
Package ‘NetFACS’
January 20, 2025

Title Network Applications to Facial Communication Data

Version 0.5.0

Date 2022-12-06

Description Functions to analyze and visualize communication data,
based on network theory and resampling methods.
Farine, D. R. (2017) <doi:10.1111/2041-210X.12772>;
Carsey, T., & Harden, J. (2014) <doi:10.4135/9781483319605>.
Primarily targeted at datasets of facial expressions coded with the Facial Action Coding System.
Ekman, P., Friesen, W. V., & Hager, J. C. (2002). ``Facial action coding system -
investigator's guide'' <https://www.paulekman.com/facial-action-coding-system/>.

License Apache License (>= 2.0)

Encoding UTF-8

LazyData true

Suggests testthat (>= 3.0.0), knitr, rmarkdown

Depends R (>= 3.5.0)

Imports arrangements, doParallel, dplyr, igraph, ggplot2, ggraph,
magrittr, patchwork, parallel, picante, rlang, Rfast, tibble,
tidygraph, tidyr, vctrs, methods

RoxygenNote 7.2.1

NeedsCompilation yes

ByteCompile true

VignetteBuilder knitr

Config/testthat/edition 3

Author Alex Mielke [aut],
Bridget M. Waller [aut],
Claire Perez [aut],
Alan V. Rincon [aut, cre],
Julie Duboscq [aut],
Jerome Micheletta [aut]

Maintainer Alan V. Rincon <avrincon1@gmail.com>

Repository CRAN

Date/Publication 2022-12-06 17:32:35 UTC

1

https://doi.org/10.1111/2041-210X.12772
https://doi.org/10.4135/9781483319605
https://www.paulekman.com/facial-action-coding-system/

2 Contents

Contents
add_inactive_single_units . 3
calculate_combination_size . 3
conditional_probabilities . 4
define_contexts . 5
define_joint_prob . 5
distribution.plot . 6
element.plot . 6
element.specificity . 7
emotions_set . 8
entropy.overall . 8
entropy_overall . 9
equal_observations . 10
event_size_plot . 10
get_active_elements . 11
get_data . 11
is.netfacs . 12
is.netfacs_multiple . 12
is.netfacs_specificity . 12
letternet . 13
multiple.netfacs . 13
multiple_netfacs_network . 14
multiple_network_plot . 16
mutual.information . 17
mutual.information.condition . 18
netfacs . 19
netfacs.reciprocity . 21
netfacs_bootstrap . 22
netfacs_extract . 23
netfacs_multiple . 24
netfacs_network . 26
netfacs_randomize . 27
network.conditional . 28
network_conditional . 28
network_plot . 30
network_summary . 31
network_summary_graph . 32
overlap.network . 33
overlap_network . 34
possible_combinations . 35
prepare.netfacs . 36
print.netfacs . 38
print.netfacs_multiple . 38
probability_of_combination . 39
probability_of_event_size . 39
sim_facs . 40
specificity . 41

add_inactive_single_units 3

specificity_increase . 42
summarise_combination . 43
summarise_event_size . 43
upsample . 44
validate_condition . 45
validate_data . 45

Index 46

add_inactive_single_units

Add inactive (missing) single units

Description

Add inactive (missing) single units

Usage

add_inactive_single_units(d, single.units)

Arguments

d A dataframe, result of probability_of_combination

single.units A character vector of single AUs

calculate_combination_size

Calculate combination size

Description

Calculate combination size

Usage

calculate_combination_size(x)

Arguments

x A character vector of AU combinations, sep by _

Value

A vector

4 conditional_probabilities

conditional_probabilities

Summarise dyadic combination of elements

Description

For all dyadic combinations that appear in the test dataset, this function returns the probability of
A occurring (P(A)), the probability of B occurring (P(B)), the probability of A and B occurring
simultaneously (P(AandB)) and, the probability of A given B (P(A|B)).

Usage

conditional_probabilities(netfacs.data)

Arguments

netfacs.data An object of class netfacs or netfacs_multiple

Value

A summary tibble

See Also

network_conditional

Examples

data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
ran.trials = 50,
combination.size = 2

)

conditional_probabilities(angry.face)

define_contexts 5

define_contexts Define truth for AUs active in different contexts

Description

Define truth for AUs active in different contexts

Usage

define_contexts(aus, n_active_aus, contexts = NULL, au_fidelity = 1)

Arguments

aus A character vector of AUs

n_active_aus A numeric vector, the same length as contexts, indicating the number of AUs
active per context.

contexts A character vector of contexts

au_fidelity A number between 1 and 0.5, indicating the probability that an AU is active in a
context.

Value

A matrix of probabilities with contexts in rows and AUs in columns

define_joint_prob Joint probability distribution of AUs

Description

Joint probability distribution of AUs

Usage

define_joint_prob(aus, n_jp = 2, min_jp = 0.5)

Arguments

aus A character vector of AUs

n_jp Number of joint probabilities >0

min_jp Minimum joint probability. Must be between 0 and 1

6 element.plot

distribution.plot Plots the observed probability for an element against the distribution
of the null model

Description

The function takes all single elements in a netfacs object, and plots the distribution of probabilities
under the null hypothesis, marking where the observed probability falls

Usage

distribution.plot(netfacs.data)

Arguments

netfacs.data object resulting from netfacs() function

Value

Function returns a ggplot showing for each element the distribution of expected probabilities (blue)
and the observed probability (black line)

Examples

how do angry facial expressions differ from non-angry ones?
data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
ran.trials = 100,
combination.size = 2

)

show distribution of AU4
distribution.plot(netfacs.data = angry.face)$"4"

element.plot Plots the observed and expected probabilities for the basic elements
based on the condition

Description

The function takes all single elements in a netfacs object, and plots the observed value and the
expected value based on all randomisations

element.specificity 7

Usage

element.plot(netfacs.data)

Arguments

netfacs.data object resulting from netfacs() function

Value

Function returns a ggplot showing for each element the observed probability and expected proba-
bility

Examples

how do angry facial expressions differ from non-angry ones?
data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
ran.trials = 100,
combination.size = 2

)
plot all
element.plot(netfacs.data = angry.face)

element.specificity (Defunct) Tests how much each element increases the specificity of all
combinations it is in

Description

This function is defunct Please see specificity_increase instead

Usage

element.specificity(netfacs.data)

Arguments

netfacs.data object resulting from netfacs function

8 entropy.overall

emotions_set Letter Data

Description

Data from the Extended Cohn-Kanade database, FACS data and emotions for posed images

Usage

data(emotions_set)

Format

An object of class.

References

Lucey P, Cohn JF, Kanade T, Saragih J, Ambadar Z, Matthews I (2010) The extended Cohn-Kanade
dataset (CK+): A complete dataset for action unit and emotion-specified expression. In: 2010 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, CVPRW
2010. pp 94-101

entropy.overall (Deprecated) Calculate information content of the dataset

Description

This function is deprecated. Please see entropy_overall instead

Usage

entropy.overall(x, netfacs.data)

Arguments

x An object of class netfacs or simply a binary matrix of 0s and 1s, with elements
in columns and events in rows.

netfacs.data deprecated. Please use x instead.

entropy_overall 9

entropy_overall Calculate information content of the dataset

Description

Compares the observed and expected information content of the dataset.

Usage

entropy_overall(x)

Arguments

x An object of class netfacs or simply a binary matrix of 0s and 1s, with elements
in columns and events in rows.

Value

Function returns a summary tibble containing the observed entropy, expected entropy and entropy
ratio (observed / expected) of the dataset. Observed entropy is calculated using Shannon’s informa-
tion entropy formula −

∑n
i=1 pi log(pi). Expected entropy is based on randomization (shuffling the

observed elements while maintaining the number of elements per row) and represents the maximum
entropy that a dataset with the same properties as this one can reach. Ratios closer to 0 are more
ordered; ratios closer to 1 are more random.

References

Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal.
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Examples

how do angry facial expressions differ from non-angry ones?
data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
ran.trials = 100,
combination.size = 2

)

entropy_overall(angry.face)

10 event_size_plot

equal_observations Check that ALL objects have the same number of observations

Description

lenght(vector), nrow(matrix), nrow(dataframe)

Usage

equal_observations(x, ...)

Arguments

x Object to compare number of observations

... Additional objects to compare number of observations

Value

Logical

event_size_plot Plots the probability that a combination of a certain size appears

Description

The function takes all combination size in a netfacs object, and plots the distribution of ratios
between the observed value and all randomisations

Usage

event_size_plot(netfacs.data)

event.size.plot(netfacs.data)

Arguments

netfacs.data object resulting from netfacs() function

Value

Function returns a ggplot showing for each combination size the observed and expected probabilities
of occurrance

get_active_elements 11

Examples

how do angry facial expressions differ from non-angry ones?
data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
ran.trials = 100,
combination.size = 2

)

event_size_plot(angry.face)

get_active_elements Extract active elements from matrix

Description

Extract active elements from matrix

Usage

get_active_elements(m)

Arguments

m A binary matrix where 1 indicates an element was active. colnames(m) must
contain the element names

Value

A list of vectors

get_data Extract used data from a netfacs object

Description

Extract used data from a netfacs object

Usage

get_data(x, condition = "all")

Arguments

x extract data from the test condition of a netfacs object
condition one of "all" (default), "test" or "null".

12 is.netfacs_specificity

is.netfacs Checks if argument is a netfacs object

Description

Checks if argument is a netfacs object

Usage

is.netfacs(x)

Arguments

x An R object

is.netfacs_multiple Checks if argument is a netfacs_multiple object

Description

Checks if argument is a netfacs_multiple object

Usage

is.netfacs_multiple(x)

Arguments

x An R object

is.netfacs_specificity

Checks if argument is a netfacs_specificity object

Description

Checks if argument is a netfacs_specificity object

Usage

is.netfacs_specificity(x)

Arguments

x An R object

letternet 13

letternet Letter Data

Description

Data from the German, English, and French Versions of The Communist Manifesto, to have large
datasets to test different functions in this package for now

Usage

data(letternet)

Format

An object of class.

References

Marx & Engels, ’The Communist Manifesto’

multiple.netfacs (Deprecated) Applies the netfacs function across multiple levels of
the condition and puts them in a list

Description

This function is deprecated. Please see netfacs_multiple instead

Usage

multiple.netfacs(
data,
condition = NULL,
duration = NULL,
ran.trials = 1000,
control = NULL,
random.level = NULL,
combination.size = NULL,
tail = "upper.tail",
use_parallel = TRUE,
n_cores = 2

)

14 multiple_netfacs_network

Arguments

data A binary matrix with one column per element, and one row per event, consisting
of 1 (element was active during that event) and 0 (element was not active).

condition character vector of same length as ’data’ that contains information on the condi-
tion each event belongs to, so probabilities can be compared across conditions

duration A numeric vector that contains information on the duration of each event; if
NULL, all events are assumed to have equal duration.

ran.trials Number of randomisations that will be performed to find the null distribution.

control A list of vectors that are used as control variables. During bootstraps, the ratio of
events in each level will be adapted. So, for example, if in the test distribution,
there are three angry participants for each happy participant, the null distribution
will maintain that ratio.

random.level A character vector of the level on which the randomization should take place.
If NULL, the randomization takes place on the event level (i.e., every row can
either be selected or not); if a vector is provided, the randomization takes place
on the levels of that vector rather than individual events.

combination.size

A positive integer, indicating the maximum combination size of element combi-
nations. Higher numbers will increase computation time. Default is 2.

tail Either ’upper.tail’ (proportion of null probabilities that are larger than observed
probabilities), or ’lower.tail’ (proportion of null probabilities that are smaller
than observed probabilities); default is ’upper.tail’.

use_parallel Logical, indicating whether randomization or bootstrap should be parallelized
(default is TRUE)

n_cores Numeric, indicating the number cores to be used for parallelization. Default is
2.

Value

Function returns for each level of the condition a list equivalent to the results of the netfacs function;
can be used to create multiple networks and graphs at the same time

multiple_netfacs_network

Creates network objects out of the netfacs data

Description

Takes the results of the nefacs object for combinations of 2 elements and turns them into a network
object (class igraph and tbl_graph) that can be used for further plotting and analyses

multiple_netfacs_network 15

Usage

multiple_netfacs_network(
netfacs.list,
link = "unweighted",
significance = 0.01,
min.count = 1,
min.prob = 0,
ignore.element = NULL

)

multiple.netfacs.network(
netfacs.list,
link = "unweighted",
significance = 0.01,
min.count = 1,
min.prob = 0,
ignore.element = NULL

)

Arguments

netfacs.list list of multiple objects resulting from netfacs function or the netfacs_multiple
function

link determines how nodes/elements are connected. ’unweighted’ gives a 1 to sig-
nificant connections and 0 to all others; ’weighted’ gives the difference between
observed and expected probability of co-occurrence; ’raw’ just uses the observed
probability of co-occurrence; ’SRI’ uses the simple ratio index/affinity (proba-
bility of co-occurrence/ (probabilities of each element and the combination))

significance numeric value, determining the p-value below which combinations are consid-
ered to be dissimilar enough from the null distribution

min.count numeric value, suggesting how many times a combination should at least occur
to be displayed

min.prob numeric value, suggesting the probability at which a combination should at least
occur to be displayed

ignore.element vector of elements that will not be considered for the network, e.g. because they
are too common or too rare or their interpretation is not relevant here

Value

Function returns a network object where the nodes are the elements, edges represent their co-
occurrence, and the vertex and edge attributes contain all additional information from the netfacs
object

Examples

data(emotions_set)
emo.faces <- netfacs_multiple(

16 multiple_network_plot

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
ran.trials = 10, # only for example
combination.size = 2

)

emo.nets <- multiple_netfacs_network(emo.faces)

multiple_network_plot Plots networks for multiple conditions

Description

The function takes multiple network objects and plots them next to each other while keeping the
element positions etc constant. Uses ggraph function

Usage

multiple_network_plot(netfacs.graphs, sig.level = 0.01, sig.nodes.only = FALSE)

multiple.network.plot(netfacs.graphs, sig.level = 0.01, sig.nodes.only = FALSE)

Arguments

netfacs.graphs List of network objects resulting from netfacs_multiple function or multiple_netfacs_network
function

sig.level Numeric between 0 and 1. P value used to determine whether nodes are signifi-
cant. Default = 0.01.

sig.nodes.only Logical. Should only nodes that were significant in _at least_ one of the net-
works be included in the plots? Default = FALSE.

Value

Function returns a ggraph plot showing connections between nodes in the different networks. El-
ements that are significantly more likely to occur than expected are large, non-significant elements
are small, and absent elements are absent.

Examples

data(emotions_set)
emo.faces <- netfacs_multiple(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
duration = NULL,
ran.trials = 10, # only for example
control = NULL,
random.level = NULL,
combination.size = 2

mutual.information 17

)

emo.nets <- multiple_netfacs_network(emo.faces, min.count = 5)
multiple_network_plot(emo.nets)

mutual.information Calculates the pointwise mutual information of units with each other

Description

Calculates the pointwise mutual information of units with each other

Usage

mutual.information(netfacs.data)

Arguments

netfacs.data object resulting from netfacs() function

Value

Function returns a dataframe that includes all combinations, their occurrence counts and probabil-
ities, and the pointwise mutual information (standardised between -1 and 1). 1 means seeing one
necessitates seeing the other, -1 means one precludes the other

Examples

how do angry facial expressions differ from non-angry ones?

data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = NULL,
test.condition = NULL,
ran.trials = 100,
combination.size = 4

)

mutual.information(angry.face)

18 mutual.information.condition

mutual.information.condition

Tests how much each element increases the specificity of all combina-
tions it is in

Description

The function takes all elements and dyadic combinations of elements in a netfacs object, goes
through all combinations these elements are in, and compares the specificity (strength with which
the combination identifies the test condition) of all combinations with the element and the same
combinations without the element, to test how much specificity the element adds when added to a
signal. Only works for netfacs objects based on comparison between conditions.

Usage

mutual.information.condition(netfacs.data)

Arguments

netfacs.data object resulting from netfacs() function

Value

Function returns a list with two data frames that include all elements and first-order combinations
that occur at all, the number of combinations that each element/combination is part of, and how
much adding this element to a combination adds on average to its specificity, and how often it
occurs

Examples

how do angry facial expressions differ from non-angry ones?

data(emotions_set)
angry.face <- netfacs(
data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
null.condition = NULL,
ran.trials = 100,
combination.size = 4

)

head(mutual.information.condition(angry.face), 20)

netfacs 19

netfacs Create probability distribution of combinations of elements in the data

Description

The netfacs function underlies most other functions in this package.
It takes the data set and reports the observed and expected probabilities that elements and combina-
tions of elements occur in this data set, and whether this differs from a null condition.

Usage

netfacs(
data,
condition = NULL,
test.condition = NULL,
null.condition = NULL,
duration = NULL,
ran.trials = 1000,
control = NULL,
random.level = NULL,
combination.size = 2,
tail = "upper.tail",
use_parallel = TRUE,
n_cores = 2

)

Arguments

data A binary matrix with one column per element, and one row per event, consisting
of 1 (element was active during that event) and 0 (element was not active).

condition A character vector the same length as ’data’ that contains information on the
condition each event belongs to, so probabilities can be compared across condi-
tions; if NULL, all events will be tested against a random null condition based
on permutations.

test.condition A string, indicating the level of ’condition’ that is supposed to be tested.

null.condition A string, indicating the level of ’condition’ that is used to create the null dis-
tribution of values; if NULL, all levels that are not the test condition will be
used.

duration A numeric vector that contains information on the duration of each event; if
NULL, all events are assumed to have equal duration.

ran.trials Number of randomisations that will be performed to find the null distribution.

control A list of vectors that are used as control variables. During bootstraps, the ratio of
events in each level will be adapted. So, for example, if in the test distribution,
there are three angry participants for each happy participant, the null distribution
will maintain that ratio.

20 netfacs

random.level A character vector of the level on which the randomization should take place.
If NULL, the randomization takes place on the event level (i.e., every row can
either be selected or not); if a vector is provided, the randomization takes place
on the levels of that vector rather than individual events.

combination.size

A positive integer, indicating the maximum combination size of element combi-
nations. Higher numbers will increase computation time. Default is 2.

tail Either ’upper.tail’ (proportion of null probabilities that are larger than observed
probabilities), or ’lower.tail’ (proportion of null probabilities that are smaller
than observed probabilities); default is ’upper.tail’.

use_parallel Logical, indicating whether randomization or bootstrap should be parallelized
(default is TRUE)

n_cores Numeric, indicating the number cores to be used for parallelization. Default is
2.

Details

If the ’condition’ and ’test.condition’ arguments are specified, the null distribution of probability
values are based on bootstraps of the null condition. If the ’condition’ argument is not specified, the
null distribution is based on random permutations of the data.

For a general overview on how to use the netfacs function and package see vignette("netfacs_tutorial").

Value

An object of class netfacs, which contains the probabilities of observing element combinations
in the data, along with other useful information. The resulting object is the basis for most other
functions in this package.

Author(s)

Alex Mielke, Alan V. Rincon

References

Mielke, A., Waller, B. M., Perez, C., Rincon, A. V., Duboscq, J., & Micheletta, J. (2021). NetFACS:
Using network science to understand facial communication systems. Behavior Research Methods.
https://doi.org/10.3758/s13428-021-01692-5

See Also

netfacs_multiple, netfacs_extract, conditional_probabilities

Examples

how do angry facial expressions differ from non-angry ones?

data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],

netfacs.reciprocity 21

condition = emotions_set[[2]]$emotion,
test.condition = "anger",
null.condition = NULL,
duration = NULL,
ran.trials = 100,
control = NULL,
random.level = NULL,
combination.size = 5,
tail = "upper.tail",
use_parallel = TRUE,
n_cores = 2

)

head(angry.face$result, 20)
angry.face$event.size.information

netfacs.reciprocity Calculate reciprocity of probabilities that two elements appear to-
gether

Description

For all dyadic combinations that ever appear, this function calculates how reciprocal the conditional
probabilities (i.e. probability of A given B, and B given A) of the two elements are. Combinations
that are highly reciprocal indicate that the two elements always occur together and might repre-
sent a fixed combination, while low reciprocity might indicate that one element is an extension of
the other. Values approaching -1 indicate that one element is strongly dependent on the other, but
this is not reciprocated; values around 0 indicate that neither is conditional on the other; and val-
ues approaching 1 indicate that both values are conditional on each other. If P[A|B] is the larger
conditional probability, the reciprocity is calculated as reciprocity = ((P[B|A]/P[A|B]) - (P[A|B] -
P[B|A])) * P[A|B].

Usage

netfacs.reciprocity(netfacs.data)

Arguments

netfacs.data object resulting from netfacs() function

Value

Function returns a data frame with each combination, the reciprocity of conditional occurrence from
-1 (one element entirely depends on the other, but not vice versa) to 1 (both elements always occur
together)

The directions and conditional probabilities of both elements are also returned

22 netfacs_bootstrap

Examples

how do angry facial expressions differ from non-angry ones?
data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
ran.trials = 100,
combination.size = 2

)

netfacs.reciprocity(angry.face)

netfacs_bootstrap Calculate expected probability from single bootstrap

Description

Calculate expected probability from single bootstrap

Usage

netfacs_bootstrap(
subject,
subject.weight,
null.subjects,
null.elements,
test.combinations,
max.combination.size,
max.event.size

)

Arguments

subject A character vector of unique subjects present in the data
subject.weight A numeric vector of weights to be used when sampling subjects
null.subjects A denoting the subject of null.elements
null.elements A list of active elements in the null condition
test.combinations

A vector denoting AU combinations that are present in the test data
max.combination.size

A positive integer indicating the maximum AU combination size considered in
the bootstrap

max.event.size A positive integer indicating the maximum event size to be considered

Value

A list of bootstrapped probabilities for combinations and event sizes

netfacs_extract 23

netfacs_extract Extract results from a netfacs object

Description

Extract results from a netfacs object.

Usage

netfacs_extract(
netfacs.data,
combination.size = NULL,
significance = 1,
min.count = 0,
min.prob = 0

)

netfacs.extract(
netfacs.data,
combination.size = NULL,
significance = 1,
min.count = 0,
min.prob = 0

)

Arguments

netfacs.data An object of class netfacs.

combination.size

Numeric, denoting the combination size(s) that should be extracted. If NULL
(default), all combination sizes are returned.

significance Numeric value between 0 and 1, determining the p-value below which combi-
nations are considered to be dissimilar enough from the null distribution.

min.count Numeric, denoting the minimum number of times an element combination oc-
curred.

min.prob Numeric value between 0 and 1, denoting the minimum probability an element
combination occurred to be displayed.

Value

Function returns a tibble data.frame that contains the results of the netfacs object. By default,
returns all results for all observed combinations, but can optionally pre-filter results.

24 netfacs_multiple

Examples

how do angry facial expressions differ from non-angry ones?
data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
ran.trials = 10,
combination.size = 2

)

netfacs_extract(angry.face)

netfacs_multiple Applies the netfacs function across multiple levels of the condition
and puts them in a list

Description

Take dataset and report observed and expected likelihood that elements and combinations of ele-
ments occur in this dataset, and whether this differs from a null condition. Expected values are based
on bootstraps of null distribution, so the values represent distribution of element co-occurrence un-
der null condition. The resulting object is the basis for most other functions in this package.

Usage

netfacs_multiple(
data,
condition,
duration = NULL,
ran.trials = 1000,
control = NULL,
random.level = NULL,
combination.size = 2,
tail = "upper.tail",
use_parallel = TRUE,
n_cores = 2

)

Arguments

data A binary matrix with one column per element, and one row per event, consisting
of 1 (element was active during that event) and 0 (element was not active).

condition character vector of same length as ’data’ that contains information on the condi-
tion each event belongs to, so probabilities can be compared across conditions

duration A numeric vector that contains information on the duration of each event; if
NULL, all events are assumed to have equal duration.

netfacs_multiple 25

ran.trials Number of randomisations that will be performed to find the null distribution.

control A list of vectors that are used as control variables. During bootstraps, the ratio of
events in each level will be adapted. So, for example, if in the test distribution,
there are three angry participants for each happy participant, the null distribution
will maintain that ratio.

random.level A character vector of the level on which the randomization should take place.
If NULL, the randomization takes place on the event level (i.e., every row can
either be selected or not); if a vector is provided, the randomization takes place
on the levels of that vector rather than individual events.

combination.size

A positive integer, indicating the maximum combination size of element combi-
nations. Higher numbers will increase computation time. Default is 2.

tail Either ’upper.tail’ (proportion of null probabilities that are larger than observed
probabilities), or ’lower.tail’ (proportion of null probabilities that are smaller
than observed probabilities); default is ’upper.tail’.

use_parallel Logical, indicating whether randomization or bootstrap should be parallelized
(default is TRUE)

n_cores Numeric, indicating the number cores to be used for parallelization. Default is
2.

Value

An object of class netfacs_multiple, which contains the probabilities of observing element com-
binations in one condition vs. all other conditions, along with other useful information. The result-
ing object is the basis for most other functions in this package.

See Also

netfacs, netfacs_extract,

Examples

data(emotions_set)
emo.faces <- netfacs_multiple(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
ran.trials = 10, # only for example
combination.size = 2

)

netfacs_extract(emo.faces)

26 netfacs_network

netfacs_network Creates a network object out of the netfacs data

Description

Takes the results of the nefacs object for combinations of 2 elements and turns them into a network
object (igraph) that can be used for further plotting and analyses

Usage

netfacs_network(
netfacs.data,
link = "unweighted",
significance = 0.01,
min.count = 1,
min.prob = 0,
ignore.element = NULL

)

netfacs.network(
netfacs.data,
link = "unweighted",
significance = 0.01,
min.count = 1,
min.prob = 0,
ignore.element = NULL

)

Arguments

netfacs.data object resulting from netfacs function

link determines how nodes/elements are connected. ’unweighted’ gives a 1 to sig-
nificant connections and 0 to all others; ’weighted’ gives the difference between
observed and expected probability of co-occurrence; ’raw’ just uses the observed
probability of co-occurrence

significance numeric value, determining the p-value below which combinations are consid-
ered to be dissimilar enough from the null distribution

min.count numeric value, suggesting how many times a combination should at least occur
to be displayed

min.prob numeric value, suggesting the probability at which a combination should at least
occur to be displayed

ignore.element vector of elements that will not be considered for the network, e.g. because they
are too common or too rare or their interpretation is not relevant here

netfacs_randomize 27

Value

Function returns a network object where the nodes are the elements, edges represent their co-
occurrence, and the vertex and edge attributes contain all additional information from the netfacs
object

Examples

data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
ran.trials = 100,
combination.size = 2

)

anger.net <- netfacs_network(
netfacs.data = angry.face,
link = "unweighted",
significance = 0.01,
min.count = 1

)

netfacs_randomize Calculate probabilities from single randomization

Description

Calculate probabilities from single randomization

Usage

netfacs_randomize(m, test.combinations, max.combination.size, max.event.size)

Arguments

m A numeric matrix
test.combinations

A vector of AU combinations observed in test data
max.combination.size

A positive integer

max.event.size A Positive integer

Value

A list of randomized probabilities for combinations and event sizes

28 network_conditional

network.conditional (Deprecated) Produce conditional probabilities of dyads of elements,
and graph object based on conditional probabilities

Description

This function is deprecated. Please see network_conditional instead

Usage

network.conditional(
netfacs.data,
min.prob = 0,
min.count = 0,
ignore.element = NULL,
plot.bubbles = FALSE

)

Arguments

netfacs.data object resulting from netfacs or conditional_probabilities functions.

min.prob minimum conditional probability that should be shown in the graph

min.count minimum number of times that a combination should occur before being in-
cluded in the graph

ignore.element string vector, can be used to exclude certain elements when creating the plots

plot.bubbles if TRUE (default), then the nodes in the network plots will be surrounded by
bubbles; if FALSE, the edges connect the names directly

Value

Function returns a dataframe that includes all dyadic combinations and their observed and condi-
tional probabilities

network_conditional Create a network based on conditional probabilities of dyads of ele-
ments

Description

This is a convenience function to create and visualize a network of conditional probabilities for all
dyadic element combinations of a netfacs object. Conditional probabilities are calculated using
the conditional_probabilities function.

network_conditional 29

Usage

network_conditional(
netfacs.data,
min.prob = 0,
min.count = 0,
ignore.element = NULL,
plot.bubbles = TRUE

)

Arguments

netfacs.data object resulting from netfacs or conditional_probabilities functions.

min.prob minimum conditional probability that should be shown in the graph

min.count minimum number of times that a combination should occur before being in-
cluded in the graph

ignore.element string vector, can be used to exclude certain elements when creating the plots

plot.bubbles if TRUE (default), then the nodes in the network plots will be surrounded by
bubbles; if FALSE, the edges connect the names directly

Value

Function returns named list that includes a tbl_graph network and a ggraph plot.

See Also

netfacs, conditional_probabilities

Examples

how do angry facial expressions differ from non-angry ones?
data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
ran.trials = 100,
combination.size = 2

)

conditional.probs <- conditional_probabilities(angry.face)

network_conditional(
netfacs.data = conditional.probs,
min.prob = 0.01,
min.count = 3,
ignore.element = "25",
plot.bubbles = FALSE

)

30 network_plot

network_plot Plots a network object

Description

Plots the network created using the netfacs_network function; for networks with clear clusterin
of elements, clusters can get different colours

Usage

network_plot(
netfacs.graph,
title = "network",
clusters = FALSE,
plot.bubbles = FALSE,
hide.unconnected = TRUE

)

network.plot(
netfacs.graph,
title = "network",
clusters = FALSE,
plot.bubbles = FALSE,
hide.unconnected = TRUE

)

Arguments

netfacs.graph igraph network object resulting from netfacs_network

title string of the graph’s main title

clusters if TRUE, cluster_fast_greedy is used to establish possible clusters in the
dataset

plot.bubbles if TRUE, then the nodes in the network plots will be surrounded by bubbles; if
FALSE, the edges connect the names directly

hide.unconnected

if TRUE, then the nodes that do not have any significant connections will be
hidden in the plot

Value

Function returns a ggraph plot of the network, where the size of nodes indicates how often they
occur on their own, and edges indicate significant co-occurrence between them

network_summary 31

Examples

data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
ran.trials = 10,
combination.size = 2

)

anger.net <- netfacs_network(
netfacs.data = angry.face,
link = "unweighted",
significance = 0.01,
min.count = 1

)

network_plot(anger.net,
title = "Angry Faces",
clusters = FALSE,
plot.bubbles = TRUE)

network_summary Returns all kinds of network measures for the netfacs network

Description

Calculates node level centrality measures from the network object

Usage

network_summary(netfacs.graph)

network.summary(netfacs.graph)

Arguments

netfacs.graph igraph network object resulting from netfacs_network function

Value

Function returns a data frame with the element, its ’strength’ (mean probability of co-occurrence),
’eigenvector’ centrality (connection to other highly connected elements), ’betweenness’ centrality
(number of connections running through the element), and a number of other network measures

32 network_summary_graph

Examples

data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
ran.trials = 10,
combination.size = 2

)

anger.net <- netfacs_network(
netfacs.data = angry.face,
link = "unweighted",
significance = 0.01,
min.count = 1

)

network_summary(anger.net)

network_summary_graph Returns all kinds of graph-level network measures for the netfacs net-
work

Description

Calculates graph level summary measures from the network object

Usage

network_summary_graph(netfacs.net)

network.summary.graph(netfacs.net)

Arguments

netfacs.net igraph network object resulting from netfacs_network function

Value

Function returns a dataframe with the number of elements in the graph, the number of connected
edges, mean strength of connections, transitivity (mean number of closed triads), diameter (furthest
path between two elements), degree centralization, and mean distance between elements

Examples

data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,

overlap.network 33

test.condition = "anger",
ran.trials = 10,
combination.size = 2

)

anger.net <- netfacs_network(
netfacs.data = angry.face,
link = "unweighted",
significance = 0.01,
min.count = 1

)

network_summary_graph(anger.net)

overlap.network (Deprecated) Plots the overlap of multiple conditions as bipartite net-
work.

Description

This function is deprecated. Please see overlap_network instead

Usage

overlap.network(
netfacs.list,
min.prob = 0,
min.count = 5,
significance = 0.01,
specificity = 0.1,
ignore.element = NULL,
clusters = FALSE,
plot.bubbles = FALSE

)

Arguments

netfacs.list list of objects resulting from netfacs or netfacs_multiple

min.prob minimum conditional probability that should be shown in the graph

min.count minimum number of times that a combination should occur before being in-
cluded in the graph

significance sets the level of significance that combinations have to pass before added to the
network

specificity for the ’reduced’ graph, select only elements that surpass this context specificity
value

ignore.element string vector, can be used to exclude certain elements when creating the plots

34 overlap_network

clusters boolean; if TRUE, the cluster_fast_greedy algorithm is used to detect underlying
community structure, based on the occurrence probability network

plot.bubbles if TRUE, then the nodes in the network plots will be surrounded by bubbles; if
FALSE, the edges connect the names directly

overlap_network Plots the overlap of multiple conditions as bipartite network

Description

The function takes multiple netfacs objects and plots how different elements connect the conditions,
based on the conditional probabilities that the element occurs in the condition and that the condition
is seen when the element is present

Usage

overlap_network(
x,
min.prob = 0,
min.count = 5,
significance = 0.01,
specificity = 0.1,
ignore.element = NULL,
clusters = FALSE,
plot.bubbles = TRUE

)

Arguments

x list of objects resulting from specificity or netfacs

min.prob minimum conditional probability that should be shown in the graph

min.count minimum number of times that a combination should occur before being in-
cluded in the graph

significance sets the level of significance that combinations have to pass before added to the
network

specificity for the ’reduced’ graph, select only elements that surpass this context specificity
value

ignore.element string vector, can be used to exclude certain elements when creating the plots

clusters boolean; if TRUE, the cluster_fast_greedy algorithm is used to detect underlying
community structure, based on the occurrence probability network

plot.bubbles if TRUE, then the nodes in the network plots will be surrounded by bubbles; if
FALSE, the edges connect the names directly

possible_combinations 35

Value

Function returns a ggraph plot where each condition is connected to those elements that occur
significantly in this condition, and each element is connected to each condition under which it
occurs significantly more than expected. Creates four graphs: context specificity, occurrence in that
context, a combined graph, and a ’reduced’ graph where edges are only included if they pass the
’specificity’ value set by the user

Examples

data(emotions_set)
emo.faces <- netfacs_multiple(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
ran.trials = 10,
combination.size = 2

)
calculate element specificity
spec <- specificity(emo.faces)

overlap <- overlap_network(spec,
min.prob = 0.01,
min.count = 3,
significance = 0.01,
specificity = 0.5,
ignore.element = "25",
clusters = TRUE,
plot.bubbles = TRUE)

possible_combinations Calculate all possible combinations of elements

Description

Takes a vector of elements and returns a vector with all possible combinations

Usage

possible_combinations(elements, maxlen, sep = "_")

Arguments

elements A vector of elements
maxlen maximum size of combinations to be considered
sep String. Separator used for showing combinations of elements

Value

A vector with all element combinations

36 prepare.netfacs

prepare.netfacs Take data that are not currently in format and turn them into the cor-
rect format for netfacs function

Description

The netfacs function requires data to be entered with the element data as a matrix of each element
by each event, with occurrence marked as 1 and non-occurrence marked as 0.
This is often not the case, so this function transforms data in other routine formats to have the right
look.
Specifically, users can define whether they want to enter ’photos’, which indicates that all elements
in an event are simply strung together in a vector; or they define ’video’, in which case it is assumed
that each element has a start and an end point in a specified video

Usage

prepare.netfacs(
elements,
type = c("video", "photo"),
video.id = NULL,
start.time = NULL,
duration = NULL,
separator = ",",
frame.duration = NULL

)

Arguments

elements vector with either one element per index (for videos) or all elements that oc-
curred in the whole event (for photos)

type either ’video’ or ’photo’. If ’photo’, the function separates the string and returns
a matrix of the correct dimensions. If ’video’, the function creates a matrix
using the highest common factor of all ’durations’ and for each of those ’frames’
assigns whether each element was present or absent

video.id name of the video, so all cases are treated together. For photos, can be entered
so that photos can be matched to IDs after

start.time for videos, time when the element is first active

duration for videos, how long is the element active for

separator for photos, how are elements separated in the list

frame.duration for videos, how long is a ’frame’ supposed to last? If NULL, frame duration is
the shortest ’duration’ of any element specified

prepare.netfacs 37

Details

The assumption for this function is that for photos, elements are stored like this:
’AU1/AU2/AU3/AU4’
’AU1/AU3/AU4’
’AU1/AU2’

For videos, the assumption is that they are stored in a data frame like this:
element = AU1, video.id = 1, start.time = 0.5, duration = 2sec

Value

Function returns a list with element.matrix (the matrix of elements and when they occurred) and
video.info (the supporting information, e.g. video names, durations, frames etc)

Examples

for a photo
au.photos <- c(

"AU1/AU5/AU9",
"AU1/AU2",
"AU1/AU2/AU10",
"AU1/AU2",
"AU5/AU17/AU18",
"AU6/AU12"

)
au.names <- c("photo1", "photo2", "photo3", "photo4", "photo5", "photo6")
au.prepared <- prepare.netfacs(

elements = au.photos,
type = "photo",
video.id = au.names,
separator = "/"

)
au.prepared$element.matrix
au.prepared$video.info

for a video
aus <- c(

"AU1", "AU5", "AU9",
"AU1", "AU2",
"AU1", "AU2", "AU10",
"AU1", "AU2",
"AU5", "AU17", "AU18",
"AU6", "AU12"

)
video.names <- c(

rep("video1", 3),
rep("video2", 2),
rep("video3", 3),
rep("video4", 2),
rep("video5", 3),
rep("video6", 2)

38 print.netfacs_multiple

)
start.times <- c(

0.1, 0.2, 0.3,
0.1, 0.3,
0.1, 0.4, 0.4,
0.1, 0.2,
0.1, 0.5, 0.6,
0.1, 0.2

)
durations <- rep(0.3, times = length(start.times))
frame.dur <- 0.05
au.prepared <- prepare.netfacs(

elements = aus,
type = "video",
video.id = video.names,
start.time = start.times,
duration = durations,
frame.duration = frame.dur

)
head(au.prepared$element.matrix)
head(au.prepared$video.info)

print.netfacs Print method for objects of class netfacs

Description

Print method for objects of class netfacs

Usage

S3 method for class 'netfacs'
print(x, ...)

Arguments

x An object of class netfacs

... Additional arguments that would be passed to or from other methods

print.netfacs_multiple

Print method for objects of class netfacs_multiple

Description

Print method for objects of class netfacs_multiple

probability_of_combination 39

Usage

S3 method for class 'netfacs_multiple'
print(x, ...)

Arguments

x An object of class netfacs_multiple

... Additional arguments that would be passed to or from other methods

probability_of_combination

Calculate probabilities of single elements and combinations occurring

Description

Calculate probabilities of single elements and combinations occurring

Usage

probability_of_combination(elements, maxlen, sep = "_")

Arguments

elements A vector with all elements observed together at an event. Or a list of vectors or
a binary matrix with elements as colnames()

maxlen maximum size of combinations to be considered

sep String. Separator used for showing combinations of elements

Value

Function returns a dataframe with observed probabilities for each combination in the dataset

probability_of_event_size

Count number of event sizes

Description

Count number of event sizes

Usage

probability_of_event_size(elements, max.event.size)

40 sim_facs

Arguments

elements A list of vectors containing active elements or a binary matrix with events in
rows

max.event.size A positive integer

Value

A named vector, including probabilities for event sizes that were not observed in the data

sim_facs Simulate FACS data

Description

Simulate FACS data

Usage

sim_facs(m, n_obs = 10, jp = NULL)

Arguments

m A matrix with condition asrownames, elements as colnames, and probabilities
of observing an element as values.

n_obs Number of observations per condition to simulate

jp An optional list of matrices, the same length as nrow(m) with the joint probabil-
ities of elements

Examples

elements <- as.character(1:10)
conditions <- letters[1:2]
randomly generate probability of elements
probabilities <-

sapply(elements, function(x) {
p <- runif(length(conditions))
setNames(round(p, 1), nm = conditions)

})
sim_facs(probabilities)

specificity 41

specificity Specificity

Description

Calculate specificity of element combinations to a given condition

Usage

specificity(
x,
condition,
test.condition = NULL,
null.condition = NULL,
combination.size = NULL,
upsample = TRUE

)

Arguments

x A binary matrix, with AUs as colnames, or an object of class netfacs

condition A character condition vector

test.condition A string, denoting the test condition. If NULL (default) specificity is calculated
for all conditions.

null.condition A string, denoting the null condition. If NULL (default) all observations not part
of the test.condition will be considered part of the null.

combination.size

A positive integer, indicating the maximum combination size of element combi-
nations. If NULL (default), the maximum combination size observed in the x is
used.

upsample Logical. Should minority condition(s) be upsampled? TRUE by default.

Details

Specificity values are biased when the number of observations per condition is highly imbalanced.
When upsample = TRUE (recommended), the condition(s) with fewer observations are randomly
upsampled to match the number of observations in the most common condition prior to the speci-
ficity calculation. This procedure minimizes the bias in the specificity results.

Value

A data frame

42 specificity_increase

Examples

specificity(
x = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger"

)

specificity_increase Tests how much each element increases the specificity of all combina-
tions it is in

Description

The function takes all elements and dyadic combinations of elements in a netfacs object, goes
through all combinations these elements are in, and compares the specificity (strength with which
the combination identifies the test condition) of all combinations with the element and the same
combinations without the element, to test how much specificity the element adds when added to a
signal. Only works for netfacs objects based on comparison between conditions.

Usage

specificity_increase(x)

Arguments

x object resulting from specificity function

Value

Function returns a list with two data frames that include all elements and first-order combinations
that occur at all, the number of combinations that each element/combination is part of, and how
much adding this element to a combination adds on average to its specificity, and how often it
occurs

Examples

how do angry facial expressions differ from non-angry ones?
data(emotions_set)
angry.face <- netfacs(

data = emotions_set[[1]],
condition = emotions_set[[2]]$emotion,
test.condition = "anger",
ran.trials = 10,
combination.size = 2

)

spec <- specificity(angry.face)
specificity_increase(spec)

summarise_combination 43

summarise_combination Summarise combination results from bootstrap

Description

Summarise combination results from bootstrap

Usage

summarise_combination(
combination,
combination.size,
observed.prob,
boot.prob,
tail,
test.count

)

Arguments

combination A vector of AU combinations
combination.size

A vector denoting the number of active AUs in combination

observed.prob A vector with probability of combination in test data

boot.prob A matrix with boot probabilities of a given combination in columns

tail upper.tail or lower.tail,

test.count Number of times a combination occurs in test dataset

Value

A dataframe

summarise_event_size Summarise event size probabilities

Description

Summarise event size probabilities

Usage

summarise_event_size(observed.prob, boot.prob)

44 upsample

Arguments

observed.prob A named vector with probabilities of event sizes.

boot.prob A matrix with boot probabilities of a given event size. Combination size in rows,
trials in columns.

Value

A dataframe

upsample Up sample

Description

Randomly up-sample the minority condition(s) to have the same number of observations as the ma-
jority condition. Random samples are added to the existing observations of the minority conditions

Usage

upsample(x, condition, .name = "condition")

Arguments

x A data.frame or something coercible to one

condition A character vector the same length as ’x’ denoting which condition each obser-
vation belongs to

.name A string used to name the condition column

Value

A tibble

Examples

d <- data.frame(
condition = c(rep("a", times = 7), rep("b", times = 3)),
x = sample(0:1, size = 10, replace = TRUE),
y = sample(0:1, size = 10, replace = TRUE)

)

upsample(x = d, condition = d$condition)

validate_condition 45

validate_condition Check that condition arguments are formatted correctly

Description

Check that condition arguments are formatted correctly

Usage

validate_condition(data, condition, test.condition, null.condition)

Arguments

data data passed by the user

condition condition passed by the user

test.condition condition passed by the user

null.condition condition passed by the user

validate_data Check that ’data’ argument is formatted correctly

Description

Check that ’data’ argument is formatted correctly

Usage

validate_data(data)

Arguments

data data passed by the user

Value

data as a matrix

Index

∗ datasets
emotions_set, 8
letternet, 13

add_inactive_single_units, 3

calculate_combination_size, 3
cluster_fast_greedy, 30
conditional_probabilities, 4, 20, 28, 29

define_contexts, 5
define_joint_prob, 5
distribution.plot, 6

element.plot, 6
element.specificity, 7
emotions_set, 8
entropy.overall, 8
entropy_overall, 8, 9
equal_observations, 10
event.size.plot (event_size_plot), 10
event_size_plot, 10

get_active_elements, 11
get_data, 11
ggraph, 16, 29, 30, 35

igraph, 14
is.netfacs, 12
is.netfacs_multiple, 12
is.netfacs_specificity, 12

letternet, 13

multiple.netfacs, 13
multiple.netfacs.network

(multiple_netfacs_network), 14
multiple.network.plot

(multiple_network_plot), 16
multiple_netfacs_network, 14, 16
multiple_network_plot, 16

mutual.information, 17
mutual.information.condition, 18

netfacs, 4, 7–9, 13, 15, 19, 19, 23–26, 28, 29,
33, 34, 36, 41

netfacs.extract (netfacs_extract), 23
netfacs.network (netfacs_network), 26
netfacs.reciprocity, 21
netfacs_bootstrap, 22
netfacs_extract, 20, 23, 25
netfacs_multiple, 4, 13, 15, 16, 20, 24, 33
netfacs_network, 26, 30–32
netfacs_randomize, 27
network.conditional, 28
network.plot (network_plot), 30
network.summary (network_summary), 31
network.summary.graph

(network_summary_graph), 32
network_conditional, 4, 28, 28
network_plot, 30
network_summary, 31
network_summary_graph, 32

overlap.network, 33
overlap_network, 33, 34

possible_combinations, 35
prepare.netfacs, 36
print.netfacs, 38
print.netfacs_multiple, 38
probability_of_combination, 3, 39
probability_of_event_size, 39

sim_facs, 40
specificity, 34, 41, 42
specificity_increase, 7, 42
summarise_combination, 43
summarise_event_size, 43

tbl_graph, 14, 29
tibble, 4, 9, 23

46

INDEX 47

upsample, 41, 44

validate_condition, 45
validate_data, 45

	add_inactive_single_units
	calculate_combination_size
	conditional_probabilities
	define_contexts
	define_joint_prob
	distribution.plot
	element.plot
	element.specificity
	emotions_set
	entropy.overall
	entropy_overall
	equal_observations
	event_size_plot
	get_active_elements
	get_data
	is.netfacs
	is.netfacs_multiple
	is.netfacs_specificity
	letternet
	multiple.netfacs
	multiple_netfacs_network
	multiple_network_plot
	mutual.information
	mutual.information.condition
	netfacs
	netfacs.reciprocity
	netfacs_bootstrap
	netfacs_extract
	netfacs_multiple
	netfacs_network
	netfacs_randomize
	network.conditional
	network_conditional
	network_plot
	network_summary
	network_summary_graph
	overlap.network
	overlap_network
	possible_combinations
	prepare.netfacs
	print.netfacs
	print.netfacs_multiple
	probability_of_combination
	probability_of_event_size
	sim_facs
	specificity
	specificity_increase
	summarise_combination
	summarise_event_size
	upsample
	validate_condition
	validate_data
	Index

