
Package ‘NonProbEst’
January 20, 2025

Type Package

Title Estimation in Nonprobability Sampling

Version 0.2.4

Author Luis Castro Martín <luiscastro193@gmail.com>, Ramón Ferri Gar-
cía <rferri@ugr.es> and María del Mar Rueda <mrueda@ugr.es>

Maintainer Luis Castro Martín <luiscastro193@gmail.com>

Description Different inference procedures are proposed in the literature to correct for selec-
tion bias that might be introduced with non-random selection mechanisms. A class of meth-
ods to correct for selection bias is to apply a statistical model to predict the units not in the sam-
ple (super-population modeling). Other studies use calibration or Statistical Matching (statisti-
cally match nonprobability and probability samples). To date, the more relevant meth-
ods are weighting by Propensity Score Adjustment (PSA).
The Propensity Score Adjustment method was originally developed to construct weights by esti-
mating response probabilities and using them in Horvitz–Thompson type estima-
tors. This method is usually used by combining a non-probability sample with a reference sam-
ple to construct propensity models for the non-probability sample. Calibra-
tion can be used in a posterior way to adding information of auxiliary variables.
Propensity scores in PSA are usually estimated using logistic regression models. Machine learn-
ing classification algorithms can be used as alternatives for logistic regression as a tech-
nique to estimate propensities.
The package 'NonProbEst' implements some of these methods and thus provides a wide op-
tions to work with data coming from a non-probabilistic sample.

License GPL (>= 2)

Encoding UTF-8

LazyData true

Imports caret, sampling, e1071, glmnet, Matrix

RoxygenNote 7.1.0

NeedsCompilation no

Repository CRAN

Date/Publication 2020-06-03 12:10:03 UTC

1



2 calib_weights

Contents
calib_weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
confidence_interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
fast_jackknife_variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
generic_jackknife_variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
jackknife_variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
lee_weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
mean_estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
model_assisted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
model_based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
model_calibrated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
propensities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
prop_estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
sampleNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
sampleP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
sc_weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
total_estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
valliant_weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
vd_weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Index 24

calib_weights Weights of the calibration estimator

Description

Calculates the calibration weights from a disjunct matrix of covariates, a vector of population totals
and a vector of initial weights.

Usage

calib_weights(Xs, totals, initial_weights, N, ...)

Arguments

Xs Matrix of calibration variables.

totals A vector containing population totals for each column (class) of the calibration
variables matrix.

initial_weights

A vector containing the initial weights for each individual.

N Integer indicating the population size.

... Further arguments to be passed to the ‘calib‘ function from the ‘sampling‘ pack-
age.
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Details

The function uses the ‘calib‘ function from the ‘sampling‘ package for the estimation of g-weights,
which are multiplied by the initial weights to obtain the final calibration weights. The initial weights
can be calculated previously from the propensities for any of the implemented methods (see func-
tions lee_weights, sc_weights, valliant_weights, vd_weights). The population size is used
to scale said initial weights so they are easier to calibrate.

Value

A vector with the corresponding weights.

Examples

n = nrow(sampleNP)
N = 50000
language_total = 45429
covariates = c("education_primaria", "education_secundaria",

"age", "sex")
pi = propensities(sampleNP, sampleP, covariates, algorithm = "glm", smooth = FALSE)
wi = sc_weights(pi$convenience)
calib_weights(sampleNP$language, language_total, wi, N, method = "raking")

confidence_interval Confidence interval

Description

Calculates the confidence interval for the estimator considered.

Usage

confidence_interval(estimation, std_dev, confidence = 0.95)

Arguments

estimation A numeric value specifying the point estimation.

std_dev A numeric value specifying the standard deviation of the point estimation.

confidence A numeric value between 0 and 1 specifying the confidence level, taken as 1 -
alpha (1 - Type I error). By default, its value is 0.95.

Value

A vector containing the lower and upper bounds.
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Examples

covariates = c("education_primaria","education_secundaria",
"age", "sex")
pi = propensities(sampleNP, sampleP, covariates, algorithm = "glm", smooth = FALSE)
psa_weights = sc_weights(pi$convenience)
N = 50000
Y_est = total_estimation(sampleNP, psa_weights, estimated_vars = "vote_pens", N = N)
VY_est = fast_jackknife_variance(sampleNP, psa_weights,

estimated_vars = "vote_pens") * N^2
confidence_interval(Y_est, sqrt(VY_est), confidence = 0.90)

fast_jackknife_variance

Calculates Jackknife variance without reweighting

Description

Calculates the variance of a given estimator by Leave-One-Out Jackknife (Quenouille, 1956) with
the original adjusted weights.

Usage

fast_jackknife_variance(sample, weights, estimated_vars, N = NULL)

Arguments

sample A data frame containing the sample.

weights A vector containing the pre-calculated weights.

estimated_vars A string vector specifying the variables for which the estimators’ variance are to
be estimated.

N Integer indicating the population size. Optional.

Details

The variance estimation is performed by eliminating an individual at each iteration with its corre-
sponding weight and estimating the mean of the corresponding subsample, which is further used
in the Jackknife formula as the usual procedure. The calculation of variance estimates through this
procedure might take less computation time but also might not take into account the variance of the
weighting method.

Value

A vector containing the resulting variance for each variable.

References

Quenouille, M. H. (1956). Notes on bias in estimation. Biometrika, 43(3/4), 353-360.
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Examples

covariates = c("education_primaria", "education_secundaria")
data_propensities = propensities(sampleNP, sampleP, covariates)
psa_weights = sc_weights(data_propensities$convenience)
fast_jackknife_variance(sampleNP, psa_weights, c("vote_pens"), 50000)

generic_jackknife_variance

Calculates Jackknife variance with reweighting for an arbitrary esti-
mator

Description

Calculates the variance of a given estimator by Leave-One-Out Jackknife (Quenouille, 1956) with
reweighting in each iteration.

Usage

generic_jackknife_variance(sample, estimator, N = NULL)

Arguments

sample Data frame containing the non-probabilistic sample.

estimator Function that, given a sample as a parameter, returns an estimation.

N Integer indicating the population size. Optional.

Details

The estimation of the variance requires a recalculation of the estimates in each iteration which might
involve weighting adjustments, leading to an increase in computation time. It is expected that the
estimated variance captures the weighting adjustments’ variability and the estimator’s variability.

Value

The resulting variance.

References

Quenouille, M. H. (1956). Notes on bias in estimation. Biometrika, 43(3/4), 353-360.
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Examples

covariates = c("education_primaria", "education_secundaria",
"age", "sex", "language")

if (is.numeric(sampleNP$vote_gen))
sampleNP$vote_gen = factor(sampleNP$vote_gen, c(0, 1), c('F', 'T'))

vote_gen_estimator = function(sample) {
model_based(sample, population, covariates,

"vote_gen", positive_label = 'T', algorithm = 'glmnet')
}
generic_jackknife_variance(sampleNP, vote_gen_estimator)

jackknife_variance Calculates Jackknife variance with reweighting for PSA

Description

Calculates the variance of PSA by Leave-One-Out Jackknife (Quenouille, 1956) with reweighting
in each iteration.

Usage

jackknife_variance(
estimated_vars,
convenience_sample,
reference_sample,
covariates,
N = NULL,
algorithm = "glm",
smooth = FALSE,
proc = NULL,
trControl = trainControl(classProbs = TRUE),
weighting.func = "sc",
g = 5,
calib = FALSE,
calib_vars = NULL,
totals = NULL,
args.calib = NULL,
...

)

Arguments

estimated_vars A string vector specifying the variables for which the estimators’ variance are to
be estimated.

convenience_sample

Data frame containing the non-probabilistic sample.
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reference_sample

Data frame containing the probabilistic sample.

covariates String vector specifying the common variables to use for training.

N Integer indicating the population size. Optional.

algorithm A string specifying which classification or regression model to use (same as
caret’s method). By default, its value is "glm" (logistic regression).

smooth A logical value; if TRUE, propensity estimates pi_i are smoothed applying the
formula (1000*pi_i + 0.5)/1001

proc A string or vector of strings specifying if any of the data preprocessing tech-
niques available in train function from ‘caret‘ package should be applied to data
prior to the propensity estimation. By default, its value is NULL and no prepro-
cessing is applied.

trControl A trainControl specifying the computational nuances of the train function.

weighting.func A string specifying which function should be used to compute weights from
propensity scores. Available functions are the following:

• sc calls sc_weights.
• valliant calls valliant_weights.
• lee calls lee_weights.
• vd calls vd_weights.

g If weighting.func = "lee" or weighting.func = "vd", this element specifies
the number of strata to use; by default, its value is 5.

calib A logical value; if TRUE, PSA weights are used as initial weights for calibration.
By default, its value is FALSE.

calib_vars A string or vector of strings specifying the variables to be used for calibration.
By default, its value is NULL.

totals A vector containing population totals for each column (class) of the calibration
variables matrix. Ignored if calib is set to FALSE.

args.calib A list containing further arguments to be passed to the calib_weights function.

... Further parameters to be passed to the train function.

Details

The estimation of the variance requires a recalculation of the estimates in each iteration which might
involve weighting adjustments, leading to an increase in computation time. It is expected that the
estimated variance captures the weighting adjustments’ variability and the estimator’s variability.

Value

The resulting variance.

References

Quenouille, M. H. (1956). Notes on bias in estimation. Biometrika, 43(3/4), 353-360.
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Examples

#A simple example without calibration and default parameters
covariates = c("education_primaria", "education_secundaria")
jackknife_variance("vote_pens",sampleNP, sampleP, covariates)

#An example with linear calibration and default parameters
covariates = c("education_primaria", "education_secundaria")
calib_vars = c("age", "sex")
totals = c(2544377, 24284)

jackknife_variance("vote_pens",sampleNP, sampleP, covariates,
calib = T, calib_vars, totals, args.calib = list(method = "linear"))

lee_weights Calculates Lee weights

Description

Computes weights from propensity estimates using the propensity stratification design weights av-
eraging formula introduced in Lee (2006) and Lee and Valliant (2009).

Usage

lee_weights(convenience_propensities, reference_propensities, g = 5)

Arguments

convenience_propensities

A vector with the propensities associated with the convenience sample.
reference_propensities

A vector with the propensities associated with the reference sample.

g The number of strata to use; by default, its value is 5.

Details

The function takes the vector of propensities π(x) and calculates the weights to be applied in the
Horvitz-Thompson estimator using the formula that can be found in Lee (2006) and Lee and Valliant
(2009). The vector of propensities is divided in g strata (ideally five according to Cochran, 1968)
aiming to have individuals with similar propensities in each strata. After the stratification, weight
is calculated as follows for an individual i:

wi =
nr(gi)/nr

nv(gi)/nv

where gi represents the strata to which i belongs, nr(gi) and nv(gi) are the number of individuals
in the gi strata from the reference and the convenience sample respectively, and nr and nv are the
sample sizes for the reference and the convenience sample respectively.
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Value

A vector with the corresponding weights.

References

Lee, S. (2006). Propensity score adjustment as a weighting scheme for volunteer panel web surveys.
Journal of official statistics, 22(2), 329.

Lee, S., & Valliant, R. (2009). Estimation for volunteer panel web surveys using propensity score
adjustment and calibration adjustment. Sociological Methods & Research, 37(3), 319-343.

Cochran, W. G. (1968). The Effectiveness of Adjustment by Subclassification in Removing Bias in
Observational Studies. Biometrics, 24(2), 295-313

Examples

covariates = c("education_primaria", "education_secundaria")
data_propensities = propensities(sampleNP, sampleP, covariates)
lee_weights(data_propensities$convenience, data_propensities$reference)

matching Predicts unknown responses by matching

Description

It uses the matching method introduced by Rivers (2007). The idea is to model the relationship
between y_k and x_k using the convenience sample in order to predict y_k for the reference sample.
You can then predict the total using the ‘total_estimation‘ method.

Usage

matching(
convenience_sample,
reference_sample,
covariates,
estimated_var,
positive_label = NULL,
algorithm = "glm",
proc = NULL,
...

)

Arguments

convenience_sample

Data frame containing the non-probabilistic sample.
reference_sample

Data frame containing the probabilistic sample.
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covariates String vector specifying the common variables to use for training.

estimated_var String specifying the variable to estimate.

positive_label String specifying the label to be considered positive if the estimated variable is
categorical. Leave it as the default NULL otherwise.

algorithm A string specifying which classification or regression model to use (same as
caret’s method).

proc A string or vector of strings specifying if any of the data preprocessing tech-
niques available in train function from ‘caret‘ package should be applied to data
prior to the propensity estimation. By default, its value is NULL and no prepro-
cessing is applied.

... Further parameters to be passed to the train function.

Details

Training of the models is done via the ‘caret‘ package. The algorithm specified in algorithm must
match one of the names in the list of algorithms supported by ‘caret‘. If the estimated variable is
categorical, probabilities are returned.

Value

A vector containing the estimated responses for the reference sample.

References

Rivers, D. (2007). Sampling for Web Surveys. Presented in Joint Statistical Meetings, Salt Lake
City, UT.

Examples

#Simple example with default parameters
N = 50000
covariates = c("education_primaria", "education_secundaria")
if (is.numeric(sampleNP$vote_gen))

sampleNP$vote_gen = factor(sampleNP$vote_gen, c(0, 1), c('F', 'T'))
estimated_votes = data.frame(

vote_gen = matching(sampleNP, sampleP, covariates, "vote_gen", 'T')
)
total_estimation(estimated_votes, N / nrow(estimated_votes), c("vote_gen"), N)

mean_estimation Estimates the population means

Description

Estimates the means for the specified variables measured in a sample given some pre-calculated
weights.
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Usage

mean_estimation(sample, weights, estimated_vars, N = NULL)

Arguments

sample A data frame containing the sample with the variables for which the means are
to be calculated.

weights A vector of pre-calculated weights.

estimated_vars String vector specifying the variables in the sample to be estimated.

N An integer specifying the population size (optional).

Value

A vector with the corresponding estimations.

Examples

covariates = c("education_primaria", "education_secundaria")
data_propensities = propensities(sampleNP, sampleP, covariates)
psa_weights = sc_weights(data_propensities$convenience)
mean_estimation(sampleNP, psa_weights, c("vote_pens"))

model_assisted Calculates a model assisted estimation

Description

It uses the model assisted estimator introduced by Särndal et al. (1992).

Usage

model_assisted(
sample_data,
weights,
full_data,
covariates,
estimated_var,
estimate_mean = FALSE,
positive_label = NULL,
algorithm = "glm",
proc = NULL,
...

)
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Arguments

sample_data Data frame containing the sample.

weights Vector containing the sample weights.

full_data Data frame containing all the individuals contained in the population.

covariates String vector specifying the common variables to use for training.

estimated_var String specifying the variable to estimate.

estimate_mean Boolean specifying whether the mean estimation should be returned. Otherwise,
the total estimation is returned by default.

positive_label String specifying the label to be considered positive if the estimated variable is
categorical. Leave it as the default NULL otherwise.

algorithm A string specifying which classification or regression model to use (same as
caret’s method).

proc A string or vector of strings specifying if any of the data preprocessing tech-
niques available in train function from ‘caret‘ package should be applied to data
prior to the propensity estimation. By default, its value is NULL and no prepro-
cessing is applied.

... Further parameters to be passed to the train function.

Details

Training of the models is done via the ‘caret‘ package. The algorithm specified in algorithm must
match one of the names in the list of algorithms supported by ‘caret‘.

Value

The population total estimation (or mean if specified by the ‘estimate_mean‘ parameter).

References

Särndal, C. E., Swensson, B., & Wretman, J. (1992). Model assisted survey sampling. Springer,
New York.

Examples

#Simple example
covariates = c("education_primaria", "education_secundaria",

"age", "sex", "language")
if (is.numeric(sampleNP$vote_gen))

sampleNP$vote_gen = factor(sampleNP$vote_gen, c(0, 1), c('F', 'T'))
model_assisted(sampleNP, nrow(population) / nrow(sampleNP),

population, covariates, "vote_gen", positive_label = 'T', algorithm = 'glmnet')
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model_based Calculates a model based estimation

Description

It uses the model based estimator. The idea in order to estimate the population total is to add the
sample responses and the predicted responses for the individuals not contained in the sample. See
for example Valliant et al. (2000).

Usage

model_based(
sample_data,
full_data,
covariates,
estimated_var,
estimate_mean = FALSE,
positive_label = NULL,
algorithm = "glm",
proc = NULL,
...

)

Arguments

sample_data Data frame containing the sample.

full_data Data frame containing all the individuals contained in the population.

covariates String vector specifying the common variables to use for training.

estimated_var String specifying the variable to estimate.

estimate_mean Boolean specifying whether the mean estimation should be returned. Otherwise,
the total estimation is returned by default.

positive_label String specifying the label to be considered positive if the estimated variable is
categorical. Leave it as the default NULL otherwise.

algorithm A string specifying which classification or regression model to use (same as
caret’s method).

proc A string or vector of strings specifying if any of the data preprocessing tech-
niques available in train function from ‘caret‘ package should be applied to data
prior to the propensity estimation. By default, its value is NULL and no prepro-
cessing is applied.

... Further parameters to be passed to the train function.

Details

Training of the models is done via the ‘caret‘ package. The algorithm specified in algorithm must
match one of the names in the list of algorithms supported by ‘caret‘.
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Value

The population total estimation (or mean if specified by the ‘estimate_mean‘ parameter).

References

Valliant, R., Dorfman, A. H., & Royall, R. M. (2000) Finite population sampling and inference: a
prediction approach. Wiley, New York.

Examples

#Simple example
covariates = c("education_primaria", "education_secundaria",

"age", "sex", "language")
if (is.numeric(sampleNP$vote_gen))

sampleNP$vote_gen = factor(sampleNP$vote_gen, c(0, 1), c('F', 'T'))
model_based(sampleNP, population, covariates,

"vote_gen", positive_label = 'T', algorithm = 'glmnet')

model_calibrated Calculates a model calibrated estimation

Description

It uses the model calibrated estimator introduced by Wu et al. (2001).

Usage

model_calibrated(
sample_data,
weights,
full_data,
covariates,
estimated_var,
estimate_mean = FALSE,
positive_label = NULL,
algorithm = "glm",
proc = NULL,
...

)

Arguments

sample_data Data frame containing the sample.

weights Vector containing the sample weights.

full_data Data frame containing all the individuals contained in the population.

covariates String vector specifying the common variables to use for training.
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estimated_var String specifying the variable to estimate.

estimate_mean Boolean specifying whether the mean estimation should be returned. Otherwise,
the total estimation is returned by default.

positive_label String specifying the label to be considered positive if the estimated variable is
categorical. Leave it as the default NULL otherwise.

algorithm A string specifying which classification or regression model to use (same as
caret’s method).

proc A string or vector of strings specifying if any of the data preprocessing tech-
niques available in train function from ‘caret‘ package should be applied to data
prior to the propensity estimation. By default, its value is NULL and no prepro-
cessing is applied.

... Further parameters to be passed to the train function.

Details

Training of the models is done via the ‘caret‘ package. The algorithm specified in algorithm must
match one of the names in the list of algorithms supported by ‘caret‘.

Value

The population total estimation (or mean if specified by the ‘estimate_mean‘ parameter).

References

Wu, C., & Sitter, R. R. (2001). A model-calibration approach to using complete auxiliary informa-
tion from survey data. Journal of the American Statistical Association, 96(453), 185-193.

Examples

#Simple example
covariates = c("education_primaria", "education_secundaria",

"age", "sex", "language")
if (is.numeric(sampleNP$vote_gen))

sampleNP$vote_gen = factor(sampleNP$vote_gen, c(0, 1), c('F', 'T'))
model_calibrated(sampleNP, nrow(population) / nrow(sampleNP),

population, covariates, "vote_gen", positive_label = 'T', algorithm = 'glmnet')

population A full population

Description

A dataset of a simulated fictitious population of 50,000 individuals. Further details on the generation
of the dataset can be found in Ferri-García and Rueda (2018). The variables present in the dataset
are the following:
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• education_primaria. A binary variable indicating if the highest academic level achieved by the
individual is Primary Education.

• education_secundaria. A binary variable indicating if the highest academic level achieved by
the individual is Secondary Education.

• education_terciaria. A binary variable indicating if the highest academic level achieved by the
individual is Tertiary Education.

• age. A numeric variable, with values ranging from 18 to 100, indicating the age of the indi-
vidual.

• sex. A binary variable indicating if the individual is a man.

• language. A binary variable indicating if the individual is a native.

Usage

population

Format

An object of class data.frame with 50000 rows and 6 columns.

References

Ferri-García, R., & Rueda, M. (2018). Efficiency of propensity score adjustment and calibration
on the estimation from non-probabilistic online surveys. SORT-Statistics and Operations Research
Transactions, 1(2), 159-162.

propensities Calculates sample propensities

Description

Given a convenience sample and a reference sample, computes estimates on the propensity to par-
ticipate in the convenience sample based on classification models to be selected by the user.

Usage

propensities(
convenience_sample,
reference_sample,
covariates,
algorithm = "glm",
smooth = FALSE,
proc = NULL,
trControl = trainControl(classProbs = TRUE),
...

)



propensities 17

Arguments

convenience_sample

Data frame containing the non-probabilistic sample.

reference_sample

Data frame containing the probabilistic sample.

covariates String vector specifying the common variables to use for training.

algorithm A string specifying which classification or regression model to use (same as
caret’s method).

smooth A logical value; if TRUE, propensity estimates pi_i are smoothed applying the
formula (1000*pi_i + 0.5)/1001

proc A string or vector of strings specifying if any of the data preprocessing tech-
niques available in train function from ‘caret‘ package should be applied to data
prior to the propensity estimation. By default, its value is NULL and no prepro-
cessing is applied.

trControl A trainControl specifying the computational nuances of the train function.

... Further parameters to be passed to the train function.

Details

Training of the propensity estimation models is done via the ‘caret‘ package. The algorithm spec-
ified in algorithm must match one of the names in the list of algorithms supported by ‘caret‘.
Case weights are used to balance classes (for models that accept them). The smoothing formula
for propensities avoids mathematical irregularities in the calculation of sample weight when an
estimated propensity is 0 or 1. Further details can be found in Buskirk and Kolenikov (2015).

Value

A list containing ‘convenience‘ propensities and ‘reference‘ propensities.

References

Buskirk, T. D., & Kolenikov, S. (2015). Finding respondents in the forest: A comparison of logistic
regression and random forest models for response propensity weighting and stratification. Survey
Methods: Insights from the Field, 17.

Examples

#Simple example with default parameters
covariates = c("education_primaria", "education_secundaria")
propensities(sampleNP, sampleP, covariates)
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prop_estimation Estimates the population proportion

Description

Estimates the proportion of a given class or classes for the specified variables measured in a sample
given some pre-calculated weights.

Usage

prop_estimation(sample, weights, estimated_vars, class, N = NULL)

Arguments

sample A data frame containing the sample with the variables for which the means are
to be calculated.

weights A vector of pre-calculated weights.

estimated_vars String vector specifying the variables in the sample to be estimated.

class String vector specifying which class (value) proportion is to be estimated in
each variable. The i-th element of this vector corresponds to the class of which
proportion is desired to estimate of the i-th variable of the vector specified in
estimated_vars.

N An integer specifying the population size (optional).

Value

A vector with the corresponding estimations.

Examples

covariates = c("education_primaria", "education_secundaria")
data_propensities = propensities(sampleNP, sampleP, covariates)
psa_weights = sc_weights(data_propensities$convenience)

#The function will estimate the proportion of individuals
#with the 0 value in vote_pens and the 1 value in vote_pir
prop_estimation(sampleNP, psa_weights, c("vote_pens", "vote_pir"), c(0, 1))
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sampleNP A non-probabilistic sample

Description

A dataset of 1000 individuals extracted from the subpopulation of individuals with internet access
in a simulated fictitious population of 50,000 individuals. This sample attempts to reproduce a
case of nonprobability sampling with selection bias, as there are important differences between
the potentially covered population, the covered population and the full target population. Further
details on the generation of the dataset can be found in Ferri-García and Rueda (2018). The variables
present in the dataset are the following:

• vote_gen. A binary variable indicating if the individual vote preferences are for Party 1. This
variable is related to gender.

• vote_pens. A binary variable indicating if the individual vote preferences are for Party 2. This
variable is related to age.

• vote_pir. A binary variable indicating if the individual vote preferences are for Party 3. This
variable is related to age and internet access.

• education_primaria. A binary variable indicating if the highest academic level achieved by the
individual is Primary Education.

• education_secundaria. A binary variable indicating if the highest academic level achieved by
the individual is Secondary Education.

• education_terciaria. A binary variable indicating if the highest academic level achieved by the
individual is Tertiary Education.

• age. A numeric variable, with values ranging from 18 to 100, indicating the age of the indi-
vidual.

• sex. A binary variable indicating if the individual is a man.

• language. A binary variable indicating if the individual is a native.

Usage

sampleNP

Format

An object of class data.frame with 1000 rows and 9 columns.

References

Ferri-García, R., & Rueda, M. (2018). Efficiency of propensity score adjustment and calibration
on the estimation from non-probabilistic online surveys. SORT-Statistics and Operations Research
Transactions, 1(2), 159-162.
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sampleP A probabilistic sample

Description

A dataset of 500 individuals extracted with simple random sampling from a simulated fictitious
population of 50,000 individuals. Further details on the generation of the dataset can be found in
Ferri-García and Rueda (2018). The variables present in the dataset are the following:

• education_primaria. A binary variable indicating if the highest academic level achieved by the
individual is Primary Education.

• education_secundaria. A binary variable indicating if the highest academic level achieved by
the individual is Secondary Education.

• education_terciaria. A binary variable indicating if the highest academic level achieved by the
individual is Tertiary Education.

• age. A numeric variable, with values ranging from 18 to 100, indicating the age of the indi-
vidual.

• sex. A binary variable indicating if the individual is a man.

Usage

sampleP

Format

An object of class data.frame with 500 rows and 5 columns.

References

Ferri-García, R., & Rueda, M. (2018). Efficiency of propensity score adjustment and calibration
on the estimation from non-probabilistic online surveys. SORT-Statistics and Operations Research
Transactions, 1(2), 159-162.

sc_weights Calculates Schonlau and Couper weights

Description

Computes weights from propensity estimates using the (1 - pi_i)/pi_i formula introduced in Schon-
lau and Couper (2017).

Usage

sc_weights(propensities)
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Arguments

propensities A vector with the propensities associated to the elements of the convenience
sample.

Details

The function takes the vector of propensities π(x) and calculates the weights to be applied in the
Hajek estimator using the formula that can be found in Schonlau and Couper (2017). For an indi-
vidual i, weight is calculated as follows:

wi =
1− πi(x)

πi(x)

Value

A vector with the corresponding weights.

References

Schonlau, M., & Couper, M. P. (2017). Options for conducting web surveys. Statistical Science,
32(2), 279-292.

Examples

covariates = c("education_primaria", "education_secundaria")
data_propensities = propensities(sampleNP, sampleP, covariates)
sc_weights(data_propensities$convenience)

total_estimation Estimates the population totals

Description

Estimates the population totals for the specified variables measured in a sample given some pre-
calculated weights.

Usage

total_estimation(sample, weights, estimated_vars, N)

Arguments

sample A data frame containing the sample with the variables for which the estimated
population totals are to be calculated.

weights A vector of pre-calculated weights.

estimated_vars String vector specifying the variables in the sample to be estimated.

N An integer specifying the population size.
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Value

A vector with the corresponding estimations.

Examples

covariates = c("education_primaria", "education_secundaria")
data_propensities = propensities(sampleNP, sampleP, covariates)
psa_weights = sc_weights(data_propensities$convenience)
total_estimation(sampleNP, psa_weights, c("vote_pens"), 50000)

valliant_weights Calculates Valliant weights

Description

Computes weights from propensity estimates using the 1/pi_i formula introduced in Valliant (2019).

Usage

valliant_weights(propensities)

Arguments

propensities A vector with the propensities associated to the elements of the convenience
sample.

Details

The function takes the vector of propensities π(x) and calculates the weights to be applied in the
Hajek estimator using the formula that can be found in Valliant (2019). For an individual i, weight
is calculated as follows:

wi = 1/πi(x)

Value

A vector with the corresponding weights.

References

Valliant, R. (2019). Comparing Alternatives for Estimation from Nonprobability Samples. Journal
of Survey Statistics and Methodology, smz003, https://doi.org/10.1093/jssam/smz003

Examples

covariates = c("education_primaria", "education_secundaria")
data_propensities = propensities(sampleNP, sampleP, covariates)
valliant_weights(data_propensities$convenience)

https://doi.org/10.1093/jssam/smz003
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vd_weights Calculates Valliant and Dever weights

Description

Computes weights from propensity estimates using the propensity stratification 1/p_i averaging
formula introduced in Valliant and Dever (2011).

Usage

vd_weights(convenience_propensities, reference_propensities, g = 5)

Arguments

convenience_propensities

A vector with the propensities associated with the convenience sample.
reference_propensities

A vector with the propensities associated with the reference sample.
g The number of strata to use; by default, its value is 5.

Details

The function takes the vector of propensities π(x) and calculates the weights to be applied in the
Horvitz-Thompson estimator using the formula that can be found in Valliant and Dever (2019). The
vector of propensities is divided in g strata (ideally five according to Cochran, 1968) aiming to have
individuals with similar propensities in each strata. After the stratification, weight is calculated as
follows for an individual i:

wi =
n(gi)∑

k∈gi
πk(x)

where gi represents the strata to which i belongs, and n(gi) is the number of individuals in the gi
strata.

Value

A vector with the corresponding weights.

References

Valliant, R., & Dever, J. A. (2011). Estimating propensity adjustments for volunteer web surveys.
Sociological Methods & Research, 40(1), 105-137.

Cochran, W. G. (1968). The Effectiveness of Adjustment by Subclassification in Removing Bias in
Observational Studies. Biometrics, 24(2), 295-313

Examples

covariates = c("education_primaria", "education_secundaria")
data_propensities = propensities(sampleNP, sampleP, covariates)
vd_weights(data_propensities$convenience, data_propensities$reference)
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