
Package ‘PCSinR’
January 20, 2025

Title Parallel Constraint Satisfaction Networks in R

Version 0.1.0

URL https://github.com/felixhenninger/PCSinR

Description Parallel Constraint Satisfaction (PCS) models are an increasingly
common class of models in Psychology, with applications to reading and word
recognition (McClelland & Rumelhart, 1981), judgment and decision making
(Glöckner & Betsch, 2008; Glöckner, Hilbig, & Jekel, 2014), and several
other fields (e.g. Read, Vanman, & Miller, 1997). In each of these fields,
they provide a quantitative model of psychological phenomena, with precise
predictions regarding choice probabilities, decision times, and often the degree
of confidence. This package provides the necessary functions to create and
simulate basic Parallel Constraint Satisfaction networks within R.

Depends R (>= 3.3.1)

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 5.0.1

Suggests testthat

NeedsCompilation no

Author Felix Henninger [aut, cre]

Maintainer Felix Henninger <mailbox@felixhenninger.com>

Repository CRAN

Date/Publication 2016-10-19 22:12:25

Contents
PCSinR . 2
PCS_convergence_McCandR . 4
PCS_run . 5
PCS_run_from_interconnections . 6

Index 8

1

https://github.com/felixhenninger/PCSinR

2 PCSinR

PCSinR PCS: Parallel Constraint Satisfaction networks in R

Description

The PCS package contains all necessary functions for building and simulation Parallel Constraint
Satisfaction (PCS) network models within R.

Details

PCS models are an increasingly used framework throughout psychology: They provide quantitative
predictions in a variety of paradigms, ranging from word and letter recognition, for which they
were originally developed (McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1982), to
complex judgments and decisions (Glöckner & Betsch, 2008; Glöckner, Hilbig, & Jekel, 2014),
and many other applications besides.

Theoretical overview

PCS networks embody the concept of consistency maximization in perception and cognition, in that
they assume that a cognitive system will attempt to achieve a coherent state, in which all available
information is weighted to provide a maximally consistent representation of a given task. Their
central qualitative prediction follows from this basic assumption, namely that the weights assigned
to available information are reevaluated during the decision process. These coherence shifts are a
unique prediction of PCS models, and have been found in multiple domains (c.f. Glöckner, Betsch,
& Schindler, 2010; Holyoak & Simon, 1999, Simon & Holyoak, 2002).

PCS models are implemented as neural networks, though they do not assume a direct mapping from
model nodes and connections onto neurons and dendrites. Instead, the nodes represent concepts,
and the links between them the degree to which the concepts are compatible or reconcilable. The as-
sumption is that a PCS network is instantiated whenever a decision maker faces a choice (Glöckner
& Betsch, 2008).

At any given time, a node exhibits a certain level of activation, which it passes through any present
links to other nodes. If the level is positive, the node is activated, otherwise it is labelled inhibited.
Activation is passed between nodes along the links, to varying degrees depending on their strength
and nature, which determines the spread of activation in the network. Links can be excitatory,
in that an activated node on one side leads to an increasing activation of any connected node, or
inhibitory, in which connected nodes assume the opposite activation level. Thus, nodes can be mu-
tually supportive regarding their level of activation, or restrain one another. Besides this qualitative
difference, links also differ in their weight, a number which denotes the proportion of activation
that is passed along the link. A link’s magnitude captures the connection weight, and its sign the
qualitative type of influence (excitatory or inhibitory). Links are always bidirectional, in that both
nodes reciprocally influence one another, in the same manner and to the same extent.

Within the network, processing occurs in discontinuous cycles, iterations. In each cycle anew, nodes
pass a proportion of their activation level along the links to connected siblings. At each receiving
node, the total arriving activation is termed the total input. Because the amount of activation passed
through a link is multiplied by the link weight, the total input is a weighted sum of the activation of
all connected nodes. The input does not, however, influence the node directly, but instead is subject

PCSinR 3

to two additional influences: First, the activation of each node is reduced by a fixed proportion
at each iteration, so that the activation level decays to a fixed neutral point. Second, the current
activation level of the node determines the influence of the arriving input: A node that is already
active is less susceptible to further excitatory input, and more so to external inhibition. The converse
holds for an inhibited node: Excitatory input is amplified, and further inhibition dampened. These
forces constrain the activation between a floor and ceiling value.

Together, these two forces determine the reaction of a node to input. In particular, from their joint
activity a non-linear activation function emerges: The level of activation a node approches over
many interations is an s-shaped function of the input for excitatory links, concave for positive and
convex for negative input. For an inhibitory link, this relationship is inverted.

Activation initially enters a network through the source node, which provides a constant level of
activation. As activation enters the network and is passed between nodes, the properties sketched
above ensure that the relationships between the concepts represented will increasingly be satisfied,
and after some time, the network reaches a stable state in which nodes connected by excitatory links
will share broadly similar levels of activation, and those connected by inhibitory links dissimilar
states. Thus, the constraints represented in the network will be increasingly satisfied (giving the
model family its name), and the representation will become coherent.

When a network has converged into this state, behavioral predictions can be derived: The number
of iterations that passed during processing is used as a proxy for decision time, of the nodes repre-
senting choice alternatives, the one with the highest activation is assumed to be the chosen one, and
the difference between the activations of these nodes is used to predict the confidence with which a
decision is made or a course of action taken.

Package contents

This package contains all necessary simulation code to build and run PCS models. In particular,
it contains a full, optimized implementation of the core model as specified by McClelland and
Rumelhart (1981) as well as Glöckner and Betsch (2008), as well as several variants commonly
used in the literature so that existing findings may be replicated.

PCS_run is the central function provided by the package. It creates, and runs, a model of a PCS
network given a connection matrix and the necessary parameters.

Please see the function-specific documentation for additional information

References

PCS

Glöckner, A., & Betsch, T. (2008). Modeling option and strategy choices with connectionist net-
works: Towards an integrative model of automatic and deliberate decision making. Judgment and
Decision Making, 3(3), 215–228.

Glöckner, A., Betsch, T., & Schindler, N. (2010). Coherence shifts in probabilistic inference tasks.
Journal of Behavioral Decision Making, 23(5), 439–462. doi:10.1002/bdm.668

Glöckner, A., Hilbig, B. E., & Jekel, M. (2014). What is adaptive about adaptive decision making?
A parallel constraint satisfaction account. Cognition, 133(3), 641–666. doi:10.1016/j.cognition.2014.08.017

Holyoak, K. J., & Simon, D. (1999). Bidirectional reasoning in decision making by constraint
satisfaction. Journal of Experimental Psychology: General, 128(1), 3–31.

4 PCS_convergence_McCandR

McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in
letter perception: I. An account of basic findings. Psychological Review, 88(5), 375–407.

Rumelhart, D. E., & McClelland, J. L. (1982). An interactive activation model of context effects in
letter perception: II. The contextual enhancement effect and some tests and extensions of the model.
Psychological Review, 89(1), 60–94.

Simon, D., & Holyoak, K. (2002). Structural dynamics of cognition: From consistency theories to
constraint satisfaction. Personality and Social Psychology Review, 6(4), 283–294.

PCS_convergence_McCandR

Check a PCS network for convergence

Description

This function applies the convergence criterion defined by McClelland and Rumelhart to a given
network, and returns either a (qualitative) boolean value that represents the convergence state, or
a (quantitative) value that represents the number of iterations (of the last 10) that have met the
convergence threshold.

Usage

PCS_convergence_McCandR(iteration, current_energy, memory.matrix,
stability_criterion = 10^-6, output = "qualitative")

Arguments

iteration The iteration to consider – in most cases, this will be the current iteration during
a simulation run, however, the check can also be applied to a model output
retroactively, and the iteration specified manually.

current_energy The current energy level within the network

memory.matrix A matrix of iteration, energy and node states (in columns, in that order), across
all previous iterations (in rows).

stability_criterion

Criterion for stability. Changes below this value are no longer considered sig-
nificant, and ten iterations without significant changes to the energy level in
succession will trigger the convergence check.

output Either 'qualitative' (default), in which case the check returns a boolean value
representing whether it has passed or not, or 'quantitative', in which case
the number of checked trials for which the convergence criterion was met is
returned. This last option is of most value for debugging convergence.

Details

The check requires the following parameters:

PCS_run 5

PCS_run Simulate the run of a PCS model

Description

PCS_run simulates a PCS network given a pre-specified interconnection matrix and model parame-
ters, according to the mechanism outlines by McClelland and Rumelhart (1981).

Usage

PCS_run(interconnection_matrix, initial_state, resting_levels, reset,
node_names = NULL, stability_criterion = 10^-6, max_iterations = Inf,
convergence_criteria = c(PCS_convergence_McCandR),
convergence_names = NULL)

Arguments

interconnection_matrix

A square, matrix representing the link weights between nodes, such that each
entry w_ij represents the link strength between nodes i and j. Accordingly, for
a network of n nodes, the matrix must be of six n*n. In most applications, the
matrix will be symmetric, meaning that links are bidirectional.

initial_state Initial node activations before the first iteration is run. In most cases, this will
be a vector of zeros, with the length corresponding to the number of nodes in
the network.

resting_levels Resting activation level for each node. In most cases, this will be a vector of
zeros, with its length corresponding to the number of nodes in the network.

reset Vector denoting nodes with stable activation values. The vector contains a value
for each node; if it is unequal to zero, the node activation will be reset to this
value after each iteration.

node_names Vector specifying human-readable labels for every node, or 'default', in which
case nodes are automatically named.

stability_criterion

Stability theshold for convergence criteria. If energy changes across iterations
fall below this threshold, the model is considered to have converged.

max_iterations Maximum number of iterations to run before terminating the simulation.
convergence_criteria

Array of convergence criteria to apply. This PCS implementation allows users
to define and observe multiple convergence criteria in one model. Each entry in
this array is a convergence criterion, which is representated as a function that re-
ceives the current iteration, energy, model state history and the stability_criterion
defined above and returns a boolean value representing whether the particular
criterion is met given the model’s current state.

convergence_names

Human-readable labels for the convergence criteria, or 'default', in which
case the criteria are numbered automatically, in which case the criteria are num-
bered automatically.

6 PCS_run_from_interconnections

Value

A list representing the model state after all convergence criteria have been fullfilled. The key
iterations contains the model state over its entire run, while the key convergence defines which
convergence criteria have been met at which iteration. Together, these provide an exhaustive sum-
mary of the model’s behavior.

PCS_run_from_interconnections

Simulate the run of a PCS model based on only the interconnection
matrix

Description

PCS_run_from_interconnections simulates a PCS network given only the pre-specified intercon-
nection matrix and convergence criteria, substituting default values from the literature for all other
parameters. Thereby, it provides a convenient shorthand for the PCS_run function that covers the
vast majority of applications.

Usage

PCS_run_from_interconnections(interconnection_matrix,
convergence_criteria = c(PCS_convergence_McCandR),
convergence_names = "default")

Arguments

interconnection_matrix

A square, matrix representing the link weights between nodes, such that each
entry w_ij represents the link strength between nodes i and j. Accordingly, for
a network of n nodes, the matrix must be of six n*n. In most applications, the
matrix will be symmetric, meaning that links are bidirectional.

convergence_criteria

Array of convergence criteria to apply. This PCS implementation allows users
to define and observe multiple convergence criteria in one model. Each entry in
this array is a convergence criterion, which is representated as a function that re-
ceives the current iteration, energy, model state history and the stability_criterion
defined above and returns a boolean value representing whether the particular
criterion is met given the model’s current state.

convergence_names

Human-readable labels for the convergence criteria, or 'default', in which
case the criteria are numbered automatically, in which case the criteria are num-
bered automatically.

PCS_run_from_interconnections 7

Examples

Build interconnection matrix
interconnections <- matrix(

c(0.0000, 0.1015, 0.0470, 0.0126, 0.0034, 0.0000, 0.0000,
0.1015, 0.0000, 0.0000, 0.0000, 0.0000, 0.0100, -0.0100,
0.0470, 0.0000, 0.0000, 0.0000, 0.0000, 0.0100, -0.0100,
0.0126, 0.0000, 0.0000, 0.0000, 0.0000, 0.0100, -0.0100,
0.0034, 0.0000, 0.0000, 0.0000, 0.0000, -0.0100, 0.0100,
0.0000, 0.0100, 0.0100, 0.0100, -0.0100, 0.0000, -0.2000,
0.0000, -0.0100, -0.0100, -0.0100, 0.0100, -0.2000, 0.0000),

nrow=7
)

Run model
result <- PCS_run_from_interconnections(interconnections)

Examine iterations required for convergence
result$convergence

Examine final model state
result$iterations[nrow(result$iterations),]

Index

PCS_convergence_McCandR, 4
PCS_run, 3, 5, 6
PCS_run_from_interconnections, 6
PCSinR, 2
PCSinR-package (PCSinR), 2

8

	PCSinR
	PCS_convergence_McCandR
	PCS_run
	PCS_run_from_interconnections
	Index

