
Package ‘PACLasso’
January 20, 2025

Type Package

Title Penalized and Constrained Lasso Optimization

Version 1.0.0

Date 2019-4-11

Maintainer Courtney Paulson <cpaulson@rhsmith.umd.edu>

Description An implementation of both the equality and inequality constrained lasso
functions for the algorithm described in ``Penalized and Constrained Optimization''
by James, Paulson, and Rusmevichientong (Journal of the American Statistical Association, 2019;
see <http://www-bcf.usc.edu/~gareth/research/PAC.pdf> for a full-
text version of the paper).
The algorithm here is designed to allow users to define linear constraints (either equality
or inequality constraints) and use a penalized regression approach to solve the constrained
problem. The functions here are used specifically for constraints with the lasso formulation,
but the method described in the PaC paper can be used for a variety of scenarios. In addition
to the simple examples included here with the corresponding functions, complete code to
entirely reproduce the results of the paper is available online through the Journal of the
American Statistical Association.

Depends R (>= 3.3.0), methods (>= 3.4.4), penalized (>= 0.9)

Imports MASS (>= 7.3), lars (>= 1.2), quadprog (>= 1.5), limSolve (>=
1.5.5.3)

License GPL-3

URL http://www-bcf.usc.edu/~gareth/research/PAC.pdf

Repository CRAN

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

NeedsCompilation no

Author Courtney Paulson [aut, cre],
Gareth James [ctb],
Paat Rusmevichientong [ctb]

Date/Publication 2019-04-29 21:30:16 UTC

1

http://www-bcf.usc.edu/~gareth/research/PAC.pdf
http://www-bcf.usc.edu/~gareth/research/PAC.pdf

2 generate.data

Contents

generate.data . 2
lars.c . 3
lars.ineq . 5
lasso.c . 6
lasso.ineq . 8
lin.int . 9
lin.int.ineq . 10
quad.int . 10
quad.int.ineq . 11
transformed . 12
transformed.ineq . 13

Index 15

generate.data Function to Randomly Generate Data (with Constraints)

Description

This function is primarily used for reproducibility. It will generate a data set of a given size with a
given number of constraints for testing function code.

Usage

generate.data(n = 1000, p = 10, m = 5, cov.mat = NULL, s = 5,
sigma = 1, glasso = F, err = 0)

Arguments

n number of rows in randomly-generated data set (default is 1000)

p number of variables in randomly-generated data set (default is 10)

m number of constraints in randomly-generated constraint matrix (default is 5)

cov.mat a covariance matrix applied in the generation of data to impose a correlation
structure. Default is NULL (no correlation)

s number of true non-zero elements in coefficient vector beta1 (default is 5)

sigma standard deviation of noise in response (default is 1, indicating standard normal)

glasso should the generalized Lasso be used (TRUE) or standard Lasso (FALSE). De-
fault is FALSE

err error to be introduced in random generation of coefficient values. Default is no
error (err = 0)

lars.c 3

Value

x generated x data

y generated response y vector

C.full generated full constraint matrix (with constraints of the form C.full*beta=b)

b generated constraint vector b

b.run if error was included, the error-adjusted value of b

beta the complete beta vector, including generated beta1 and beta2

References

Gareth M. James, Courtney Paulson, and Paat Rusmevichientong (JASA, 2019) "Penalized and
Constrained Optimization." (Full text available at http://www-bcf.usc.edu/~gareth/research/PAC.pdf)

Examples

random_data = generate.data(n = 500, p = 20, m = 10)
dim(random_data$x)
head(random_data$y)
dim(random_data$C.full)
random_data$beta

lars.c Constrained LARS Coefficient Function (Equality Constraints)

Description

This function computes the PaC constrained LASSO coefficient paths following the methodology
laid out in the PaC paper. This function could be called directly as a standalone function, but the
authors recommend using lasso.c for any implementation. This is because lasso.c has additional
checks for errors across the coefficient paths and allows for users to go forwards and backwards
through the paths if the paths are unable to compute in a particular direction for a particular run.

Usage

lars.c(x, y, C.full, b, l.min = -2, l.max = 6, step = 0.2,
beta0 = NULL, verbose = F, max.it = 12, intercept = T,
normalize = T, forwards = T)

Arguments

x independent variable matrix of data to be used in calculating PaC coefficient
paths

y response vector of data to be used in calculating PaC coefficient paths

C.full complete constraint matrix C (with constraints of the form C.full*beta=b)

b constraint vector b

4 lars.c

l.min lowest value of lambda to consider (used as 10^l.min). Default is -2

l.max largest value of lambda to consider (used as 10^l.max). Default is 6

step step size increase in lambda attempted at each iteration (by a factor of 10^step).
Default is 0.2

beta0 initial guess for beta coefficient vector. Default is NULL (indicating initial vec-
tor should be calculated by algorithm)

verbose should function print output at each iteration (TRUE) or not (FALSE). Default
is FALSE

max.it maximum number of times step size is halved before the algorithm terminates
and gives a warning. Default is 12

intercept should intercept be included in modeling (TRUE) or not (FALSE). Default is
TRUE.

normalize should x data be normalized. Default is TRUE

forwards if forwards = F, then the algorithm starts at 10^l.max and moves backwards
(without the forward step). If forwards = T, algorithm starts at 10^l.min and
works forward. Default is FALSE

Value

coefs A p by length(lambda) matrix with each column corresponding to the beta estimate for that
lambda

lambda the grid of lambdas used to calculate the coefficients on the coefficient path

intercept vector with each element corresponding to intercept for corresponding lambda

error did the algorithm terminate due to too many iterations (TRUE or FALSE)

b2index the index of the beta2 values identified by the algorithm at each lambda

References

Gareth M. James, Courtney Paulson, and Paat Rusmevichientong (JASA, 2019) "Penalized and
Constrained Optimization." (Full text available at http://www-bcf.usc.edu/~gareth/research/PAC.pdf)

Examples

random_data = generate.data(n = 500, p = 20, m = 10)
lars_fit = lars.c(random_data$x, random_data$y, random_data$C.full, random_data$b)
lars_fit$lambda
lars_fit$error
The coefficients for the first lambda value
lars_fit$coefs[1,]
Example of code where path is unable
to be finished (only one iteration)
lars_err = lars.c(random_data$x, random_data$y, random_data$C.full,
random_data$b, max.it = 1)
lars_err$error
lars_err$lambda

lars.ineq 5

lars.ineq Constrained LARS Coefficient Function with Inequality Constraints

Description

This function computes the PaC constrained LASSO coefficient paths following the methodology
laid out in the PaC paper but with inequality constraints. This function could be called directly
as a standalone function, but the authors recommend using lasso.ineq for any implementation.
This is because lasso.ineq has additional checks for errors across the coefficient paths and allows
for users to go forwards and backwards through the paths if the paths are unable to compute in a
particular direction for a particular run.

Usage

lars.ineq(x, y, C.full, b, l.min = -2, l.max = 6, step = 0.2,
beta0 = NULL, verbose = F, max.it = 12, intercept = T,
normalize = T, forwards = T)

Arguments

x independent variable matrix of data to be used in calculating PaC coefficient
paths

y response vector of data to be used in calculating PaC coefficient paths

C.full complete inequality constraint matrix C (with inequality constraints of the form
C.full*beta >= b))

b constraint vector b

l.min lowest value of lambda to consider (used as 10^l.min). Default is -2

l.max largest value of lambda to consider (used as 10^l.max). Default is 6

step step size increase in lambda attempted at each iteration (by a factor of 10^step).
Default is 0.2

beta0 initial guess for beta coefficient vector. Default is NULL (indicating initial
vector should be calculated by algorithm)

verbose should function print output at each iteration (TRUE) or not (FALSE). Default
is FALSE

max.it maximum number of times step size is halved before the algorithm terminates
and gives a warning. Default is 12

intercept should intercept be included in modeling (TRUE) or not (FALSE). Default is
TRUE.

normalize should x data be normalized. Default is TRUE

forwards if forwards = F, then the algorithm starts at 10^l.max and moves backwards
(without the forward step). If forwards = T, algorithm starts at 10^l.min and
works forward. Default is FALSE

6 lasso.c

Value

coefs A p by length(lambda) matrix with each column corresponding to the beta estimate for that
lambda

lambda the grid of lambdas used to calculate the coefficients on the coefficient path

intercept vector with each element corresponding to intercept for corresponding lambda

error did the algorithm terminate due to too many iterations (TRUE or FALSE)

b2index the index of the beta2 values identified by the algorithm at each lambda

References

Gareth M. James, Courtney Paulson, and Paat Rusmevichientong (JASA, 2019) "Penalized and
Constrained Optimization." (Full text available at http://www-bcf.usc.edu/~gareth/research/PAC.pdf)

Examples

random_data = generate.data(n = 500, p = 20, m = 10)
lars_fit = lars.ineq(random_data$x, random_data$y, random_data$C.full, random_data$b)
lars_fit$lambda
lars_fit$error
The coefficients for the first lambda value
lars_fit$coefs[1,]
Example of code where path is unable to be finished
(only one iteration)
lars_err = lars.ineq(random_data$x, random_data$y, random_data$C.full,
random_data$b, max.it = 1)
lars_err$error
lars_err$lambda

lasso.c Complete Run of Constrained LASSO Path Function (Equality Con-
straints)

Description

This is a wrapper function for the lars.c PaC constrained Lasso function. lasso.c controls the
overall path, providing checks for the path and allowing the user to control how the path is computed
(and what to do in the case of a stopped path).

Usage

lasso.c(x, y, C.full, b, l.min = -2, l.max = 6, step = 0.2,
beta0 = NULL, verbose = F, max.it = 12, intercept = T,
normalize = T, backwards = F)

lasso.c 7

Arguments

x independent variable matrix of data to be used in calculating PaC coefficient
paths

y response vector of data to be used in calculating PaC coefficient paths

C.full complete constraint matrix C (with constraints of the form C.full*beta=b)

b constraint vector b

l.min lowest value of lambda to consider (used as 10^l.min). Default is -2

l.max largest value of lambda to consider (used as 10^l.max). Default is 6

step step size increase in lambda attempted at each iteration (by a factor of 10^step).
Default is 0.2

beta0 initial guess for beta coefficient vector. Default is NULL (indicating initial vec-
tor should be calculated by algorithm)

verbose should function print output at each iteration (TRUE) or not (FALSE). Default
is FALSE

max.it maximum number of times step size is halved before the algorithm terminates
and gives a warning. Default is 12

intercept should intercept be included in modeling (TRUE) or not (FALSE). Default is
TRUE.

normalize should X data be normalized. Default is TRUE

backwards which direction should algorithm go, backwards from lambda = 10^l.max (TRUE)
or forwards from 10^l.max and then backwards if algorithm gets stuck (FALSE).
Default is FALSE.

Value

coefs A p by length(lambda) matrix with each column corresponding to the beta estimate for that
lambda

lambda vector of values of lambda that were fit

intercept vector with each element corresponding to intercept for corresponding lambda

error Indicator of whether the algorithm terminated early because max.it was reached

References

Gareth M. James, Courtney Paulson, and Paat Rusmevichientong (JASA, 2019) "Penalized and
Constrained Optimization." (Full text available at http://www-bcf.usc.edu/~gareth/research/PAC.pdf)

Examples

random_data = generate.data(n = 500, p = 20, m = 10)
lasso_fit = lasso.c(random_data$x, random_data$y, random_data$C.full, random_data$b)
lasso_fit$lambda
lasso_fit$error
The coefficients for the first lambda value
lasso_fit$coefs[1,]

8 lasso.ineq

Example of code where path is unable to be finished
(only one iteration), so both directions will be tried
lasso_err = lasso.c(random_data$x, random_data$y, random_data$C.full,
random_data$b, max.it = 1)
lasso_err$error
lasso_err$lambda

lasso.ineq Complete Run of Constrained LASSO Path Function with Inequality
Constraints

Description

This is a wrapper function for the lars.c PaC constrained Lasso function. lasso.c controls the
overall path, providing checks for the path and allowing the user to control how the path is computed
(and what to do in the case of a stopped path).

Usage

lasso.ineq(x, y, C.full, b, l.min = -2, l.max = 6, step = 0.2,
beta0 = NULL, verbose = F, max.it = 12, intercept = T,
normalize = T, backwards = F)

Arguments

x independent variable matrix of data to be used in calculating PaC coefficient
paths

y response vector of data to be used in calculating PaC coefficient paths
C.full complete constraint matrix C (with inequality constraints of the form C.full*beta

>= b))
b constraint vector b
l.min lowest value of lambda to consider (used as 10^l.min). Default is -2
l.max largest value of lambda to consider (used as 10^l.max). Default is 6
step step size increase in lambda attempted at each iteration (by a factor of 10^step).

Default is 0.2
beta0 initial guess for beta coefficient vector. Default is NULL (indicating initial vec-

tor should be calculated by algorithm)
verbose should function print output at each iteration (TRUE) or not (FALSE). Default

is FALSE
max.it maximum number of times step size is halved before the algorithm terminates

and gives a warning. Default is 12
intercept should intercept be included in modeling (TRUE) or not (FALSE). Default is

TRUE.
normalize should X data be normalized. Default is TRUE
backwards which direction should algorithm go, backwards from lambda = 10^l.max (TRUE)

or forwards from 10^l.max and then backwards if algorithm gets stuck (FALSE).
Default is FALSE.

lin.int 9

Value

coefs A p by length(lambda) matrix with each column corresponding to the beta estimate for that
lambda

lambda vector of values of lambda that were fit

intercept vector with each element corresponding to intercept for corresponding lambda

error Indicator of whether the algorithm terminated early because max.it was reached

References

Gareth M. James, Courtney Paulson, and Paat Rusmevichientong (JASA, 2019) "Penalized and
Constrained Optimization." (Full text available at http://www-bcf.usc.edu/~gareth/research/PAC.pdf)

Examples

random_data = generate.data(n = 500, p = 20, m = 10)
lasso_fit = lasso.ineq(random_data$x, random_data$y, random_data$C.full, random_data$b)
lasso_fit$lambda
lasso_fit$error
The coefficients for the first lambda value
lasso_fit$coefs[1,]
Example of code where path is unable to be finished
(only one iteration), so both directions will be tried
lasso_err = lasso.ineq(random_data$x, random_data$y, random_data$C.full,
random_data$b, max.it = 1)
lasso_err$error
lasso_err$lambda

lin.int Initialize Linear Programming Fit (Equality Constraints)

Description

This function is called internally by lars.c to get the linear programming initial fit if the user
requests implementation of the algorithm starting at the largest lambda value and proceeding back-
wards.

Usage

lin.int(C.full, b)

Arguments

C.full complete constraint matrix C (with constraints of the form C.full*beta=b)

b constraint vector b

Value

beta the initial beta vector of coefficients to use for the PaC algorithm

10 quad.int

Examples

random_data = generate.data(n = 500, p = 20, m = 10)
lin_start = lin.int(random_data$C.full, random_data$b)
lin_start

lin.int.ineq Initialize Linear Programming Fit with Inequality Constraints

Description

This function is called internally by lars.ineq to get the linear programming initial fit if the user
requests implementation of the algorithm starting at the largest lambda value and proceeding back-
wards.

Usage

lin.int.ineq(C.full, b)

Arguments

C.full complete constraint matrix C (with inequality constraints of the form C.full*beta
>= b))

b constraint vector b

Value

beta the initial beta vector of coefficients to use for the PaC algorithm

Examples

random_data = generate.data(n = 500, p = 20, m = 10)
lin_start = lin.int.ineq(random_data$C.full, random_data$b)
lin_start

quad.int Initialize Quadratic Programming Fit (Equality Constraints)

Description

This function is called internally by lars.c to get the quadratic programming fit if the user requests
implementation of the algorithm starting at the smallest lambda value and proceeding forwards.

Usage

quad.int(x, y, C.full, b, lambda, d = 10^-7)

quad.int.ineq 11

Arguments

x independent variable matrix of data to be used in calculating PaC coefficient
paths

y response vector of data to be used in calculating PaC coefficient paths

C.full complete constraint matrix C (with constraints of the form C.full*beta=b)

b constraint vector b

lambda value of lambda

d very small diagonal term to allow for SVD (default 10^-7)

Value

beta the initial beta vector of coefficients to use for the PaC algorithm

Examples

random_data = generate.data(n = 500, p = 20, m = 10)
quad_start = quad.int(random_data$x, random_data$y, random_data$C.full,
random_data$b, lambda = 0.01)
quad_start

quad.int.ineq Initialize Quadratic Programming Fit with Inequality Constraints

Description

This function is called internally by lars.ineq to get the quadratic programming fit if the user
requests implementation of the algorithm starting at the smallest lambda value and proceeding for-
wards.

Usage

quad.int.ineq(x, y, C.full, b, lambda, d = 10^-5)

Arguments

x independent variable matrix of data to be used in calculating PaC coefficient
paths

y response vector of data to be used in calculating PaC coefficient paths

C.full complete constraint matrix C (with inequality constraints of the form C.full*beta
>= b))

b constraint vector b

lambda value of lambda

d very small diagonal term to allow for SVD (default 10^-7)

12 transformed

Value

beta the initial beta vector of coefficients to use for the PaC algorithm

Examples

random_data = generate.data(n = 500, p = 20, m = 10)
quad_start = quad.int.ineq(random_data$x, random_data$y,
random_data$C.full, random_data$b, lambda = 0.01)
quad_start

transformed Transform Data to Fit PaC Implementation (Equality Constraints)

Description

This function is called internally by lars.c to compute the transformed versions of the X, Y, and
constraint matrix data, as shown in the PaC paper.

Usage

transformed(x, y, C.full, b, lambda, beta0, eps = 10^-8)

Arguments

x independent variable matrix of data to be used in calculating PaC coefficient
paths

y response vector of data to be used in calculating PaC coefficient paths
C.full complete constraint matrix C (with constraints of the form C.full*beta=b)
b constraint vector b
lambda value of lambda
beta0 initial guess for beta coefficient vector
eps value close to zero used to verify SVD decomposition. Default is 10^-8

Value

x transformed x data to be used in the PaC algorithm

y transformed y data to be used in the PaC algorithm

Y_star transformed Y* value to be used in the PaC algorithm

a2 index of A used in the calculation of beta2 (the non-zero coefficients)

beta1 beta1 values

beta2 beta2 values

C constraint matrix

C2 subset of constraint matrix corresponding to non-zero coefficients

active.beta index of non-zero coefficient values

beta2.index index of non-zero coefficient values

transformed.ineq 13

References

Gareth M. James, Courtney Paulson, and Paat Rusmevichientong (JASA, 2019) "Penalized and
Constrained Optimization." (Full text available at http://www-bcf.usc.edu/~gareth/research/PAC.pdf)

Examples

random_data = generate.data(n = 500, p = 20, m = 10)
transform_fit = transformed(random_data$x, random_data$y, random_data$C.full,
random_data$b, lambda = 0.01, beta0 = rep(0,20))
dim(transform_fit$x)
head(transform_fit$y)
dim(transform_fit$C)
transform_fit$active.beta

transformed.ineq Transform Data to Fit PaC Implementation for Inequality Constraints

Description

This function is called internally by lars.c to compute the transformed versions of the X, Y, and
constraint matrix data, as shown in the PaC paper.

Usage

transformed.ineq(x, y, C.full, b, lambda, beta0, eps = 10^-8)

Arguments

x independent variable matrix of data to be used in calculating PaC coefficient
paths

y response vector of data to be used in calculating PaC coefficient paths

C.full complete constraint matrix C (with inequality constraints of the form C.full*beta
>= b))

b constraint vector b

lambda value of lambda

beta0 initial guess for beta coefficient vector

eps value close to zero used to verify SVD decomposition. Default is 10^-8

Value

x transformed x data to be used in the PaC algorithm

y transformed y data to be used in the PaC algorithm

Y_star transformed Y* value to be used in the PaC algorithm

a2 index of A used in the calculation of beta2 (the non-zero coefficients)

14 transformed.ineq

beta1 beta1 values

beta2 beta2 values

C constraint matrix

C2 subset of constraint matrix corresponding to non-zero coefficients

active.beta index of non-zero coefficient values

beta2.index index of non-zero coefficient values

References

Gareth M. James, Courtney Paulson, and Paat Rusmevichientong (JASA, 2019) "Penalized and
Constrained Optimization." (Full text available at http://www-bcf.usc.edu/~gareth/research/PAC.pdf)

Examples

random_data = generate.data(n = 500, p = 20, m = 10)
transform_fit = transformed.ineq(random_data$x, random_data$y,
random_data$C.full, random_data$b, lambda = 0.01, beta0 = rep(0,20))
dim(transform_fit$x)
head(transform_fit$y)
dim(transform_fit$C)
transform_fit$active.beta

Index

generate.data, 2

lars.c, 3
lars.ineq, 5
lasso.c, 6
lasso.ineq, 8
lin.int, 9
lin.int.ineq, 10

quad.int, 10
quad.int.ineq, 11

transformed, 12
transformed.ineq, 13

15

	generate.data
	lars.c
	lars.ineq
	lasso.c
	lasso.ineq
	lin.int
	lin.int.ineq
	quad.int
	quad.int.ineq
	transformed
	transformed.ineq
	Index

