
Package ‘ReliabilityTheory’
January 20, 2025

Title Structural Reliability Analysis

Description Perform structural reliability analysis, including computation and
simulation with system signatures, Samaniego (2007)
<doi:10.1007/978-0-387-71797-5>, and survival signatures, Coolen and
Coolen-Maturi (2013) <doi:10.1007/978-3-642-30662-4_8>. Additionally
supports parametric and topological inference given system lifetime data,
Aslett (2012) <https://www.louisaslett.com/PhD_Thesis.pdf>.

URL https://www.louisaslett.com/,

https://github.com/louisaslett/ReliabilityTheory

BugReports https://github.com/louisaslett/ReliabilityTheory/issues

Version 0.3.1

Maintainer Louis Aslett <louis.aslett@durham.ac.uk>

Depends R (>= 3.5.0)

Imports actuar, combinat, FRACTION, igraph (>= 1.0.1), mcmc, PhaseType
(>= 0.2.0), sfsmisc, utils

Suggests testthat, reshape2, ggplot2, xtable

License GPL-2 | GPL-3

ByteCompile yes

LazyLoad yes

NeedsCompilation no

Author Louis Aslett [aut, cre, cph]

Repository CRAN

Date/Publication 2024-09-25 13:20:08 UTC

Contents
ReliabilityTheory-package . 2
cnO2 . 3
cnO3 . 3
computeSystemSignature . 4

1

https://doi.org/10.1007/978-0-387-71797-5
https://doi.org/10.1007/978-3-642-30662-4_8
https://www.louisaslett.com/PhD_Thesis.pdf
https://www.louisaslett.com/
https://github.com/louisaslett/ReliabilityTheory
https://github.com/louisaslett/ReliabilityTheory/issues

2 ReliabilityTheory-package

computeSystemSurvivalSignature . 6
createSystem . 8
expectedSystemLifetimeExp . 9
maskedInferenceEXCHCustom . 11
maskedInferenceEXCHExponential . 13
maskedInferenceIIDCustom . 15
maskedInferenceIIDExponential . 17
nonParBayesSystemInference . 19
nonParBayesSystemInferencePriorSets . 21
sccsO2 . 26
sccsO3 . 27
sccsO4 . 27
sccsO5 . 28
setCompTypes . 28
simulateSystem . 30
systemGraphToGenerator . 31

Index 33

ReliabilityTheory-package

Structural Reliability Theory Toolbox

Description

A collection of tools for working structural reliability problems, such as catalogues of system sig-
natures and Bayesian inferential functions.

Details

Package: ReliabilityTheory
Type: Package
Version: 0.2.0
Date: 2023-05-03
License: GPL-2 | GPL-3
LazyLoad: yes

Author(s)

Louis J. M. Aslett, <louis.aslett@durham.ac.uk> (https://www.louisaslett.com)

https://www.louisaslett.com

cnO2 3

References

Aslett, L. J. M. (2012), MCMC for Inference on Phase-type and Masked System Lifetime Models,
PhD Thesis, Trinity College Dublin.

Samaniego, F. J. (2007), System Signatures and Their Applications in Engineering Reliability,
Springer.

cnO2 Catalogue of Coherent Networks of Order 2

Description

This data set provides a catalogue of the network graph, signature and minimal cut-sets of all co-
herent networks of node order 2.

Usage

data(cnO2)

Format

A list object, one item for each such network. Each item is itself a list, with the elements $graph,
$cutsets and $signature.

Source

Derived in the thesis Aslett (2012).

References

Aslett, L. J. M. (2012), MCMC for Inference on Phase-type and Masked System Lifetime Models,
PhD Thesis, Trinity College Dublin.

cnO3 Catalogue of Coherent Networks of Order 3

Description

This data set provides a catalogue of the network graph, signature and minimal cut-sets of all co-
herent networks of node order 3.

Usage

data(cnO3)

4 computeSystemSignature

Format

A list object, one item for each such network. Each item is itself a list, with the elements $graph,
$cutsets and $signature.

Source

Derived in the thesis Aslett (2012).

References

Aslett, L. J. M. (2012), MCMC for Inference on Phase-type and Masked System Lifetime Models,
PhD Thesis, Trinity College Dublin.

computeSystemSignature

Compute the signature of a system

Description

The system signature (Samaniego, 2007) is an alternative to the structure function as a starting
point for a structural reliability analysis. This automatically computes the signature of the specified
system or network. Here, system implies components are unreliable whereas network implies links
are unreliable.

Usage

computeSystemSignature(sys, cutsets=NULL, frac=FALSE)
computeNetworkSignature(sys, cutsets=NULL, frac=FALSE)

Arguments

sys a system object representing the system whose types are to be set. This should
have been created by a call to createSystem.

cutsets if the cut-sets of the system or network are already known they may be passed in
as a list of numeric vectors. This can save time because cut-set computation is
the slowest part of the algorithm. Leaving as NULL causes the function to find
the cut sets itself.

frac if TRUE then the function prints out signature elements as fractions rather than
returning a decimal signature vector.

computeSystemSignature 5

Details

The signature of a system is the probability vector s = (s1, . . . , sn) with elements:

si = P (T = Ti:n)

where T is the failure time of the system and Ti:n is the ith order statistic of the n component failure
times. Likewise the network signature is the same but where components are reliable and it is links
which fail. See Samaniego (2007) for details.

The system or network is specified by means of a system object, whereby each end of the system is
denoted by nodes named s and t which are taken to be perfectly reliable. It is easy to construct the
appropriate reliability block diagram representation using the function createSystem. Note that
each physically distinct component should be separately numbered when constructing this object.

Value

computeSystemSignature returns a numeric probability vector which is the system/network sig-
nature.

Note

Please feel free to email <louis.aslett@durham.ac.uk> with any queries or if you encounter
errors when running this function.

Author(s)

Louis J.M. Aslett <louis.aslett@durham.ac.uk> (https://www.louisaslett.com/)

References

Samaniego, F. J. (2007), System Signatures and Their Applications in Engineering Reliability,
Springer.

See Also

computeSystemSurvivalSignature

Examples

Find the signature of two component series system (which is just s=(1, 0))
computeSystemSignature(createSystem(s -- 1 -- 2 -- t))

Find the signature of two component parallel system (which is just s=(0, 1))
computeSystemSignature(createSystem(s -- 1:2 -- t))

Find the signature of the five component 'bridge' system (which
is s=(0, 0.2, 0.6, 0.2, 0))
computeSystemSignature(createSystem(s -- 1 -- 2 -- t, s -- 3 -- 4 -- t, 1:2 -- 5 -- 3:4))

https://www.louisaslett.com/

6 computeSystemSurvivalSignature

computeSystemSurvivalSignature

Compute the survival signature of a system

Description

The system survival signature (Coolen and Coolen-Maturi, 2012) is a generalisation of the signa-
ture to systems with multiple component types. This function automatically computes the survival
signature of the specified system. Here, system implies components (as opposed to links) are unre-
liable.

Usage

computeSystemSurvivalSignature(sys, cutsets=NULL, frac=FALSE)

Arguments

sys a system object representing the system whose types are to be set. This should
have been created by a call to createSystem.

cutsets if the cut-sets of the system or network are already known they may be passed in
as a list of numeric vectors. This can save time because cut-set computation is
the slowest part of the algorithm. Leaving as NULL causes the function to find
the cut sets itself.

frac if TRUE then the function prints out survival signature probabilities as fractions
rather than decimals.

Details

The survival signature of a system with K types of component is the functional Φ(l1, . . . , lK) giving
the probability that the system works given exactly lk of the components of type k are working. See
Coolen and Coolen-Maturi (2012) for details. Thus, the survival signature can be represented by
a table with K + 1 columns, the first K being the number of each type of component which is
working and the final column being the probability the system works.

The system or network is specified by means of a system object, whereby each end of the system is
denoted by nodes named s and t which are taken to be perfectly reliable. It is easy to construct the
appropriate reliability block diagram representation using the function createSystem. Note that
each physically distinct component should be separately numbered when constructing this object.

Once the topology of the system has been defined (or at definition time), one must indicate the
type of each component (if not done when initially calling createSystem it can later be modified
using setCompTypes). The Examples section below features the full computation of the survival
signature for Figure 1 in Coolen and Coolen-Maturi (2012) and Figure 2 in Coolen et al (2013) to
make this clear.

computeSystemSurvivalSignature 7

Value

computeSystemSurvivalSignature returns a data frame with K+1 columns. The first K columns
represent the function inputs, l1, . . . , lK and the final column is the probability that the system works
given the corresponding numbers of each component which are working.

Note

Please feel free to email <louis.aslett@durham.ac.uk> with any queries or if you encounter
errors when running this function.

Author(s)

Louis J. M. Aslett <louis.aslett@durham.ac.uk> (https://www.louisaslett.com/)

References

Coolen, F. P. A. and Coolen-Maturi, T. (2012), Generalizing the signature to systems with multiple
types of components, in ’Complex Systems and Dependability’, Springer, pp. 115-130.

Coolen, F. P. A., Coolen-Maturi, T., Al-nefaiee, A. H. and Aboalkhair, A. M. (2013), ‘Recent
advances in system reliability using the survival signature’, Proceedings of Advances in Risk and
Reliability Technology Symposium, Loughborough.

See Also

computeSystemSignature

Examples

EXAMPLE 1
Figure 1 in Coolen and Coolen-Maturi (2012)

First, define the structure, ensuring that each physically separate component
is separately numbered
fig1 <- createSystem(s -- 1 -- 2:3 -- 4 -- 5:6 -- t, 2 -- 5, 3 -- 6)

Second, specify the type of each of those numbered components
(leaving s,t with no type)
fig1 <- setCompTypes(fig1,

list("Type 1" = c("1","2","5"),
"Type 2" = c("3","4","6")))

Third, compute the survival signature (getting fractions rather than decimals)
computeSystemSurvivalSignature(fig1, frac = TRUE)

EXAMPLE 2
Figure 3 in Coolen et al (2013)

First, define the structure, ensuring that each physically separate component
is separately numbered.

https://www.louisaslett.com/

8 createSystem

For this example, we demonstrate how to define the component types at system
creation time
fig3 <- createSystem(s -- 1:4 -- 2:5 -- 3:6 -- t, s -- 7:8, 8 -- 9, 7:9 -- t,

types = list("Type 1" = "1",
"Type 2" = c("2","3","4","7"),
"Type 3" = c("5","6","8","9")))

Third, compute the survival signature (getting fractions rather than decimals)
computeSystemSurvivalSignature(fig3, frac=TRUE)

createSystem Create a system specification

Description

Creates a system design specification based on passing a textual representation of design.

Usage

createSystem(..., types = NULL)

Arguments

... multiple expressions which together define an undirected graph representation
of the reliability block diagram for the system design. There should be two
terminal ‘dummy’ nodes to represent either end of the system structure, which
must be labelled s and t (assumed perfectly reliable). All reliability assessment
is of the connectivity of these nodes. See details and examples.

types (optional) named list of vectors. The names correspond to component types,
whilst each vector indicates which components are of that type. When it is not
specified then all components are assumed to be of the same type. This can be
updated later using the function setCompTypes.

Details

This function enables specification of a system design by textual representation of the reliability
block diagram, for use in many other functions in this package. The method of representing the
system is as for an undirected graph in the igraph package.

There should be two terminal ‘dummy’ nodes to represent either end of the system structure, which
must be labelled s and t (assumed perfectly reliable). Dashes -- are then used to connect numbered
nodes together. The full specification can be spread over multiple arguments. Colon notation can
denote an edge to multiple nodes, but is not a range specifier (eg 1:5 means components 1 and 5,
not components 1 to 5). Following are some concrete examples:

1. a series system of 3 components:
createSystem(s -- 1 -- 2 -- 3 -- t)

expectedSystemLifetimeExp 9

2. a parallel system of 3 components:
createSystem(s -- 1 -- t, s -- 2 -- t, s -- 3 -- t)

Or, more succinctly:
createSystem(s -- 1:2:3 -- t)

3. a classic ‘bridge’ system consisting of 5 components:
createSystem(s -- 1:2 -- 5 -- 3:4 -- t, 1 -- 3, 2 -- 4)

Exactly equivalently:
createSystem(s -- 1 -- 3 -- t, s -- 2 -- 4 -- t, 1:2 -- 5 -- 3:4)

Value

Returns a system of the design specified.

Internally, this is an igraph object, with some additional attributes relevant to system specification.

Author(s)

Louis J.M. Aslett <louis.aslett@durham.ac.uk> (https://www.louisaslett.com/)

See Also

setCompTypes to specify component types after system creation, rather than in the same command.

Examples

Create a bridge system, with all components of the same type (or with type to
be defined later)
bridge <- createSystem(s -- 1:2 -- 5 -- 3:4 -- t, 1 -- 3, 2 -- 4)

Create a bridge system, with two types of component
bridge <- createSystem(s -- 1:2 -- 5 -- 3:4 -- t, 1 -- 3, 2 -- 4,

types = list(T1 = 1:4, T2 = 5))

expectedSystemLifetimeExp

Compute the expected lifetime of a given system

Description

Computes the expected lifetime of a system/network specified by its signature or graph structure
when the components have Exponential lifetime distribution with specified rate. Useful for ordering
systems/networks by expected lifetime.

Usage

expectedSystemLifetimeExp(sys, rate=1)
expectedNetworkLifetimeExp(sys, rate=1)
expectedSignatureLifetimeExp(s, rate=1)

https://www.louisaslett.com/

10 expectedSystemLifetimeExp

Arguments

sys a system object representing the system whose types are to be set. This should
have been created by a call to createSystem.

s the signature vector of the system/network whose expected lifetime is to be com-
puted.

rate the rate parameter of the Exponential distribution.

Details

The system or network is specified by means of a system object, whereby each end of the system is
denoted by nodes named s and t which are taken to be perfectly reliable. It is easy to construct the
appropriate reliability block diagram representation using the function createSystem. Note that
each physically distinct component should be separately numbered when constructing this object.

Alternatively, the signature may be provided instead (the other functions simply use the graph object
to compute the signature).

Value

All the functions return a single scalar value which is the expected lifetime.

Note

Please feel free to email <louis.aslett@durham.ac.uk> with any queries or if you encounter
errors when running this function.

Author(s)

Louis J.M. Aslett <louis.aslett@durham.ac.uk> (https://www.louisaslett.com/)

References

Samaniego, F. J. (2007), System Signatures and Their Applications in Engineering Reliability,
Springer.

See Also

computeSystemSignature

Examples

Find the expected lifetime of two component series system
expectedSystemLifetimeExp(createSystem(s -- 1 -- 2 -- t))

Find the expected lifetime of two component series system using it's signature
directly
expectedSignatureLifetimeExp(c(1,0))

Find the expected lifetime of two component parallel system
expectedSystemLifetimeExp(createSystem(s -- 1:2 -- t))

https://www.louisaslett.com/

maskedInferenceEXCHCustom 11

Find the expected lifetime of two component parallel system using it's
signature directly
expectedSignatureLifetimeExp(c(0,1))

maskedInferenceEXCHCustom

Inference for Masked Exchangeable System Lifetimes, Custom Distri-
bution

Description

Performs Bayesian inference via a signature based data augmentation MCMC scheme for masked
system lifetime data for any custom component lifetime distribution. The underlying assumption is
of exchangeability at the system level (iid components within each exchangeable system).

Usage

maskedInferenceEXCHCustom(t, signature, cdfComp, pdfComp, rParmGivenData,
rCompGivenParm, startCompParm, startHypParm, iter, ...)

Arguments

t a vector of masked system lifetimes.

signature the signature vector of the system/network for which inference is performed. It
may be a list of signatures which results in topological inference on the system
design being jointly performed over the collection of signatures provided.

cdfComp user-defined vectorised cumulative distribution function of component lifetime
FY () with prototype: function(y, parametersm, ...)

pdfComp user-defined vectorised probability distribution function of component lifetime
fY () with prototype: function(y, parameters, ...)

rParmGivenData user-defined function which should produce random draws from fΞ |Y with pro-
totype:
function(y, ...)

This must return the new parameters as a 2 item list: the first item being the
hyperprior parameters drawn in the same named vector format and order as
startHypPriorParm; the second item being a list of component lifetime pa-
rameters drawn in the same named vector format and order as startCompParm.

rCompGivenParm user-defined function which should produce random draws from fY |Ψ with pro-
totype:
function(parameters, t, censoring, ...)

where censoring is -1 for left censoring, 0 for exact observations and 1 for right
censoring.

12 maskedInferenceEXCHCustom

startCompParm list consisting of a vectors of starting values per system (in the same order as t)
of named parameters for the component lifetime distribution. The order within
each named vector should match the order expected for the parameters argu-
ment in the user defined functions above.

startHypParm vector of starting values of named hyper-parameters for the hyperprior.

iter number of MCMC iterations to perform.

... additional arguments which are passed through to the user-defined functions
above.

Details

This is a low level implementation of the signature based data augmented MCMC scheme described
in Aslett (2012) for exchangeable systems. This function need only be used if the component
lifetime distribution of interest has not already been implemented within this package.

The arguments of the function are the prerequisites described in Algorithm 6.2 of Aslett (2012). The
interested user is advised to inspect the source code of this package at the file MaskedLifetimeInference_Exponential.R
for an example of its usage, which may be seen in the function maskedInferenceEXCHExponential
defined there, together with the associated user-definied functions above it.

Value

If a single signature vector is provided above, then a data frame of MCMC samples with columns
named the same as the startParm argument is returned.

If a list of signature vectors is provided above, then a list is returned containing three items:

topology A vector of posterior samples from the discrete marginal posterior distribution
of topologies provided in the signature list.

parameters A list of data frames of MCMC samples with columns named the same as the
startCompParm argument.

hyperparameters

A data frame of MCMC samples with columns named the same as the startHypPriorParm
argument.

Note

Please feel free to email <louis.aslett@durham.ac.uk> with any queries or if you encounter
errors when running this function.

Author(s)

Louis J.M. Aslett <louis.aslett@durham.ac.uk> (https://www.louisaslett.com/)

References

Aslett, L. J. M. (2012), MCMC for Inference on Phase-type and Masked System Lifetime Models,
PhD Thesis, Trinity College Dublin.

https://www.louisaslett.com/

maskedInferenceEXCHExponential 13

See Also

computeSystemSignature

Examples

Please inspect the source of this package, file MaskedLifetimeInference_Exponential.R
for example usage (see details section)

maskedInferenceEXCHExponential

Inference for Masked Exchangeable System Lifetimes, Exponential
Components

Description

Performs Bayesian inference via a signature based data augmentation MCMC scheme for masked
system lifetime data for Exponentially distributed component lifetimes. The underlying assumption
is exchangeability at the system level.

Usage

maskedInferenceEXCHExponential(t, signature, iter, priorMu_Mu, priorSigma_Mu,
priorMu_Sigma, priorSigma_Sigma)

Arguments

t a vector of masked system lifetimes.

signature the signature vector of the system/network for which inference is performed. It
may be a list of signatures which results in topological inference on the system
design being jointly performed over the collection of signatures provided.

iter number of MCMC iterations to perform.
priorMu_Mu, priorSigma_Mu

µ and σ parameters for Log-Normal hyperprior on the mean of the exchangeable
Gamma population distribution for the rate.

priorMu_Sigma, priorSigma_Sigma
µ and σ parameters for Log-Normal hyperprior on the variance of the exchange-
able Gamma population distribution for the rate.

Details

This is a full implementation of the signature based data augmented MCMC scheme described in
Aslett (2012) for exchangeable systems with Exponential component lifetimes.

Thus, components are taken to have Exponential lifetimes where the rate of the components in
any given system is a realisation from an exchangeable population distribution. However, only the
failure time of the system is observed, not those of the components or indeed which components
were failed at the system failure time. By specifying a Log-Normal hyper-prior on the exchangeable

14 maskedInferenceEXCHExponential

Gamma rate parameter population distribution, this function then produces MCMC samples from
the posterior of the rate parameter and hyperparameters.

The model is as follows:
Y |λ ∼ Exponential(λ)

λ | ν, ζ ∼ Gamma(shape = ν, scale = ζ)

µ ∼ Log-Normal(µν , σν)

σ2 ∼ Log-Normal(µζ , σζ)

Additionally, if one does not know the system design, then it is possible to pass a list of many
system signatures in the signature argument, in which case the topology of the system is jointly
inferred with the parameters.

Value

If a single signature vector is provided above, then a list is returned containing two items:

parameters A list of data frames, each with a single column of MCMC samples from the
posterior samples from the exhcangeable rate parameter for the given system.

hyperparameters

A data frame with a column of posterior MCMC samples for each of the Log-
Normal hyperprior parameters.

If a list of signature vectors is provided above, then a list is returned containing three items – the
two items above, plus:

topology A vector of posterior samples from the discrete marginal posterior distribution
of topologies provided in the signature list.

Note

Please feel free to email <louis.aslett@durham.ac.uk> with any queries or if you encounter
errors when running this function.

Author(s)

Louis J.M. Aslett <louis.aslett@durham.ac.uk> (https://www.louisaslett.com/)

References

Aslett, L. J. M. (2012), MCMC for Inference on Phase-type and Masked System Lifetime Models,
PhD Thesis, Trinity College Dublin.

See Also

computeSystemSignature

https://www.louisaslett.com/

maskedInferenceIIDCustom 15

Examples

Some masked system lifetime data for an exchangeable collection of systems with
Exponential component lifetime, rate drawn from the population distribution
Gamma(shape=9, scale=0.5)
t <- c(0.2265, 0.0795, 0.1178, 0.2463, 0.1053, 0.0982, 0.0349, 0.0363,
0.1546, 0.1357, 0.1239, 0.0354, 0.0124, 0.1003, 0.0827, 0.2446,
0.1214, 0.1272, 0.5438, 0.2738, 0.0378, 0.2293, 0.1706, 0.0146,
0.1506, 0.3665, 0.046, 0.1196, 0.2724, 0.2593, 0.0438, 0.1493,
0.0697, 0.1774, 0.1157, 0.0996, 0.2815, 0.1411, 0.0921, 0.2088,
0.1164, 0.149, 0.048, 0.1019, 0.2349, 0.2211, 0.0475, 0.0721,
0.0371, 0.611, 0.1959, 0.0666, 0.0956, 0.1416, 0.2126, 0.0104,
0.088, 0.0159, 0.078, 0.1747, 0.1921, 0.3558, 0.4956, 0.0436,
0.2292, 0.1159, 0.1201, 0.1299, 0.043, 0.0584, 0.0347, 0.2084,
0.1334, 0.1491, 0.0384, 0.0589, 0.2962, 0.1023, 0.0506, 0.0501,
0.1859, 0.0714, 0.1424, 0.0027, 0.2812, 0.0318, 0.4147, 0.1088,
0.2894, 0.0734, 0.1405, 0.0367, 0.0323, 0.517, 0.1034, 0.026,
0.0485, 0.0512, 0.0116, 0.1629)

Load the signatures of order 4 simply connected coherent systems -- the data
above correspond to simulations from system number 3
data(sccsO4)

Perform inference on the rate parameter:
NB this will take some time to run
samps <- maskedInferenceEXCHExponential(t, sccsO4[[3]]$signature,
2000, priorMu_Mu=1, priorSigma_Mu=0.5, priorMu_Sigma=1, priorSigma_Sigma=0.7)

Or perform inference on rate parameter and topology jointly, taking as candidate
set all possible simply connected coherent systems of order 4:
NB this will take some time to run
samps <- maskedInferenceEXCHExponential(t, sccsO4, 2000, priorMu_Mu=1,
priorSigma_Mu=0.5, priorMu_Sigma=1, priorSigma_Sigma=0.7)

maskedInferenceIIDCustom

Inference for Masked iid System Lifetimes, Custom Distribution

Description

Performs Bayesian inference via a signature based data augmentation MCMC scheme for masked
system lifetime data for any custom component lifetime distribution. The underlying assumption is
iid components and iid systems.

Usage

maskedInferenceIIDCustom(t, signature, cdfComp, pdfComp, rParmGivenData,
rCompGivenParm, startParm, iter, ...)

16 maskedInferenceIIDCustom

Arguments

t a vector of masked system lifetimes.

signature the signature vector of the system/network for which inference is performed. It
may be a list of signatures which results in topological inference on the system
design being jointly performed over the collection of signatures provided.

cdfComp user-defined vectorised cumulative distribution function of component lifetime
FY () with prototype: function(y, parametersm, ...)

pdfComp user-defined vectorised probability distribution function of component lifetime
fY () with prototype: function(y, parameters, ...)

rParmGivenData user-defined function which should produce random draws from fΨ |Y with pro-
totype:
function(y, ...)

This must return the parameters in the same order named vector format as used
for startParm.

rCompGivenParm user-defined function which should produce random draws from fY |Ψ with pro-
totype: function(parameters, t, censoring, ...) where censoring is -1 for
left censoring, 0 for exact observations and 1 for right censoring.

startParm vector of starting values of named parameters in the correct order for the parameters
argument in the user defined functions above.

iter number of MCMC iterations to perform.

... additional arguments which are passed through to the user-defined functions
above.

Details

This is a low level implementation of the signature based data augmented MCMC scheme described
in Aslett (2012) for iid systems. This function need only be used if the component lifetime distri-
bution of interest has not already been implemented within this package.

The arguments of the function are the prerequisites described in Algorithm 6.2 of Aslett (2012). The
interested user is advised to inspect the source code of this package at the file MaskedLifetimeInference_Exponential.R
for an example of its usage, which may be seen in the function maskedInferenceIIDExponential
defined there, together with the associated user-definied functions above it.

Value

If a single signature vector is provided above, then a data frame of MCMC samples with columns
named the same as the startParm argument is returned.

If a list of signature vectors is provided above, then a list is returned containing two items:

topology A vector of posterior samples from the discrete marginal posterior distribution
of topologies provided in the signature list.

parameters A data frame of MCMC samples with columns named the same as the startParm
argument.

maskedInferenceIIDExponential 17

Note

Please feel free to email <louis.aslett@durham.ac.uk> with any queries or if you encounter
errors when running this function.

Author(s)

Louis J.M. Aslett <louis.aslett@durham.ac.uk> (https://www.louisaslett.com/)

References

Aslett, L. J. M. (2012), MCMC for Inference on Phase-type and Masked System Lifetime Models,
PhD Thesis, Trinity College Dublin.

See Also

computeSystemSignature

Examples

Please inspect the source of this package, file MaskedLifetimeInference_Exponential.R
for example usage (see details section)

maskedInferenceIIDExponential

Inference for Masked iid System Lifetimes, Exponential Components

Description

Performs Bayesian inference via a signature based data augmentation MCMC scheme for masked
system lifetime data for Exponentially distributed component lifetimes. The underlying assumption
is iid components and iid systems.

Usage

maskedInferenceIIDExponential(t, signature, iter, priorShape, priorScale)

Arguments

t a vector of masked system lifetimes.

signature the signature vector of the system/network for which inference is performed. It
may be a list of signatures which results in topological inference on the system
design being jointly performed over the collection of signatures provided.

iter number of MCMC iterations to perform.

priorShape the shape parameter of the Gamma prior of the Exponential rate.

priorScale the scale parameter of the Gamma prior of the Exponential rate.

https://www.louisaslett.com/

18 maskedInferenceIIDExponential

Details

This is a full implementation of the signature based data augmented MCMC scheme described in
Aslett (2012) for iid systems with Exponential component lifetimes.

Thus, components are taken to have Exponential lifetimes and be arranged into some system. How-
ever, only the failure time of the system is observed, not those of the components or indeed which
components were failed at the system failure time. By specifying a Gamma prior distribution on
the component lifetime Exponential rate parameter via priorShape and priorScale, this function
then produces MCMC samples from the posterior of the rate parameter.

Additionally, if one does not know the system design, then it is possible to pass a list of many
system signatures in the signature argument, in which case the topology of the system is jointly
inferred with the parameters.

Value

If a single signature vector is provided above, then a data frame with a single column of MCMC
samples from the posterior of the rate parameter are returned.

If a list of signature vectors is provided above, then a list is returned containing two items:

topology A vector of posterior samples from the discrete marginal posterior distribution
of topologies provided in the signature list.

parameters A data frame with a single column of MCMC samples from the posterior of the
rate parameter.

Note

Please feel free to email <louis.aslett@durham.ac.uk> with any queries or if you encounter
errors when running this function.

Author(s)

Louis J.M. Aslett <louis.aslett@durham.ac.uk> (https://www.louisaslett.com/)

References

Aslett, L. J. M. (2012), MCMC for Inference on Phase-type and Masked System Lifetime Models,
PhD Thesis, Trinity College Dublin.

See Also

computeSystemSignature

Examples

Some masked system lifetime data for a system with Exponential component
lifetime, rate=3.14
t <- c(0.2696, 0.3613, 0.0256, 0.1287, 0.2305, 0.1565, 0.2484, 0.7482,
0.1748, 0.1805, 0.1985, 0.0799, 0.2843, 0.2392, 0.2151, 0.1177,
0.1278, 0.4189, 0.4374, 0.0931, 0.2846, 0.0357, 0.1809, 0.2077,
0.5211, 0.4935, 0.1464, 0.0297, 0.5429, 0.1294, 0.7089, 0.5534,

https://www.louisaslett.com/

nonParBayesSystemInference 19

0.1183, 0.2628, 0.0481, 0.0518, 0.0533, 0.3595, 0.0767, 0.2606,
0.1005, 0.227, 0.01, 0.0947, 0.1248, 0.2288, 0.1422, 0.233, 0.1428,
0.2043)

Load the signatures of order 4 simply connected coherent systems -- the data
above correspond to simulations from system number 3
data(sccsO4)

Perform inference on the rate parameter:
NB this will take some time to run
samps <- maskedInferenceIIDExponential(t, sccsO4[[3]]$signature, 2000,
priorShape=9, priorScale=0.5)

Or perform inference on rate parameter and topology jointly, taking as candidate
set all possible simply connected coherent systems of order 4:
NB this will take some time to run
samps <- maskedInferenceIIDExponential(t, sccsO4, 2000, priorShape=9,
priorScale=0.5)

nonParBayesSystemInference

Non-parametric Bayesian posterior predictive system survival infer-
ence

Description

Computes a non-parametric Bayesian posterior predictive survival probability given the survival
signature of a system and test data on each of the components as described in Aslett et al (2015).

Usage

nonParBayesSystemInference(at.times, survival.signature, test.data, alpha=1, beta=1)

Arguments

at.times a vector of times at which the posterior predictive estimate of survival probabil-
ity should be computed.

survival.signature

the survival signature matrix of the system/network for which inference is per-
formed. This should be in the same format as returned by computeSystemSurvivalSignature.

test.data a list of vectors containing the component test data. The elements of the list
should be named identically to the component columns in the survival.signature
argument.

alpha, beta the Beta prior shape parameters. Each must match in type and can be:

• a single scalar for a fixed prior across time and component types;

20 nonParBayesSystemInference

• a vector of parameters of the same length as the at.times argument, which
indicates the time-varying prior parameter at the corresponding time in
at.times. This is therefore time-varying, but indicates the same time-
varying prior for all component types;

• a data frame where each column is named using the same names as for
the survival.signature argument and each row corresponds to the time-
varying prior parameter at the corresponding time in at.times.

By default the ’uninformative’ prior with alpha=1 and beta=1 is used for all
components at all times.

Details

This function implements the technique described in detail in Section 4 of Aslett et al (2015).

In brief, at any fixed time t, the functioning of a single component of type k is Bernoulli(pkt) dis-
tributed for suitable pkt , irrespective of the lifetime distribution of the component. Correspondingly,
the distribution of the number of components still functioning at time t in a collection of nk iid
components of type k is Binomial(nk, p

k
t).

Taking the priors pkt ∼ Beta(αk
t , β

k
t), Aslett et al (2015) show that this leads to a posterior predictive

survival distribution with a nice closed form (see equations 9 and 10 in Section 4).

Value

A vector of the same length as the at.times argument, where each element is the posterior predic-
tive probability of a new system surviving to the corresponding time in at.times.

Note

Please feel free to email <louis.aslett@durham.ac.uk> with any queries or if you encounter
errors when running this function.

Author(s)

Louis J. M. Aslett <louis.aslett@durham.ac.uk> (https://www.louisaslett.com/)

References

Aslett, L. J. M., Coolen, F. P. A. and Wilson, S. P. (2015), ‘Bayesian Inference for Reliability of
Systems and Networks using the Survival Signature’, Risk Analysis 39(9), 1640–1651. Download
paper

See Also

computeSystemSurvivalSignature

https://www.louisaslett.com/
https://www.louisaslett.com/Papers/Aslett_Coolen_Wilson_2014.html
https://www.louisaslett.com/Papers/Aslett_Coolen_Wilson_2014.html

nonParBayesSystemInferencePriorSets 21

Examples

Exactly reproduce the example in Section 4.1 of Aslett et al (2015), including Figure 5
First specify the system layout, numbered as per Figure 4
sys <- createSystem(s -- 1 -- 2:4:5, 2 -- 3 -- t, 4:5 -- 6 -- t,

s -- 7 -- 8 -- t, s -- 9 -- 10 -- 11 -- t, 7 -- 10 -- 8,
types = list(T1 = c(1, 6, 11),

T2 = c(2, 3, 9),
T3 = c(4, 5, 10),
T4 = c(7, 8)))

Compute the survival signature table from Appendix
sig <- computeSystemSurvivalSignature(sys)

Simulate the test data (same seed as used in the paper)
set.seed(233)
t1 <- rexp(100, rate=0.55)
t2 <- rweibull(100, scale=1.8, shape=2.2)
t3 <- rlnorm(100, 0.4, 0.9)
t4 <- rgamma(100, scale=0.9, shape=3.2)

Compile into a list as required by this function
test.data <- list("T1"=t1, "T2"=t2, "T3"=t3, "T4"=t4)

Create a vector of times at which to evaluate the posterior predictive
survival probability and compute using this function
t <- seq(0, 5, length.out=300)
yS <- nonParBayesSystemInference(t, sig, test.data)

Compute the survival curves for the individual components (just to match
Figure 5)
y1 <- sapply(t, pexp, rate=0.55, lower.tail=FALSE)
y2 <- sapply(t, pweibull, scale=1.8, shape=2.2, lower.tail=FALSE)
y3 <- sapply(t, plnorm, meanlog=0.4, sdlog=0.9, lower.tail=FALSE)
y4 <- sapply(t, pgamma, scale=0.9, shape=3.2, lower.tail=FALSE)

Plot

library(ggplot2)
p <- ggplot(data.frame(Time=rep(t,5), Probability=c(yS,y1,y2,y3,y4),

Item=c(rep(c("System", "T1", "T2", "T3", "T4"), each=300))))
p <- p + geom_line(aes(x=Time, y=Probability, linetype=Item))
p <- p + xlab("Time") + ylab("Survival Probability")
p

nonParBayesSystemInferencePriorSets

Non-parametric Bayesian posterior predictive system survival infer-
ence using sets of priors

22 nonParBayesSystemInferencePriorSets

Description

Computes a non-parametric Bayesian posterior predictive survival probability given the survival
signature of a system, test data on each of the components and a set of priors. This is the methodol-
ogy described in Walter et al (2017), which extends the method in nonParBayesSystemInference
(Aslett et al, 2015) to allow modelling imperfect prior knowledge.

Usage

nonParBayesSystemInferencePriorSets(at.times, survival.signature, test.data,
nLower=2, nUpper=2, yLower=0.5, yUpper=0.5, cores=NA)

Arguments

at.times a vector of times at which the posterior predictive estimate of survival probabil-
ity should be computed.

survival.signature

the survival signature matrix of the system/network for which inference is per-
formed. This should be in the same format as returned by computeSystemSurvivalSignature.

test.data a list of vectors containing the component test data. The elements of the list
should be named identically to the component columns in the survival.signature
argument.

nLower, nUpper the reparameterised lower/upper prior parameter n for the Beta distribution,
where n = α+ β. Each must match in type and can be:

• a single scalar for a fixed prior across time and component types;
• a vector of parameters of the same length as the at.times argument, which

indicates the time-varying prior parameter at the corresponding time in
at.times. This is therefore time-varying, but indicates the same time-
varying prior for all component types;

• or a data frame where each column is named using the same names as for
the survival.signature argument and each row corresponds to the time-
varying prior parameter at the corresponding time in at.times.

In all cases, nUpper but be elementwise greater than or equal to nLower.
By default the ’uninformative’ (but certain) prior with nLower=2 and nUpper=1
is used for all components at all times.

yLower, yUpper the reparameterised lower/upper prior parameter y for the Beta distribution,
where y = α/(α+ β). Each must match in type and can be:

• a single scalar for a fixed prior across time and component types;
• a vector of parameters of the same length as the at.times argument, which

indicates the time-varying prior parameter at the corresponding time in
at.times. This is therefore time-varying, but indicates the same time-
varying prior for all component types;

• or a data frame where each column is named using the same names as for
the survival.signature argument and each row corresponds to the time-
varying prior parameter at the corresponding time in at.times.

nonParBayesSystemInferencePriorSets 23

In all cases, yUpper but be elementwise greater than or equal to yLower.
By default the ’uninformative’ (but certain) prior with yLower=0.5 and yUpper=0.5
is used for all components at all times.

cores a scalar indicating how many CPU cores on which to execute parallel parts of
the algorithm (uses the parallel library internally).

Details

This function implements the technique described in Walter et al (2017), which extends the method-
ology of Aslett et al (2015) to allow modelling partial or imperfect prior knowledge on component
failure distributions.

In brief Aslett et al (2015) consider, at any fixed time t, the functioning of a single component of
type k to be Bernoulli(pkt) distributed for suitable pkt , irrespective of the lifetime distribution of the
component. Correspondingly, the distribution of the number of components still functioning at time
t in a collection of nk iid components of type k is Binomial(nk, p

k
t).

Taking the priors pkt ∼ Beta(αk
t , β

k
t), Aslett et al (2015) show that this leads to a posterior predictive

survival distribution with a nice closed form (see equations 9 and 10 in Section 4).

Walter et al (2017) use the standard reparameterisation (dropping sub/super-scripts for readability)
n = α + β and y = α/(α + β). This allows a more natural interpretation, where n represents the
prior strength (it represents a pseudo-count for number of failures informing the prior specification)
and y represents the prior expectation for the probability a component functions.

In particular, Walter et al (2017) then enable imprecise prior specification by allowing lower and
upper bounds on n and y, which may optionally be time varying. This is then propagated to con-
struct bounds on the posterior predictive distribution for the functioning of a new system containing
components exchangeable with those provided in the testing set and used in a system with design
specified by the survival signature provided.

Value

A list containing two slots, lower and upper, each of which is a vector of the same length as the
at.times argument, where each element is the lower/upper posterior predictive probability of a
new system surviving to the corresponding time in at.times.

Note

Please feel free to email <louis.aslett@durham.ac.uk> with any queries or if you encounter
errors when running this function.

Author(s)

Louis J. M. Aslett <louis.aslett@durham.ac.uk> (https://www.louisaslett.com/)

References

Walter, G., Aslett, L. J. M. and Coolen, F. P. A. (2017), ‘Bayesian nonparametric system reliability
using sets of priors’, International Journal of Approximate Reasoning, 80, 67–88. Download paper

https://www.louisaslett.com/
https://www.louisaslett.com/Papers/Walter_Aslett_Coolen_2017.html

24 nonParBayesSystemInferencePriorSets

Aslett, L. J. M., Coolen, F. P. A. and Wilson, S. P. (2015), ‘Bayesian Inference for Reliability of
Systems and Networks using the Survival Signature’, Risk Analysis 39(9), 1640–1651. Download
paper

See Also

computeSystemSurvivalSignature, and also nonParBayesSystemInference which is the pre-
cise counterpart to this method.

Examples

Exactly reproduce the toy bridge system example in Section 7.2.1 of Walter et al (2017)

Produces survival signature matrix for one component of type "name", for use
in nonParBayesSystemInference()
oneCompSurvSign <- function(name){

res <- data.frame(name=c(0,1), Probability=c(0,1))
names(res)[1] <- name
res

}

Produces data frame with prior and posterior lower & upper component survival
function for component of type "name" based on
nonParBayesSystemInferencePriorSets() inputs for all components except
survival signature; nLower, nUpper, yLower, yUpper must be data frames where
each column corresponds to the component type, so there must be a match
oneCompPriorPostSet <- function(name, at.times, test.data, nLower, nUpper, yLower, yUpper){

sig <- oneCompSurvSign(name)
nodata <- list(name=NULL)
names(nodata) <- name
nL <- nLower[, match(name, names(nLower))]
nU <- nUpper[, match(name, names(nUpper))]
yL <- yLower[, match(name, names(yLower))]
yU <- yUpper[, match(name, names(yUpper))]
data <- test.data[match(name, names(test.data))]
NB limit to 1 core on CRAN due to Windows -- make larger to speed up locally!
prio <- nonParBayesSystemInferencePriorSets(at.times, sig, nodata, nL, nU, yL, yU, cores = 1)
post <- nonParBayesSystemInferencePriorSets(at.times, sig, data, nL, nU, yL, yU, cores = 1)
data.frame(Time=rep(at.times,2),

Lower=c(prio$lower,post$lower),
Upper=c(prio$upper,post$upper),
Item=rep(c("Prior", "Posterior"), each=length(at.times)))

}

--

System
b3 <- createSystem(s -- 2:3 -- 4 -- 5:6 -- 1 -- t, 2 -- 5, 3 -- 6,

types = list(T1 = c(2,3,5,6), T2 = c(4), T3 = c(1)))

Data
b3nulldata <- list("T1"=NULL, "T2"=NULL, "T3"=NULL)

https://www.louisaslett.com/Papers/Aslett_Coolen_Wilson_2014.html
https://www.louisaslett.com/Papers/Aslett_Coolen_Wilson_2014.html

nonParBayesSystemInferencePriorSets 25

b3testdata <- list("T1"=c(2.2, 2.4, 2.6, 2.8),
"T2"=c(3.2, 3.4, 3.6, 3.8),
"T3"=(1:4)/10+4) # T3 late failures

b3testdata <- list("T1"=c(2.2, 2.4, 2.6, 2.8),
"T2"=c(3.2, 3.4, 3.6, 3.8),
"T3"=(1:4)/10+0.5) # T3 early failures

b3testdata <- list("T1"=c(2.2, 2.4, 2.6, 2.8),
"T2"=c(3.2, 3.4, 3.6, 3.8),
"T3"=(1:4)-0.5) # T3 fitting failures

b3dat <- reshape2::melt(b3testdata); names(b3dat) <- c("x", "Part")
b3dat$Part <- ordered(b3dat$Part, levels=c("T1", "T2", "T3", "System"))

Setup to run
b3sig <- computeSystemSurvivalSignature(b3)
b3t <- seq(0, 5, length.out=301)
b3nL <- data.frame(T1=rep(1,301), T2=rep(1,301), T3=rep(1,301))
b3nU <- data.frame(T1=rep(2,301), T2=rep(2,301), T3=rep(4,301))
b3yL <- data.frame(T1=rep(0.001, 301),

T2=rep(0.001, 301),
T3=c(rep(c(0.625,0.375,0.250,0.125,0.010), each=60), 0.01))

b3yU <- data.frame(T1=rep(0.999, 301),
T2=rep(0.999, 301),
T3=c(rep(c(0.999,0.875,0.500,0.375,0.250), each=60), 0.25))

b3T1 <- oneCompPriorPostSet("T1", b3t, b3testdata, b3nL, b3nU, b3yL, b3yU)
b3T2 <- oneCompPriorPostSet("T2", b3t, b3testdata, b3nL, b3nU, b3yL, b3yU)
b3T3 <- oneCompPriorPostSet("T3", b3t, b3testdata, b3nL, b3nU, b3yL, b3yU)

Compute prior and posterior sets!!
NB limit to 1 core on CRAN due to Windows -- make larger to speed up locally!
b3prio <- nonParBayesSystemInferencePriorSets(b3t, b3sig, b3nulldata,

b3nL, b3nU, b3yL, b3yU, cores = 1)
b3post <- nonParBayesSystemInferencePriorSets(b3t, b3sig, b3testdata,

b3nL, b3nU, b3yL, b3yU, cores = 1)

b3df <- rbind(data.frame(b3T1, Part="T1"),
data.frame(b3T2, Part="T2"),
data.frame(b3T3, Part="T3"),
data.frame(Time=rep(b3t,2),

Lower=c(b3prio$lower,b3post$lower),
Upper=c(b3prio$upper,b3post$upper),

Item=rep(c("Prior", "Posterior"), each=length(b3t)), Part="System"))
b3df$Item <- ordered(b3df$Item, levels=c("Prior", "Posterior"))
b3df$Part <- ordered(b3df$Part, levels=c("T1", "T2", "T3", "System"))

library("ggplot2")
library("xtable")

ggplot(b3df, aes(x=Time)) +
scale_fill_manual(values = c("#b2df8a", "#1f78b4")) +
scale_colour_manual(values = c("#b2df8a", "#1f78b4")) +
geom_line(aes(y=Upper, group=Item, colour=Item)) +

26 sccsO2

geom_line(aes(y=Lower, group=Item, colour=Item)) +
geom_ribbon(aes(ymin=Lower, ymax=Upper, group=Item, colour=Item, fill=Item), alpha=0.5) +
facet_wrap(~Part, nrow=2) +
geom_rug(aes(x=x), data=b3dat) +
xlab("Time") +
ylab("Survival Probability") +
theme_bw() +
theme(legend.title = element_blank())

b3sigtable <- b3sig[b3sig$T3 == 1,]
b3sigtable$T1 <- as.factor(b3sigtable$T1)
b3sigtable$T2 <- as.factor(b3sigtable$T2)
b3sigtable$T3 <- as.factor(b3sigtable$T3)
xtable(b3sigtable)

sccsO2 Catalogue of Simply Connected Coherent Systems of Order 2

Description

This data set provides a catalogue of the network graph, signature and minimal cut-sets of all simply
connected coherent systems of order 2.

Usage

data(sccsO2)

Format

A list object, one item for each such systems. Each item is itself a list, with the elements $graph,
$cutsets and $signature.

Source

Derived in the thesis Aslett (2012).

References

Aslett, L. J. M. (2012), MCMC for Inference on Phase-type and Masked System Lifetime Models,
PhD Thesis, Trinity College Dublin.

sccsO3 27

sccsO3 Catalogue of Simply Connected Coherent Systems of Order 3

Description

This data set provides a catalogue of the network graph, signature and minimal cut-sets of all simply
connected coherent systems of order 3.

Usage

data(sccsO3)

Format

A list object, one item for each such systems. Each item is itself a list, with the elements $graph,
$cutsets and $signature.

Source

Derived in the thesis Aslett (2012).

References

Aslett, L. J. M. (2012), MCMC for Inference on Phase-type and Masked System Lifetime Models,
PhD Thesis, Trinity College Dublin.

sccsO4 Catalogue of Simply Connected Coherent Systems of Order 4

Description

This data set provides a catalogue of the network graph, signature and minimal cut-sets of all simply
connected coherent systems of order 4.

Usage

data(sccsO4)

Format

A list object, one item for each such systems. Each item is itself a list, with the elements $graph,
$cutsets and $signature.

Source

Derived in the thesis Aslett (2012).

28 setCompTypes

References

Aslett, L. J. M. (2012), MCMC for Inference on Phase-type and Masked System Lifetime Models,
PhD Thesis, Trinity College Dublin.

sccsO5 Catalogue of Simply Connected Coherent Systems of Order 5

Description

This data set provides a catalogue of the network graph, signature and minimal cut-sets of all simply
connected coherent systems of order 5.

Usage

data(sccsO5)

Format

A list object, one item for each such systems. Each item is itself a list, with the elements $graph,
$cutsets and $signature.

Source

Derived in the thesis Aslett (2012).

References

Aslett, L. J. M. (2012), MCMC for Inference on Phase-type and Masked System Lifetime Models,
PhD Thesis, Trinity College Dublin.

setCompTypes Set component types in a system

Description

A system created with createSystem by default assumes components to be of the same type. This
function enables assigning particular types (or modified from a previous types assignment) to each
component after system creation.

Usage

setCompTypes(sys, types)

setCompTypes 29

Arguments

sys a system object representing the system whose types are to be set. This should
have been created by a call to createSystem.

types a named list of vectors. The names correspond to component types, whilst each
vector indicates which components are of that type.

Details

This function enables specifying (or modifying) the types of the components in a system. The types
can be specified when the system is initially defined using createSystem, but if none are specified
at that time then it is assumed all components are of the same type.

The types argument should be a named list of vectors, for example list("a" = 1:3, "b" = c(4,6),
"c" = 5) would specify that component numbers 1 through 3 are of type a, 4 and 6 are type b, with
the remaining component 5 as type c. The numbering should match numbering used when creating
the system. The start and terminal nodes should not be given a type (as they are assumed perfectly
reliable).

Value

The system which was passed in the sys argument is returned with the component types updated.

Author(s)

Louis J.M. Aslett <louis.aslett@durham.ac.uk> (https://www.louisaslett.com/)

See Also

createSystem

Examples

EXAMPLE 1
Figure 1 in Coolen and Coolen-Maturi (2012)

First, define the structure, ensuring that each physically separate component
is separately numbered
fig1 <- createSystem(s -- 1 -- 2:3 -- 4 -- 5:6 -- t, 2 -- 5, 3 -- 6)

Second, assign types to the components with this function
setCompTypes(fig1, list("Type 1" = c(1, 2, 5), "Type 2" = c(3, 4, 6)))

Note that one can create the same system and avoid using setCompTypes by
specifying the types in the initial call to createSystem if desired.
The following code results in exactly the same system specification as fig1:
fig1b <- createSystem(s -- 1 -- 2:3 -- 4 -- 5:6 -- t, 2 -- 5, 3 -- 6,

types = list("Type 1" = c(1, 2, 5), "Type 2" = c(3, 4, 6)))

https://www.louisaslett.com/

30 simulateSystem

simulateSystem Simulate Masked Lifetime Data for a System

Description

This function enables easy simulation of iid masked lifetime observations from a system or network.

Usage

simulateSystem(system, n, rdens, ...)

Arguments

system may be: a system object (made with createSystem representing the system;
the collection of cutsets of the system; or the system signature.

n how many simulations to produce.

rdens a user defined function which generates random realisations of the component
lifetimes.

... parameters passed to the user defined function rdens.

Details

The system or network is specified by means of a system object, whereby each end of the system is
denoted by nodes named s and t which are taken to be perfectly reliable. It is easy to construct the
appropriate reliability block diagram representation using the function createSystem. Note that
each physically distinct component should be separately numbered when constructing this object.

This function then generates iid realisations of masked lifetimes.

Value

a numeric vector of length n containing the masked lifetime data.

Note

Please feel free to email <louis.aslett@durham.ac.uk> with any queries or if you encounter
errors when running this function.

Author(s)

Louis J.M. Aslett <louis.aslett@durham.ac.uk> (https://www.louisaslett.com/)

https://www.louisaslett.com/

systemGraphToGenerator 31

Examples

Simulate 20 masked lifetimes of a two component series system with Exponential(2)
component lifetimes
Using igraph object ...
simulateSystem(createSystem(s -- 1 -- 2 -- t), 20, rexp, rate=2)

... and using signature
simulateSystem(c(1,0), 20, rexp, rate=2)

systemGraphToGenerator

Construct a Continuous-time Markov Chain Generator

Description

This function enables easy construction of an absorbing continuous-time Markov chain generator
matrix representation for a system when components are treated as having Exponential failure and
repair times.

Usage

systemGraphToGenerator(g, failRate, repairRate)

Arguments

g an igraph object representing the system or network whose generator matrix
representation is to be computed. There should be two terminal ’dummy’ nodes
to represent either end of the structure which must be labelled "s" and "t". They
are assumed perfectly reliable. See details and examples.

failRate the rate parameter of the Exponentially distributed lifetime distribution of the
components.

repairRate the rate parameter of the Exponentially distributed repair time distribution of the
components.

Details

When the system or network is specified by means of an igraph object, each end of the system
must be denoted by nodes named "s" and "t" which are taken to be perfectly reliable. It is easy to
construct the appropriate graph representation using the function graph.formula.

This function then creates the generator matrix for an absorbing continuous-time Markov chain
representation of such a system where components are repairable. All system states which in which
the system is inoperative are collapsed into the absorbing state.

The returned values are in the format required by the phtMCMC2.

Full details are in Aslett (2012).

32 systemGraphToGenerator

Value

A list is returned with both a numeric generator matrix (in $G with the failure rate, failRate, and
repair rate, repairRate) and a symbolic matrix (in $structure$G), along with a matrix of the
constant multiples of generator entries (in $structure$C).

Note

Please feel free to email <louis.aslett@durham.ac.uk> with any queries or if you encounter
errors when running this function.

Author(s)

Louis J.M. Aslett <louis.aslett@durham.ac.uk> (https://www.louisaslett.com/)

References

Aslett, L. J. M. (2012), MCMC for Inference on Phase-type and Masked System Lifetime Models,
PhD Thesis, Trinity College Dublin.

Examples

Get the generator representing a repairable 5 component 'bridge' system with
failure rate 1 and repair rate 365.
data(sccsO5)
G <- systemGraphToGenerator(sccsO5[[18]]$graph, 1, 365)

https://www.louisaslett.com/

Index

∗ Bayesian inference
nonParBayesSystemInference, 19
nonParBayesSystemInferencePriorSets,

21
∗ Exponential

maskedInferenceEXCHExponential, 13
maskedInferenceIIDExponential, 17

∗ bayesian inference
maskedInferenceEXCHCustom, 11
maskedInferenceEXCHExponential, 13
maskedInferenceIIDCustom, 15
maskedInferenceIIDExponential, 17

∗ data augmentation
maskedInferenceEXCHCustom, 11
maskedInferenceEXCHExponential, 13
maskedInferenceIIDCustom, 15
maskedInferenceIIDExponential, 17

∗ datasets
cnO2, 3
cnO3, 3
sccsO2, 26
sccsO3, 27
sccsO4, 27
sccsO5, 28

∗ exchangeable
maskedInferenceEXCHExponential, 13

∗ expected lifetime
expectedSystemLifetimeExp, 9

∗ generator matrix
systemGraphToGenerator, 31

∗ iid
maskedInferenceIIDExponential, 17

∗ imprecise probability
nonParBayesSystemInferencePriorSets,

21
∗ masked system lifetime model

maskedInferenceEXCHCustom, 11
maskedInferenceEXCHExponential, 13
maskedInferenceIIDCustom, 15

maskedInferenceIIDExponential, 17
∗ non parametric

nonParBayesSystemInference, 19
nonParBayesSystemInferencePriorSets,

21
∗ prior sets

nonParBayesSystemInferencePriorSets,
21

∗ reliability theory
ReliabilityTheory-package, 2

∗ signature
computeSystemSignature, 4
computeSystemSurvivalSignature, 6
expectedSystemLifetimeExp, 9
maskedInferenceEXCHCustom, 11
maskedInferenceEXCHExponential, 13
maskedInferenceIIDCustom, 15
maskedInferenceIIDExponential, 17
ReliabilityTheory-package, 2
simulateSystem, 30
systemGraphToGenerator, 31

∗ simulate masked lifetime data
simulateSystem, 30

∗ survival signature
nonParBayesSystemInference, 19
nonParBayesSystemInferencePriorSets,

21
∗ survival

computeSystemSurvivalSignature, 6
∗ system signature

ReliabilityTheory-package, 2
∗ system

computeSystemSignature, 4
computeSystemSurvivalSignature, 6
expectedSystemLifetimeExp, 9
simulateSystem, 30
systemGraphToGenerator, 31

∗ test data
nonParBayesSystemInference, 19

33

34 INDEX

nonParBayesSystemInferencePriorSets,
21

cnO2, 3
cnO3, 3
computeNetworkSignature

(computeSystemSignature), 4
computeSystemSignature, 4, 7, 10, 13, 14,

17, 18
computeSystemSurvivalSignature, 5, 6, 19,

20, 22, 24
createSystem, 4–6, 8, 10, 28–30

expectedNetworkLifetimeExp
(expectedSystemLifetimeExp), 9

expectedSignatureLifetimeExp
(expectedSystemLifetimeExp), 9

expectedSystemLifetimeExp, 9

graph.formula, 31

igraph, 31

maskedInferenceEXCHCustom, 11
maskedInferenceEXCHExponential, 12, 13
maskedInferenceIIDCustom, 15
maskedInferenceIIDExponential, 16, 17

nonParBayesSystemInference, 19, 22, 24
nonParBayesSystemInferencePriorSets,

21

phtMCMC2, 31

ReliabilityTheory
(ReliabilityTheory-package), 2

ReliabilityTheory-package, 2

sccsO2, 26
sccsO3, 27
sccsO4, 27
sccsO5, 28
setCompTypes, 6, 8, 9, 28
simulateSystem, 30
system, 5, 6, 10, 30
systemGraphToGenerator, 31

	ReliabilityTheory-package
	cnO2
	cnO3
	computeSystemSignature
	computeSystemSurvivalSignature
	createSystem
	expectedSystemLifetimeExp
	maskedInferenceEXCHCustom
	maskedInferenceEXCHExponential
	maskedInferenceIIDCustom
	maskedInferenceIIDExponential
	nonParBayesSystemInference
	nonParBayesSystemInferencePriorSets
	sccsO2
	sccsO3
	sccsO4
	sccsO5
	setCompTypes
	simulateSystem
	systemGraphToGenerator
	Index

