Package 'MinEDfind'

January 20, 2025

Type Package
Title A Bayesian Design for Minimum Effective Dosing-Finding Trial
Version 0.1.3
Author Chia-Wei Hsu, Fang Wang, Rongji Mu, Haitao Pan, Guoying Xu
Maintainer Chia-Wei Hsu <chia-wei.hsu@stjude.org></chia-wei.hsu@stjude.org>
Description The nonparametric two-stage Bayesian adaptive design is a novel phase II clini- cal trial design for finding the minimum effective dose (MinED). This design is moti- vated by the top priority and concern of clinicians when testing a new drug, which is to effec- tively treat patients and minimize the chance of exposing them to subtherapeu- tic or overly toxic doses. It is used to design single-agent trials.
License GPL-2
Encoding UTF-8
LazyData true
Depends Iso, ggplot2, gridExtra
NeedsCompilation no
Repository CRAN

Date/Publication 2020-05-05 10:10:06 UTC

Contents

Index

Ę	et.OC.MinED						 															2
ľ	ext.MinED						 											•				3
I	lot.MinED		 •				 	•	•			•	•			•	•		•			4
S	elect.MinED .					•	 •							•				•	•			6
																						8

get.OC.MinED

Description

Obtain the operating characteristics of the nonparametric two-stage Bayesian adaptive design for minimum effective dose (MinED)-based dosing-finding trials

Usage

Arguments

ttox	a vector containing the true toxicity rates of the investigational dose levels
teff	a vector containing the true response rates of the investigational dose levels
phi_t	the target DLT rate
phi_e	the target response rate
ct	the cutoff used to eliminate the dose for too toxicity. The default value is $\mathrm{ct}=0.95$
eps_t	a small value such that (phi_t - eps_t, phi_t + eps_t) is an indifference interval of phi_t. The default value is eps_t = 0.1 * phi_t
eps_e	a small value such that (phi_e - eps_e, phi_e + eps_e) is an indifference interval of phi_e. The default value is eps_e = $0.1 * \text{phi}_e$
dØ	the starting dose level. The default value is $d0 = 1$
cohortsize	the cohort size
ncohort1	the number of cohort used in stage I
ncohort2	the number of cohort used in stage II
ntrial	the number of simulated trial
extrasafe	extrasafe set extrasafe = TRUE to impose a more stringent stopping rule
cutoff.eli	the cutoff to eliminate an overly toxic dose for safety. The default value is cutoff.eli = 0.95
n.earlystop	the early stopping parameter. The default value is $n.earlystop = 12$

Value

get.oc.MinED() returns the operating characteristics of nonparametric two-stage Bayesian adaptive design as a matrix object, including: (1) true DLT rate at each dose level, (2) true efficacy rate at each dose level, (3) selection percentage at each dose level, (4) the average number of patients treated at each dose level, (5) the average number of patients responded to toxicity at each dose level, (6) the average number of patients responded to efficacy at each dose level

next.MinED

Author(s)

Chia-Wei Hsu, Fang Wang, Rongji Mu, Haitao Pan, Guoying Xu

References

Rongji Mu, Guoying Xu, Haitao Pan (2020). A nonparametric two-stage Bayesian adaptive design for minimum effective dose (MinED)-based dosing-finding trials, (under review)

Examples

next.MinED	Determine the dose for the next cohort of new patients for single-agent
	trials that aim to find a minimum effective dose (MinED)

Description

Determine the dose for the next cohort of new patients for single-agent trials that aim to find a MinED

Usage

```
next.MinED(n, y, z, d, phi_t, phi_e, eps_t, eps_e, ct = 0.95, N1 = 18)
```

Arguments

n	a vector of number of patients treated at each dose level
У	a vector of number of patients experiencing the toxicity at each dose level (with the same length as candidate doses)
Z	a vector of number of patients showing response at each dose level (with the same length as candidate doses)
d	the starting dose level
phi_t	the target DLT rate
phi_e	the target response rate

eps_t	a small value such that (phi_t - eps_t, phi_t + eps_t) is an indifference interval of phi_t. The default value is eps_t = 0.1 * phi_t
eps_e	a small value such that (phi_e - eps_e, phi_e + eps_e) is an indifference interval of phi_e. The default value is eps_e = $0.1 * \text{phi}_e$
ct	the cutoff used to eliminate the dose for too toxicity. The default value is $ct = 0.95$
N1	number of trials in the stage 1. The default value is $N1 = 18$

Value

next.MinED() returns recommended dose level for the next cohort as a list (\$nextdose)

Author(s)

Chia-Wei Hsu, Fang Wang, Rongji Mu, Haitao Pan, Guoying Xu

References

Rongji Mu, Guoying Xu, Haitao Pan (2020). A nonparametric two-stage Bayesian adaptive design for minimum effective dose (MinED)-based dosing-finding trials, (under review)

Examples

plot.MinED	Plot th	e simulation	results for	nonparametric	two-stage	Bayesian
	adaptiv	e designs				

Description

Plot the objects returned by other functions, including (1) operating characteristics of the design, including selection percentage and the number of patients treated at each dose; (2) the estimates of toxicity and response probability for each dose in the admissable set and corresponding 95% credible interval

plot.MinED

Usage

S3 method for class 'MinED'
plot(x, name, ...)

Arguments

х	the object returned by other functions
name	the name in the object to be plotted
	ignored arguments

Value

plot.MinED() returns a figure

Author(s)

Chia-Wei Hsu, Fang Wang, Rongji Mu, Haitao Pan, Guoying Xu

References

Rongji Mu, Guoying Xu, Haitao Pan (2020). A nonparametric two-stage Bayesian adaptive design for minimum effective dose (MinED)-based dosing-finding trials, (under review)

Examples

```
## select the MinED based on the trial data
n = c(3, 6, 0, 0, 0)
y = c(0, 1, 0, 0, 0)
z = c(0, 1, 0, 0, 0)
phi_t = 0.3
phi_e = 0.3
eps_t = 0.1 * phi_t
eps_e = 0.1 * phi_e
select.dose <- select.MinED(n, y, z, phi_t, phi_e, eps_t, eps_e, ct = 0.95)</pre>
plot.MinED(select.dose)
## get the operating characteristics for nonparametric two-stage Bayesian adaptive designs
ttox = c(0.05, 0.15, 0.3, 0.45, 0.6)
teff = c(0.05, 0.15, 0.3, 0.45, 0.6)
phi_t = 0.3
phi_e = 0.3
eps_t = 0.1 * phi_t
eps_e = 0.1 * phi_e
oc = get.OC.MinED(ttox = ttox, teff = teff, phi_t = phi_t, phi_e = phi_e,
                  eps_t = eps_t, eps_e = eps_e, cohortsize=3, ncohort1 = 6,
                  ncohort2 = 14, ntrial = 100)
plot.MinED(oc, "Sel%")
plot.MinED(oc, "#Pts.treated")
plot.MinED(oc, "#Pts.response.to.tox")
```

```
plot.MinED(oc, "#Pts.response.to.eff")
```

select.MinED Select the minimum effective dose (MinED) for single agent trials

Description

Select the minimum effective dose (MinED) when the trial is completed

Usage

```
select.MinED(n, y, z, phi_t, phi_e, eps_t, eps_e, ct = 0.95)
```

Arguments

n	a vector of number of patients treated at each dose level
У	a vector of number of patients experiencing the toxicity at each dose level (with the same length as candidate doses)
Z	a vector of number of patients showing response at each dose level (with the same length as candidate doses)
phi_t	the target DLT rate
phi_e	the target response rate
eps_t	a small value such that (phi_t - eps_t, phi_t + eps_t) is an indifference interval of phi_t. The default value is eps_t = $0.1 * phi_t$
eps_e	a small value such that (phi_e - eps_e, phi_e + eps_e) is an indifference interval of phi_e. The default value is eps_e = $0.1 * \text{phi}_e$
ct	the cutoff used to eliminate the dose for too toxicity. The default value is $ct = 0.95$

Value

select.MinED() returns the selected dose with detailed information as a list, including: (1) selected dose level (\$Selected_Dose), (2) target level for efficacy and toxicity rate (\$Target_Level), (3) posterior estimate of efficacy and toxicity with its corresponding lower and upper bound etc. (\$Info)

Author(s)

Chia-Wei Hsu, Fang Wang, Rongji Mu, Haitao Pan, Guoying Xu

References

Rongji Mu, Guoying Xu, Haitao Pan (2020). A nonparametric two-stage Bayesian adaptive design for minimum effective dose (MinED)-based dosing-finding trials, (under review)

select.MinED

Examples

```
n = c(3, 6, 0, 0, 0)
y = c(0, 1, 0, 0, 0)
z = c(0, 1, 0, 0, 0)
phi_t = 0.3
phi_e = 0.3
eps_t = 0.1 * phi_t
eps_e = 0.1 * phi_e
select.dose <- select.MinED(n, y, z, phi_t, phi_e, eps_t, eps_e)
print(select.dose)</pre>
```

Index

get.OC.MinED, 2

next.MinED, 3

plot.MinED,4

select.MinED,6