70 roundMpfr

Description

Functions from base etc which need a copy in the Rmpfr namespace so they correctly dispatch.

Usage

outer(X, Y, FUN = "*", ...)

Arguments

X, Y, FUN, ... See base package help: outer.

See Also

outer.

Examples

outer(1/mpfr(1:10, 70), 0:2)

roundMpfr Rounding to Binary bits, "mpfr-internally"

Description

Rounding to binary bits, not decimal digits. Closer to the number representation, this also allows to
increase or decrease a number’s precBits. In other words, it acts as setPrec(), see getPrec().

Usage

roundMpfr(x, precBits, rnd.mode = c("N","D","U","Z","A"))

Arguments

x an mpfr number (vector)

precBits integer specifying the desired precision in bits.

rnd.mode a 1-letter string specifying how rounding should happen at C-level conversion
to MPFR, see mpfr.

Value

an mpfr number as x but with the new ’precBits’ precision

See Also

The mpfr class group method Math2 implements a method for round(x, digits) which rounds to
decimal digits.

sapplyMpfr 71

Examples

(p1 <- Const("pi", 100)) # 100 bit prec
roundMpfr(p1, 120) # 20 bits more, but "random noise"
Const("pi", 120) # same "precision", but really precise

sapplyMpfr Apply a Function over a "mpfr" Vector

Description

Users may be disappointed to note that sapply() or vapply() typically do not work with "mpfr"
numbers.

This is a simple (but strong) approach to work around the problem, based on lapply().

Usage

sapplyMpfr(X, FUN, ..., drop_1_ = TRUE)

Arguments

X a vector, possibly of class "mpfr".

FUN a function returning an "mpfr" vector or even an "mpfrArray". May also be
a function returning a numeric vector or array for numeric X, and which returns
"mpfr(Array)" for an X argument inheriting from "mpfr".

... further arguments passed to lapply, typically further arguments to FUN.

drop_1_ logical (with unusual name on purpose!) indicating if 1-column matrices ("mpfrMatrix")
should be “dropped” to vectors ("mpfr"), the same as in base R’s own sapply.
This has been implicitly FALSE in Rmpfr versions 0.8-5 to 0.8-9 (Oct 2021 to
June 2022), accidentally. Since Rmpfr 0.9-0, this has been made an argument
with default TRUE to be compatible by default with R’s sapply.

Details

In the case FUN(<length-1>) returns an array or "mpfrArray", i.e., with two or more dimen-
sions, sapplyMpfr() returns an "mpfrArray"; this is analogous to sapply(X, FUN, simplify =
"array") (rather than the default sapply() behaviour which returns a matrix also when a higher
array would be more “logical”.)

Value

an "mpfr" vector, typically of the same length as X.

72 sapplyMpfr

Note

This may still not always work as well as sapply() does for atomic vectors. The examples seem to
indicate that it typically does work as desired, since Rmpfr version 0.9-0.

If you want to transform back to regular numbers anyway, it maybe simpler and more efficient to
use

res <- lapply(....)
sapply(res, asNumeric, simplify = "array")

instead of sapplyMpfr().

Author(s)

Martin Maechler

See Also

sapply, lapply, etc.

Examples

sapplyMpfr0 <- ## Originally, the function was simply defined as
function (X, FUN, ...) new("mpfr", unlist(lapply(X, FUN, ...), recursive = FALSE))

(m1 <- sapply (3, function(k) (1:3)^k)) # 3 x 1 matrix (numeric)
(p1 <- sapplyMpfr(mpfr(3, 64), function(k) (1:3)^k))
stopifnot(m1 == p1, is(p1, "mpfrMatrix"), dim(p1) == c(3,1), dim(p1) == dim(m1))
k.s <- c(2, 5, 10, 20)
(mk <- sapply (k.s, function(k) (1:3)^k)) # 3 x 4 " "
(pm <- sapplyMpfr(mpfr(k.s, 64), function(k) (1:3)^k))
stopifnot(mk == pm, is(pm, "mpfrMatrix"), dim(pm) == 3:4, 3:4 == dim(mk))
was *wrongly* 4x3 in Rmpfr 0.8-x
f5k <- function(k) outer(1:5, k+0:2, `^`)# matrix-valued
(mk5 <- sapply (k.s, f5k)) # sapply()'s default; not "ideal"
(ak5 <- sapply (k.s, f5k, simplify = "array")) # what we want
(pm5 <- sapplyMpfr(mpfr(k.s, 64), f5k))
stopifnot(c(mk5) == c(ak5), ak5 == pm5, is(pm5, "mpfrArray"), is.array(ak5),

dim(pm5) == dim(ak5), dim(pm5) == c(5,3, 4))
if(require("Bessel")) { # here X, is simple

bI1 <- function(k) besselI.nuAsym(mpfr(1.31e9, 128), 10, expon.scaled=TRUE, k.max=k)
bImp1 <- sapplyMpfr (0:4, bI1, drop_1_ = FALSE) # 1x5 mpfrMatrix -- as in DPQ 0.8-8
bImp <- sapplyMpfr (0:4, bI1, drop_1_ = TRUE) # 5 "mpfr" vector {by default}
bImp0 <- sapplyMpfr0(0:4, bI1) # 5-vector
stopifnot(identical(bImp, bImp0), bImp == bImp1,

is(bImp, "mpfr"), is(bImp1, "mpfrMatrix"), dim(bImp1) == c(1, 5))
}# {Bessel}

seqMpfr 73

seqMpfr "mpfr" Sequence Generation

Description

Generate ‘regular’, i.e., arithmetic sequences. This is in lieu of methods for seq (dispatching on all
three of from, to, and by.

Usage

seqMpfr(from = 1, to = 1, by = ((to - from)/(length.out - 1)),
length.out = NULL, along.with = NULL, ...)

Arguments

from, to the starting and (maximal) end value (numeric or "mpfr") of the sequence.

by number (numeric or "mpfr"): increment of the sequence.

length.out desired length of the sequence. A non-negative number, which will be rounded
up if fractional.

along.with take the length from the length of this argument.

... arguments passed to or from methods.

Details

see seq (default method in package base), whose semantic we want to replicate (almost).

Value

a ‘vector’ of class "mpfr", when one of the first three arguments was.

Author(s)

Martin Maechler

See Also

The documentation of the base function seq; mpfr

Examples

seqMpfr(0, 1, by = mpfr(0.25, prec=88))

seqMpfr(7, 3) # -> default prec.

74 str.mpfr

str.mpfr Compactly Show STRucture of Rmpfr Number Object

Description

The str method for objects of class mpfr produces a bit more useful output than the default method
str.default.

Usage

S3 method for class 'mpfr'
str(object, nest.lev, internal = FALSE,

give.head = TRUE, digits.d = 12, vec.len = NULL, drop0trailing=TRUE,
width = getOption("width"), ...)

Arguments

object an object of class mpfr.

nest.lev for str(), typically only used when called by a higher level str().

internal logical indicating if the low-level internal structure should be shown; if true (not
by default), uses str(object@.Data).

give.head logical indicating if the “header” should be printed.

digits.d the number of digits to be used, will be passed formatMpfr() and hence NULL
will use “as many as needed”, i.e. often too many. If this is a number, as
per default, less digits will be used in case the precision (getPrec(object))
is smaller.

vec.len the number of elements that will be shown. The default depends on the precision
of object and width (since Rmpfr 0.6-0, it was 3 previously).

drop0trailing logical, passed to formatMpfr() (with a different default here).

width the (approximately) desired width of output, see options(width = .).

... further arguments, passed to formatMpfr().

See Also

.mpfr2list() puts the internal structure into a list, and its help page documents many more (low
level) utilities.

Examples

(x <- c(Const("pi", 64), mpfr(-2:2, 64)))
str(x)
str(list(pi = pi, x.mpfr = x))
str(x ^ 1000)
str(x ^ -1e4, digits=NULL) # full precision

sumBinomMpfr 75

str(x, internal = TRUE) # internal low-level (for experts)

uu <- Const("pi", 16)# unaccurate
str(uu) # very similar to just 'uu'

sumBinomMpfr (Alternating) Binomial Sums via Rmpfr

Description

Compute (alternating) binomial sums via high-precision arithmetic. If sBn(f, n) :=sumBinomMpfr(n,
f), (default alternating is true, and n0 = 0),

sBn(f, n) =

n∑
k=n0

(−1)(n− k)

(
n

k

)
· f(k) = ∆nf,

see Details for the n-th forward difference operator ∆nf . If alternating is false, the (−1)(n− k)
factor is dropped (or replaced by 1) above.
Such sums appear in different contexts and are typically challenging, i.e., currently impossible, to
evaluate reliably as soon as n is larger than around 50−−70.

Usage

sumBinomMpfr(n, f, n0 = 0, alternating = TRUE, precBits = 256,
f.k = f(mpfr(k, precBits=precBits)))

Arguments

n upper summation index (integer).
f function to be evaluated at k for k in n0:n (and which must return one value

per k).
n0 lower summation index, typically 0 (= default) or 1.
alternating logical indicating if the sum is alternating, see below.
precBits the number of bits for MPFR precision, see mpfr.
f.k can be specified instead of f and precBits, and must contain the equivalent of

its default, f(mpfr(k, precBits=precBits)).

Details

The alternating binomial sum sB(f, n) := sumBinom(n, f, n0 = 0) is equal to the n-th forward
difference operator ∆nf ,

sB(f, n) = ∆nf,

where

∆nf =

n∑
k=0

(−1)n−k

(
n

k

)
· f(k),

is the n-fold iterated forward difference ∆f(x) = f(x+ 1)− f(x) (for x = 0).
The current implementation might be improved in the future, notably for the case where sB(f, n) =sumBinomMpfr(n,
f, *) is to be computed for a whole sequence n = 1, . . . , N .

76 sumBinomMpfr

Value

an mpfr number of precision precBits. s. If alternating is true (as per default),

s =

n∑
k=n0

(−1)k
(
n

k

)
· f(k),

if alternating is false, the (−1)k factor is dropped (or replaced by 1) above.

Author(s)

Martin Maechler, after conversations with Christophe Dutang.

References

Wikipedia (2012) The N\"orlund-Rice integral, https://en.wikipedia.org/wiki/Rice_integral

Flajolet, P. and Sedgewick, R. (1995) Mellin Transforms and Asymptotics: Finite Differences and
Rice’s Integrals, Theoretical Computer Science 144, 101–124.

See Also

chooseMpfr, chooseZ from package gmp.

Examples

"naive" R implementation:
sumBinom <- function(n, f, n0=0, ...) {

k <- n0:n
sum(choose(n, k) * (-1)^(n-k) * f(k, ...))

}

compute sumBinomMpfr(.) for a whole set of 'n' values:
sumBin.all <- function(n, f, n0=0, precBits = 256, ...)
{

N <- length(n)
precBits <- rep(precBits, length = N)
ll <- lapply(seq_len(N), function(i)

sumBinomMpfr(n[i], f, n0=n0, precBits=precBits[i], ...))
sapply(ll, as, "double")

}
sumBin.all.R <- function(n, f, n0=0, ...)

sapply(n, sumBinom, f=f, n0=n0, ...)

n.set <- 5:80
system.time(res.R <- sumBin.all.R(n.set, f = sqrt)) ## instantaneous..
system.time(resMpfr <- sumBin.all (n.set, f = sqrt)) ## ~ 0.6 seconds

matplot(n.set, cbind(res.R, resMpfr), type = "l", lty=1,
ylim = extendrange(resMpfr, f = 0.25), xlab = "n",
main = "sumBinomMpfr(n, f = sqrt) vs. R double precision")

legend("topleft", leg=c("double prec.", "mpfr"), lty=1, col=1:2, bty = "n")

https://en.wikipedia.org/wiki/Rice_integral

unirootR 77

unirootR One Dimensional Root (Zero) Finding – in pure R

Description

The function unirootR searches the interval from lower to upper for a root (i.e., zero) of the
function f with respect to its first argument.

unirootR() is “clone” of uniroot(), written entirely in R, in a way that it works with mpfr-
numbers as well.

Usage

unirootR(f, interval, ...,
lower = min(interval), upper = max(interval),
f.lower = f(lower, ...), f.upper = f(upper, ...),
extendInt = c("no", "yes", "downX", "upX"),
trace = 0, verbose = as.logical(trace),
verbDigits = max(3, min(20, -log10(tol)/2)),
tol = .Machine$double.eps^0.25, maxiter = 1000L,
check.conv = FALSE,
warn.no.convergence = !check.conv,
epsC = NULL)

Arguments

f the function for which the root is sought.

interval a vector containing the end-points of the interval to be searched for the root.

... additional named or unnamed arguments to be passed to f

lower, upper the lower and upper end points of the interval to be searched.
f.lower, f.upper

the same as f(upper) and f(lower), respectively. Passing these values from the
caller where they are often known is more economical as soon as f() contains
non-trivial computations.

extendInt character string specifying if the interval c(lower,upper) should be extended
or directly produce an error when f() does not have differing signs at the end-
points. The default, "no", keeps the search interval and hence produces an error.
Can be abbreviated.

trace integer number; if positive, tracing information is produced. Higher values giv-
ing more details.

verbose logical (or integer) indicating if (and how much) verbose output should be pro-
duced during the iterations.

verbDigits used only if verbose is true, indicates the number of digits numbers should be
printed with, using format(., digits=verbDigits).

tol the desired accuracy (convergence tolerance).

78 unirootR

maxiter the maximum number of iterations.

check.conv logical indicating whether non convergence should be caught as an error, notably
non-convergence in maxiter iterations should be an error instead of a warning.

warn.no.convergence

if set to FALSE there’s no warning about non-convergence. Useful to just run a
few iterations.

epsC positive number or NULL in which case a smart default is sought. This should
specify the “achievable machine precision” for the given numbers and their
arithmetic.
The default will set this to .Machine$double.eps for double precision num-
bers, and will basically use 2 ^ - min(getPrec(f.lower), getPrec(f.upper))
when that works (as, e.g., for mpfr-numbers) otherwise.
This is factually a lower bound for the achievable lower bound, and hence, set-
ting tol smaller than epsC is typically non-sensical and produces a warning.

Details

Note that arguments after ... must be matched exactly.

Either interval or both lower and upper must be specified: the upper endpoint must be strictly
larger than the lower endpoint. The function values at the endpoints must be of opposite signs (or
zero), for extendInt="no", the default. Otherwise, if extendInt="yes", the interval is extended
on both sides, in search of a sign change, i.e., until the search interval [l, u] satisfies f(l) ·f(u) ≤ 0.

If it is known how f changes sign at the root x0, that is, if the function is increasing or decreas-
ing there, extendInt can (and typically should) be specified as "upX" (for “upward crossing”) or
"downX", respectively. Equivalently, define S := ±1, to require S = sign(f(x0 + ϵ)) at the so-
lution. In that case, the search interval [l, u] possibly is extended to be such that S · f(l) ≤ 0 and
S · f(u) ≥ 0.

The function only uses R code with basic arithmetic, such that it should also work with “general-
ized” numbers (such as mpfr-numbers) as long the necessary Ops methods are defined for those.

The underlying algorithm assumes a continuous function (which then is known to have at least one
root in the interval).

Convergence is declared either if f(x) == 0 or the change in x for one step of the algorithm is less
than tol (plus an allowance for representation error in x).

If the algorithm does not converge in maxiter steps, a warning is printed and the current approxi-
mation is returned.

f will be called as f(x, ...) for a (generalized) numeric value of x .

Value

A list with four components: root and f.root give the location of the root and the value of the
function evaluated at that point. iter and estim.prec give the number of iterations used and an
approximate estimated precision for root. (If the root occurs at one of the endpoints, the estimated
precision is NA.)

unirootR 79

Source

Based on zeroin() (in package rootoned) by John Nash who manually translated the C code in
R’s zeroin.c and on uniroot() in R’s sources.

References

Brent, R. (1973), see uniroot.

See Also

R’s own (stats package) uniroot. polyroot for all complex roots of a polynomial; optimize, nlm.

Examples

require(utils) # for str

some platforms hit zero exactly on the first step:
if so the estimated precision is 2/3.
f <- function (x,a) x - a
str(xmin <- unirootR(f, c(0, 1), tol = 0.0001, a = 1/3))

handheld calculator example: fixpoint of cos(.):
rc <- unirootR(function(x) cos(x) - x, lower=-pi, upper=pi, tol = 1e-9)
rc$root

the same with much higher precision:
rcM <- unirootR(function(x) cos(x) - x,

interval= mpfr(c(-3,3), 300), tol = 1e-40)
rcM
x0 <- rcM$root
stopifnot(all.equal(cos(x0), x0,

tol = 1e-40))## 40 digits accurate!

str(unirootR(function(x) x*(x^2-1) + .5, lower = -2, upper = 2,
tol = 0.0001), digits.d = 10)

str(unirootR(function(x) x*(x^2-1) + .5, lower = -2, upper = 2,
tol = 1e-10), digits.d = 10)

A sign change of f(.), but not a zero but rather a "pole":
tan. <- function(x) tan(x * (Const("pi",200)/180))# == tan(<angle>)
(rtan <- unirootR(tan., interval = mpfr(c(80,100), 200), tol = 1e-40))
finds 90 {"ok"}, and now gives a warning

Find the smallest value x for which exp(x) > 0 (numerically):
r <- unirootR(function(x) 1e80*exp(x)-1e-300, c(-1000,0), tol = 1e-15)
str(r, digits.d = 15) ##> around -745, depending on the platform.

exp(r$root) # = 0, but not for r$root * 0.999...
minexp <- r$root * (1 - 10*.Machine$double.eps)
exp(minexp) # typically denormalized

80 unirootR

--- using mpfr-numbers :

Find the smallest value x for which exp(x) > 0 ("numerically");
Note that mpfr-numbers underflow *MUCH* later than doubles:
one of the smallest mpfr-numbers {see also ?mpfr-class } :
(ep.M <- mpfr(2, 55) ^ - ((2^30 + 1) * (1 - 1e-15)))
r <- unirootR(function(x) 1e99* exp(x) - ep.M, mpfr(c(-1e20, 0), 200))
r # 97 iterations; f.root is very similar to ep.M

interval extension 'extendInt' --------------

f1 <- function(x) (121 - x^2)/(x^2+1)
f2 <- function(x) exp(-x)*(x - 12)
tools::assertError(unirootR(f1, c(0,10)), verbose=TRUE)
##--> error: f() .. end points not of opposite sign

where as 'extendInt="yes"' simply first enlarges the search interval:
u1 <- unirootR(f1, c(0,10),extendInt="yes", trace=1)
u2 <- unirootR(f2, mpfr(c(0,2), 128), extendInt="yes", trace=2, verbose=FALSE, tol = 1e-25)
stopifnot(all.equal(u1$root, 11, tolerance = 1e-5),

all.equal(u2$root, 12, tolerance = 1e-23))

The *danger* of interval extension:
No way to find a zero of a positive function, but
numerically, f(-|M|) becomes zero :
u3 <- unirootR(exp, c(0,2), extendInt="yes", trace=TRUE)

Nonsense example (must give an error):
tools::assertCondition(unirootR(function(x) 1, 0:1, extendInt="yes"),

"error", verbose=TRUE)

Index

∗ Forward Difference
sumBinomMpfr, 75

∗ Rice integral
sumBinomMpfr, 75

∗ arithmetic
frexpMpfr, 21

∗ arith
Bernoulli, 9
chooseMpfr, 12
factorialMpfr, 14
formatHex, 16
gmp-conversions, 23
matmult, 34
mpfr.utils, 52
num2bigq, 59
pbetaI, 63
pmax, 66
roundMpfr, 70
sumBinomMpfr, 75

∗ array
mpfrArray, 54
mpfrMatrix-utils, 58

∗ character
formatMpfr, 18

∗ classes
array_or_vector-class, 6
atomicVector-class, 8
Mnumber-class, 35
mpfr, 36
mpfr-class, 39
mpfrMatrix, 55

∗ distribution
mpfr-distr-etc, 44
pbetaI, 63
qnormI, 67

∗ manip
sapplyMpfr, 71
seqMpfr, 73

∗ math

Bessel_mpfr, 10
igamma, 27
integrateR, 28
is.whole, 31
log1mexp, 32
mpfr-special-functions, 46
num2bigq, 59
qnormI, 67

∗ methods
asNumeric-methods, 7
bind-methods, 11
pmax, 66

∗ misc
Rmpfr-workarounds, 69

∗ optimize
hjkMpfr, 24
optimizeR, 60
unirootR, 77

∗ package
Rmpfr-package, 3

∗ print
formatMpfr, 18

∗ univar
pmax, 66

∗ utilities
frexpMpfr, 21
integrateR, 28
mpfr-utils, 47
str.mpfr, 74

..bigq2mpfr (mpfr-utils), 47

..bigz2mpfr (mpfr-utils), 47

.Machine, 41, 50, 78

.bigq2mpfr (gmp-conversions), 23

.bigz2mpfr (gmp-conversions), 23

.getPrec (mpfr-utils), 47

.getSign (mpfr-utils), 47

.matmult.R (matmult), 34

.mpfr (mpfr-utils), 47

.mpfr.is.whole (mpfr.utils), 52

81

82 INDEX

.mpfr2bigq, 60

.mpfr2bigq (gmp-conversions), 23

.mpfr2bigz (gmp-conversions), 23

.mpfr2d (mpfr-utils), 47

.mpfr2exp, 20, 22

.mpfr2exp (mpfr-utils), 47

.mpfr2i (mpfr-utils), 47

.mpfr2list, 74

.mpfr2list (mpfr-utils), 47

.mpfr2str, 19, 50, 51

.mpfr2str (formatMpfr), 18

.mpfrVersion (mpfr-utils), 47

.mpfr_erange (mpfr-utils), 47

.mpfr_erange_is_int (mpfr-utils), 47

.mpfr_erange_kinds (mpfr-utils), 47

.mpfr_erange_set, 45

.mpfr_erange_set (mpfr-utils), 47

.mpfr_formatinfo, 20

.mpfr_formatinfo (mpfr-utils), 47

.mpfr_gmp_numbbits (mpfr-utils), 47

.mpfr_maxPrec (mpfr-utils), 47

.mpfr_minPrec (mpfr-utils), 47

.mpfr_negative (mpfr-utils), 47

.mpfr_sign (mpfr-utils), 47
[,mpfr,ANY,missing,missing-method

(mpfr-class), 39
[,mpfrArray,ANY,ANY,ANY-method

(mpfrMatrix), 55
[,mpfrArray,ANY,missing,missing-method

(mpfrMatrix), 55
[,mpfrArray,matrix,missing,missing-method

(mpfrMatrix), 55
[<-,mpfr,ANY,missing,ANY-method

(mpfr-class), 39
[<-,mpfr,ANY,missing,mpfr-method

(mpfr-class), 39
[<-,mpfr,missing,missing,ANY-method

(mpfr-class), 39
[<-,mpfrArray,ANY,ANY,ANY-method

(mpfrMatrix), 55
[<-,mpfrArray,ANY,ANY,mpfr-method

(mpfrMatrix), 55
[<-,mpfrArray,ANY,missing,ANY-method

(mpfrMatrix), 55
[<-,mpfrArray,ANY,missing,mpfr-method

(mpfrMatrix), 55
[<-,mpfrArray,matrix,missing,ANY-method

(mpfrMatrix), 55

[<-,mpfrArray,matrix,missing,mpfr-method
(mpfrMatrix), 55

[<-,mpfrArray,missing,ANY,ANY-method
(mpfrMatrix), 55

[<-,mpfrArray,missing,ANY,mpfr-method
(mpfrMatrix), 55

[<-,mpfrArray,missing,missing,ANY-method
(mpfrMatrix), 55

[<-,mpfrArray,missing,missing,mpfr-method
(mpfrMatrix), 55

[[,mpfr-method (mpfr-class), 39
%*%,Mnumber,mpfr-method (mpfrMatrix), 55
%*%,array_or_vector,mpfr-method

(mpfr-class), 39
%*%,mpfr,Mnumber-method (mpfrMatrix), 55
%*%,mpfr,array_or_vector-method

(mpfr-class), 39
%*%,mpfr,mpfr-method (mpfrMatrix), 55
%*%,mpfr,mpfrMatrix-method

(mpfrMatrix), 55
%*%,mpfrMatrix,mpfr-method

(mpfrMatrix), 55
%*%,mpfrMatrix,mpfrMatrix-method

(mpfrMatrix), 55
%*%, 34, 35, 56

abs, 41, 59
abs,mpfr-method (mpfr-class), 39
acos, 41
acosh, 41
Ai (Bessel_mpfr), 10
all, 40
all.equal, 41
all.equal,ANY,mpfr-method (mpfr-class),

39
all.equal,mpfr,ANY-method (mpfr-class),

39
all.equal,mpfr,mpfr-method

(mpfr-class), 39
any, 40
aperm, 57
aperm,mpfrArray-method (mpfrMatrix), 55
apply,mpfrArray-method (mpfrMatrix), 55
Arg,mpfr-method (mpfr-class), 39
Arith,array,mpfr-method (mpfr-class), 39
Arith,integer,mpfr-method (mpfr-class),

39
Arith,mpfr,array-method (mpfr-class), 39

INDEX 83

Arith,mpfr,integer-method (mpfr-class),
39

Arith,mpfr,missing-method (mpfr-class),
39

Arith,mpfr,mpfr-method (mpfr-class), 39
Arith,mpfr,mpfrArray-method

(mpfrMatrix), 55
Arith,mpfr,numeric-method (mpfr-class),

39
Arith,mpfrArray,mpfr-method

(mpfrMatrix), 55
Arith,mpfrArray,mpfrArray-method

(mpfrMatrix), 55
Arith,mpfrArray,numeric-method

(mpfrMatrix), 55
Arith,numeric,mpfr-method (mpfr-class),

39
Arith,numeric,mpfrArray-method

(mpfrMatrix), 55
array, 5, 7, 20, 36, 41, 50, 54–57, 71
array_or_vector, 36
array_or_vector-class, 6
as, 42
as.bigq, 23
as.bigz, 23
as.integer, 50
as.integer,mpfr-method (mpfr-class), 39
as.numeric, 7
as.numeric,mpfr-method (mpfr-class), 39
as.vector,mpfrArray,missing-method

(mpfrMatrix), 55
as.vector,mpfrArray-method

(mpfr-class), 39
asin, 41
asinh, 41
asNumeric, 7, 38, 50, 54, 58, 59
asNumeric,mpfr-method

(asNumeric-methods), 7
asNumeric,mpfrArray-method

(asNumeric-methods), 7
asNumeric-methods, 7
atan, 40, 41
atan2,ANY,mpfr-method (mpfr-class), 39
atan2,ANY,mpfrArray-method

(mpfr-class), 39
atan2,mpfr,ANY-method (mpfr-class), 39
atan2,mpfr,mpfr-method (mpfr-class), 39
atan2,mpfr,numeric-method (mpfr-class),

39
atan2,mpfrArray,ANY-method

(mpfr-class), 39
atan2,mpfrArray,mpfrArray-method

(mpfr-class), 39
atan2,numeric,mpfr-method (mpfr-class),

39
atanh, 41
atomicVector-class, 8

base::pmin, 66
Bernoulli, 5, 9, 42
Bessel_mpfr, 5, 10, 47
besselJ, 10
besselY, 10
beta, 40
beta,ANY,mpfr-method (mpfr-class), 39
beta,ANY,mpfrArray-method (mpfr-class),

39
beta,mpfr,ANY-method (mpfr-class), 39
beta,mpfr,mpfr-method (mpfr-class), 39
beta,mpfr,numeric-method (mpfr-class),

39
beta,mpfrArray,ANY-method (mpfr-class),

39
beta,mpfrArray,mpfrArray-method

(mpfr-class), 39
beta,numeric,mpfr-method (mpfr-class),

39
bigq, 23, 36, 60, 63, 64
bigrational, 6
bigz, 23, 36, 42
bind-methods, 11

c, 52
c.mpfr, 5
c.mpfr (mpfr.utils), 52
cbind, 5, 11, 12
cbind (bind-methods), 11
cbind,ANY-method (bind-methods), 11
cbind,Mnumber-method (bind-methods), 11
cbind-methods (bind-methods), 11
cbind2, 12
ceiling, 41
character, 36, 37, 41, 42, 48, 49, 55, 61
choose, 12, 13
chooseMpfr, 5, 12, 76
chooseZ, 12, 13, 64, 76
class, 8, 12, 17, 31, 39, 49, 66

84 INDEX

coerce,array,mpfr-method (mpfr-class),
39

coerce,array,mpfrArray-method
(mpfrMatrix), 55

coerce,bigq,mpfr-method
(gmp-conversions), 23

coerce,bigz,mpfr-method
(gmp-conversions), 23

coerce,character,mpfr-method
(mpfr-class), 39

coerce,integer,mpfr-method
(mpfr-class), 39

coerce,logical,mpfr-method
(mpfr-class), 39

coerce,matrix,mpfrMatrix-method
(mpfrMatrix), 55

coerce,mpfr,bigz-method (mpfr-class), 39
coerce,mpfr,character-method

(mpfr-class), 39
coerce,mpfr,integer-method

(mpfr-class), 39
coerce,mpfr,mpfr1-method (mpfr-class),

39
coerce,mpfr,numeric-method

(mpfr-class), 39
coerce,mpfr1,mpfr-method (mpfr-class),

39
coerce,mpfr1,numeric-method

(mpfr-class), 39
coerce,mpfrArray,array-method

(mpfrMatrix), 55
coerce,mpfrArray,matrix-method

(mpfrMatrix), 55
coerce,mpfrArray,vector-method

(mpfrMatrix), 55
coerce,mpfrMatrix,matrix-method

(mpfrMatrix), 55
coerce,numeric,mpfr-method

(mpfr-class), 39
coerce,numeric,mpfr1-method

(mpfr-class), 39
coerce,raw,mpfr-method (mpfr-class), 39
coerce<-,mpfrArray,vector-method

(mpfrMatrix), 55
colMeans,mpfrArray-method (mpfrMatrix),

55
colSums,mpfrArray-method (mpfrMatrix),

55

Compare,array,mpfr-method (mpfr-class),
39

Compare,integer,mpfr-method
(mpfr-class), 39

Compare,mpfr,array-method (mpfr-class),
39

Compare,mpfr,integer-method
(mpfr-class), 39

Compare,mpfr,mpfr-method (mpfr-class),
39

Compare,mpfr,mpfrArray-method
(mpfrMatrix), 55

Compare,mpfr,numeric-method
(mpfr-class), 39

Compare,mpfrArray,mpfr-method
(mpfrMatrix), 55

Compare,mpfrArray,numeric-method
(mpfrMatrix), 55

Compare,numeric,mpfr-method
(mpfr-class), 39

Compare,numeric,mpfrArray-method
(mpfrMatrix), 55

complex, 8
Conj,mpfr-method (mpfr-class), 39
Const (mpfr), 36
cos, 41
cosh, 41
cospi, 41
crossprod, 34, 35
crossprod,array_or_vector,mpfr-method

(mpfr-class), 39
crossprod,Mnumber,mpfr-method

(mpfrMatrix), 55
crossprod,mpfr,array_or_vector-method

(mpfr-class), 39
crossprod,mpfr,missing-method

(mpfrMatrix), 55
crossprod,mpfr,Mnumber-method

(mpfrMatrix), 55
crossprod,mpfr,mpfr-method

(mpfrMatrix), 55
crossprod,mpfr,mpfrMatrix-method

(mpfrMatrix), 55
crossprod,mpfrMatrix,mpfr-method

(mpfrMatrix), 55
crossprod,mpfrMatrix,mpfrMatrix-method

(mpfrMatrix), 55
cummax, 41

INDEX 85

cummin, 41
cumprod, 41
cumsum, 41

dbinom, 45
dbinom (mpfr-distr-etc), 44
determinant, 59
determinant.mpfrMatrix

(mpfrMatrix-utils), 58
dgamma, 45
dgamma (mpfr-distr-etc), 44
diag,mpfrMatrix-method (mpfrMatrix), 55
diag<-,mpfrMatrix-method (mpfrMatrix),

55
diff, 53
diff.default, 53
diff.mpfr (mpfr.utils), 52
digamma, 5, 41
dim, 7, 20, 40, 56
dim,mpfrArray-method (mpfrMatrix), 55
dim<-,mpfr-method (mpfr-class), 39
dimnames, 20
dimnames,mpfrArray-method (mpfrMatrix),

55
dimnames<-,mpfrArray-method

(mpfrMatrix), 55
dnbinom, 45
dnbinom (mpfr-distr-etc), 44
dnorm (mpfr-distr-etc), 44
dotsMethods, 11
double, 48, 50
dpois, 44, 45
dpois (mpfr-distr-etc), 44
dt, 45
dt (mpfr-distr-etc), 44
duplicated, 42

Ei (mpfr-special-functions), 46
erf, 45, 53
erf (mpfr-special-functions), 46
erfc (mpfr-special-functions), 46
exp, 41
expm1, 41

factorial, 13, 15
factorial,mpfr-method (mpfr-class), 39
factorialMpfr, 5, 13, 14, 41
factorialZ, 15
floor, 41

format, 16–20, 49, 77
format,mpfr-method (mpfr-class), 39
formatBin, 37
formatBin (formatHex), 16
formatDec (formatHex), 16
formatHex, 16
formatMpfr, 5, 17, 18, 41, 49, 74
formatN, 20
formatN.mpfr (formatMpfr), 18
fractions, 59, 60
frexp, 22
frexpMpfr, 21
function, 71, 75

gamma, 5, 13, 15, 28, 40, 41
getD (mpfr-utils), 47
getGroupMembers, 41
getPrec, 5, 16, 36, 67, 70, 74
getPrec (mpfr-utils), 47
gmp, 6
gmp-conversions, 23
golden_ratio, 61

hjk, 24
hjkMpfr, 5, 24, 61
hypot (mpfr-class), 39

igamma, 27
Im,mpfr-method (mpfr-class), 39
integer, 8, 13, 42, 48, 50
integrate, 29, 30
integrateR, 5, 28
interactive, 49
invisible, 50
is.atomic, 8
is.finite, 50
is.finite,mpfr-method (mpfr-class), 39
is.finite,mpfrArray-method

(mpfr-class), 39
is.infinite,mpfr-method (mpfr-class), 39
is.infinite,mpfrArray-method

(mpfr-class), 39
is.integer, 31
is.mpfr (mpfr), 36
is.na,mpfr-method (mpfr-class), 39
is.na,mpfrArray-method (mpfr-class), 39
is.nan,mpfr-method (mpfr-class), 39
is.nan,mpfrArray-method (mpfr-class), 39
is.whole, 31, 31, 42, 53

86 INDEX

j0, 47
j0 (Bessel_mpfr), 10
j1 (Bessel_mpfr), 10
jn, 42
jn (Bessel_mpfr), 10

lapply, 71, 72
lbeta,ANY,mpfr-method (mpfr-class), 39
lbeta,ANY,mpfrArray-method

(mpfr-class), 39
lbeta,mpfr,ANY-method (mpfr-class), 39
lbeta,mpfr,mpfr-method (mpfr-class), 39
lbeta,mpfr,numeric-method (mpfr-class),

39
lbeta,mpfrArray,ANY-method

(mpfr-class), 39
lbeta,mpfrArray,mpfrArray-method

(mpfr-class), 39
lbeta,numeric,mpfr-method (mpfr-class),

39
ldexpMpfr (frexpMpfr), 21
lgamma, 40, 41
Li2 (mpfr-special-functions), 46
list, 22, 25, 39, 55, 59, 61, 67, 74
load, 51
log, 41, 59
log,mpfr-method (mpfr-class), 39
log10, 41
log1mexp, 32
log1p, 41
log1pexp (log1mexp), 32
log2, 41
Logic,mpfr,mpfr-method (mpfr-class), 39
Logic,mpfr,numeric-method (mpfr-class),

39
Logic,numeric,mpfr-method (mpfr-class),

39
logical, 16, 19, 42, 44, 49, 50, 64

Math, 41, 46
Math,mpfr-method (mpfr-class), 39
Math2, 46
Math2,mpfr-method (mpfr-class), 39
matmult, 34
matrix, 7, 35, 50, 55
max, 40
mean, 40
mean,mpfr-method (mpfr-class), 39
mean.default, 40

median,mpfr-method (mpfr-class), 39
min, 40, 66
missing, 36
Mnumber, 11
Mnumber-class, 35
mNumber-class (Mnumber-class), 35
Mod,mpfr-method (mpfr-class), 39
mpfr, 5, 7, 9–13, 15–20, 22, 23, 26, 27, 29, 31,

32, 34–36, 36, 37–39, 41, 42, 44–49,
51–56, 61, 63, 64, 66, 67, 70, 71,
73–78

mpfr-class, 5, 39
mpfr-distr (mpfr-distr-etc), 44
mpfr-distr-etc, 44
mpfr-special-functions, 46
mpfr-utils, 47
mpfr.is.0 (mpfr.utils), 52
mpfr.is.integer (mpfr.utils), 52
mpfr.utils, 52
mpfr1, 55
mpfr1-class (mpfr-class), 39
mpfr2array, 54, 55
mpfr2array (mpfr-utils), 47
mpfr_default_prec (mpfr-utils), 47
mpfrArray, 5, 7, 20, 37, 40, 48–51, 54, 54, 55,

57, 71
mpfrArray-class (mpfrMatrix), 55
mpfrImport (mpfr-utils), 47
mpfrIs0, 50
mpfrIs0 (mpfr.utils), 52
mpfrMatrix, 7, 11, 12, 34, 35, 37, 42, 50, 54,

55, 59
mpfrMatrix-class, 5
mpfrMatrix-class (mpfrMatrix), 55
mpfrMatrix-utils, 58
mpfrVersion (mpfr.utils), 52
mpfrXport (mpfr-utils), 47

names, 49
NaN, 40
nlm, 79
norm, 57
norm,ANY,missing-method (mpfrMatrix), 55
norm,mpfrMatrix,character-method

(mpfrMatrix), 55
NULL, 48, 55
num2bigq, 59
numeric, 8, 10, 27, 34, 36, 38, 39, 42, 44, 46,

49, 53, 63, 71

INDEX 87

numeric_version, 53
numericVector-class (Mnumber-class), 35

Ops, 78
Ops,ANY,mpfr-method (mpfr-class), 39
Ops,array,mpfr-method (mpfr-class), 39
Ops,bigq,mpfr-method (mpfr-class), 39
Ops,bigz,mpfr-method (mpfr-class), 39
Ops,mpfr,ANY-method (mpfr-class), 39
Ops,mpfr,array-method (mpfr-class), 39
Ops,mpfr,bigq-method (mpfr-class), 39
Ops,mpfr,bigz-method (mpfr-class), 39
Ops,mpfr,vector-method (mpfr-class), 39
Ops,vector,mpfr-method (mpfr-class), 39
optim, 26
optimize, 61, 79
optimizeR, 5, 26, 60
options, 19, 49, 74
order, 42
outer, 70
outer (Rmpfr-workarounds), 69

pbeta, 45, 63, 64
pbetaI, 45, 63
pgamma, 27, 28
pmax, 66, 66
pmax,ANY-method (pmax), 66
pmax,mNumber-method (pmax), 66
pmax-methods (pmax), 66
pmin, 66
pmin (pmax), 66
pmin,ANY-method (pmax), 66
pmin,mNumber-method (pmax), 66
pmin-methods (pmax), 66
pnorm, 5, 44–47, 67
pnorm (mpfr-distr-etc), 44
pochMpfr, 15, 42
pochMpfr (chooseMpfr), 12
polyroot, 79
prettyNum, 20
print, 17, 19, 29, 39
print.default, 49
print.integrate, 29
print.integrateR (integrateR), 28
print.mpfr (mpfr-utils), 47
print.mpfr1 (mpfr-class), 39
print.mpfrArray (mpfr-utils), 47
print.Ncharacter (formatHex), 16
print.summaryMpfr (mpfr-class), 39

prod, 40

qnorm, 67, 68
qnormI, 67
quantile, 42
quantile,mpfr-method (mpfr-class), 39

range, 40, 66
rank, 42
raw, 42
rbind, 11
rbind (bind-methods), 11
rbind,ANY-method (bind-methods), 11
rbind,Mnumber-method (bind-methods), 11
rbind-methods (bind-methods), 11
Re,mpfr-method (mpfr-class), 39
Rmpfr (Rmpfr-package), 3
Rmpfr-package, 3
Rmpfr-workarounds, 69
round, 41, 70
roundMpfr, 5, 37, 41, 42, 50, 70
rowMeans,mpfrArray-method (mpfrMatrix),

55
rowSums,mpfrArray-method (mpfrMatrix),

55

sapply, 71, 72
sapplyMpfr, 71
save, 51
seq, 73
seqMpfr, 5, 73
setPrec (roundMpfr), 70
show,integrateR-method (integrateR), 28
show,mpfr-method (mpfr-class), 39
show,mpfr1-method (mpfr-class), 39
show,mpfrArray-method (mpfrMatrix), 55
show,summaryMpfr-method (mpfr-class), 39
sign, 39, 41, 51
sign,mpfr-method (mpfr-class), 39
sign,mpfrArray-method (mpfrMatrix), 55
signif, 41
sin, 41
sinh, 41
sinpi, 41
sort, 42
sprintf, 16, 17, 20
sqrt, 41
str, 53, 74
str.default, 74

88 INDEX

str.mpfr, 53, 74
sum, 40
sumBinomMpfr, 5, 13, 63, 64, 75
Summary, 40
Summary,mpfr-method (mpfr-class), 39
summary,mpfr-method (mpfr-class), 39
summary.default, 41
summaryMpfr-class (mpfr-class), 39

t,mpfr-method (mpfr-class), 39
t,mpfrMatrix-method (mpfrMatrix), 55
tan, 41
tanh, 41
tanpi, 41
tcrossprod, 34, 35
tcrossprod,array_or_vector,mpfr-method

(mpfr-class), 39
tcrossprod,Mnumber,mpfr-method

(mpfrMatrix), 55
tcrossprod,mpfr,array_or_vector-method

(mpfr-class), 39
tcrossprod,mpfr,missing-method

(mpfrMatrix), 55
tcrossprod,mpfr,Mnumber-method

(mpfrMatrix), 55
tcrossprod,mpfr,mpfr-method

(mpfrMatrix), 55
tcrossprod,mpfr,mpfrMatrix-method

(mpfrMatrix), 55
tcrossprod,mpfrMatrix,mpfr-method

(mpfrMatrix), 55
tcrossprod,mpfrMatrix,mpfrMatrix-method

(mpfrMatrix), 55
toNum, 7
toNum (mpfr-utils), 47
trigamma, 5, 41
trunc, 41
typeof, 7, 39

unique, 42
unique,mpfr,ANY-method (mpfr-class), 39
unique,mpfr-method (mpfr-class), 39
unique.mpfr (mpfr-class), 39
uniroot, 77, 79
unirootR, 5, 61, 67, 77

vapply, 71
vector, 55
Vectorize, 29

which.max, 42
which.max,mpfr-method (mpfr-class), 39
which.min, 42
which.min,mpfr-method (mpfr-class), 39

y0 (Bessel_mpfr), 10
y1 (Bessel_mpfr), 10
yn, 47
yn (Bessel_mpfr), 10

zeta, 5, 9, 42
zeta (mpfr-special-functions), 46

	Rmpfr-package
	array_or_vector-class
	asNumeric-methods
	atomicVector-class
	Bernoulli
	Bessel_mpfr
	bind-methods
	chooseMpfr
	factorialMpfr
	formatHex
	formatMpfr
	frexpMpfr
	gmp-conversions
	hjkMpfr
	igamma
	integrateR
	is.whole
	log1mexp
	matmult
	Mnumber-class
	mpfr
	mpfr-class
	mpfr-distr-etc
	mpfr-special-functions
	mpfr-utils
	mpfr.utils
	mpfrArray
	mpfrMatrix
	mpfrMatrix-utils
	num2bigq
	optimizeR
	pbetaI
	pmax
	qnormI
	Rmpfr-workarounds
	roundMpfr
	sapplyMpfr
	seqMpfr
	str.mpfr
	sumBinomMpfr
	unirootR
	Index

