
Package ‘Mega2R’
January 20, 2025

Version 1.1.0

Date 2023-12-21

Title Accessing and Processing a 'Mega2' Genetic Database

Description Uses as input genetic data that have been reformatted and
stored in a 'SQLite' database; this database is initially created
by the standalone 'mega2' C++ program (available freely from
<https://watson.hgen.pitt.edu/register/>). Loads and manipulates
data frames containing genotype, phenotype, and family
information from the input 'SQLite' database, and decompresses
needed subsets of the genotype data, on the fly, in a memory
efficient manner. We have also created several more functions
that illustrate how to use the data frames as well as perform
useful tasks: these permit one to run the 'pedgene' package to
carry out gene-based association tests on family data using
selected marker subsets, to run the 'SKAT' package to carry out
gene-based association tests using selected marker subsets, to
run the 'famSKATRC' package to carry out gene-based association
tests on families (optionally) and with rare or common variants
using selected marker subsets, to output the 'Mega2R' data as a
VCF file and related files (for phenotype and family data), and
to convert the data frames into CoreArray Genomic Data Structure
(GDS) format.

URL https://watson.hgen.pitt.edu/mega2/mega2r/

BugReports https://groups.google.com/forum/#!forum/mega2-users

Depends R (>= 3.5.0), SKAT, pedgene, gdsfmt

License GPL-2

LinkingTo Rcpp

biocViews Genetics

Imports AnnotationDbi, DBI, GenomeInfoDb, RSQLite, methods, famSKATRC,
kinship2

Suggests knitr, rmarkdown, formatR, TxDb.Hsapiens.UCSC.hg19.knownGene,
org.Hs.eg.db

1

https://watson.hgen.pitt.edu/register/
https://watson.hgen.pitt.edu/mega2/mega2r/
https://groups.google.com/forum/#!forum/mega2-users

2 Contents

NeedsCompilation yes

RoxygenNote 7.2.3

VignetteBuilder knitr

Author Robert V. Baron [aut],
Daniel E. Weeks [aut, cre],
University of Pittsburgh [cph]

Maintainer Daniel E. Weeks <weeks@pitt.edu>

Repository CRAN

Date/Publication 2023-12-21 22:40:10 UTC

Contents
applyFnToGenes . 3
applyFnToMarkers . 5
applyFnToRanges . 6
clean_mega2rtutorial_data . 8
computeDosage . 9
dbmega2_import . 10
DOfamSKATRC . 10
DOpedgene . 12
DOSKAT . 13
dump_mega2rtutorial_data . 15
getgenotypes . 15
getgenotypesdos . 16
getgenotypesgenabel . 18
getgenotypesraw . 19
init_famSKATRC . 20
init_pedgene . 21
init_SKAT . 22
Mega2ENVGenABEL . 23
Mega2famSKATRC . 24
Mega2gdsfmt . 25
Mega2GenABEL . 26
Mega2GenABELtst . 27
Mega2pedgene . 28
Mega2R-TBLS . 29
Mega2R-TBLSFilter . 29
Mega2RVersion . 30
Mega2SKAT . 30
Mega2VCF . 31
mkfam . 33
mkMarkers . 34
mkphenotype . 35
read.Mega2DB . 36
setAnnotations . 36
setfam . 37

applyFnToGenes 3

setRanges . 38
showMapNames . 39
showMega2ENV . 40
showPhenoNames . 41
uniqueFamMember . 41
where_mega2rtutorial_data . 42

Index 43

applyFnToGenes apply a function to the genotypes (markers) in each gene transcript
and/or base pair range

Description

This function generates base pair ranges from its input arguments. Each range specifies a chromo-
some, a start base pair and end base pair. Typically, a range could be a gene transcript, though it
could be a whole chromosome, or a run of base pairs on a chromosome. Once the ranges are gen-
erated, applyFnToRanges is called to find all the rows (i.e. markers) from the markers data frame
that fall in each range. For these markers, a matrix of the genotypes is generated. Finally, the op
function is called for each range with the arguments: markers, range, and ’environment’.

Usage

applyFnToGenes(op = function (markers, range, envir) {},
genes_arg = NULL,
ranges_arg = matrix(ncol = 3, nrow = 0),
chrs_arg = vector("integer", 0),
markers_arg = vector("character", 0),
type_arg = "TX",
fuzz_arg = 0,
envir = ENV)

Arguments

op Is a function of three arguments. It will be called repeatedly by applyFnToGenes
in a try/catch context. The arguments are:

markers Marker data for each marker selected. A marker is a data frame with
the following 5 observations:
locus_link is the ordinal ranking of this marker among all loci
locus_link_fill is the position of corresponding marker genotype data in

the unified_genotype_table
MarkerName is the text name of the marker
chromosome is the integer chromosome number
position is the integer base pair position of marker

range An indicator of which range argument these markers correspond to.
envir An ’environment’ holding Mega2R data frames and state data.

4 applyFnToGenes

genes_arg a character vector of gene names. All the transcripts identified with the specified
gene in BioConductor Annotation,
TxDb.Hsapiens.UCSC.hg19.knownGene, are selected. This produces multi-
ple "range" elements containing chromosome, start base pair, end base pair. (If
the gene name is "*", all the transcript will be selected.) Note: BioCoductor
Annotation org.Hs.eg.db is used to convert from gene name to ENTREZ gene
id.

ranges_arg an integer matrix of three columns. The columns define a range: a chromosome
number, a start base pair value, and an end base pair value.

chrs_arg an integer vector of chromosome numbers. All of the base pairs on each chro-
mosomes will be selected as a single range.

markers_arg a data frame with the following 5 observations:

locus_link is the ordinal ranking of this marker among all loci
locus_link_fill is the position of corresponding marker genotype data in the

unified_genotype_table
MarkerName is the text name of the marker
chromosome is the integer chromosome number
position is the integer base pair position of marker

type_arg a character vector of length 1 that contains "TX" or does not. If it is "TX",
which is the default, the TX fields of BioConductor Annotation,
TxDb.Hsapiens.UCSC.hg19.knownGene are used to define the base pair ranges
and chromosome. Otherwise, the CDS fields are used.

fuzz_arg is an integer vector of length one or two. The first argument is used to reduce the
start base pair selected from each transcript and the second to increase the end
base pair position. (If only one value is present, it is used for both adjustments.)
Note: The values can be positive or negative.

envir an ’environment’ that contains all the data frames created from the SQLite
database.

Value

None

Note

If you want subsequent calls to op to share information, data can be placed in a data frame that is
added to the ’environment’.

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)

show = function(m, r, e) {
print(r)
print(m)
print(head(getgenotypes(m, envir = e)))

applyFnToMarkers 5

}

apply function "show" to all transcripts on genes ELL2 and CARD15

donttestcheck: time
applyFnToGenes(show, genes_arg = c("CEP104"))

apply function "show" to all genotypes on chromosomes 11 for two base
pair ranges
applyFnToGenes(show, ranges_arg = matrix(c(1, 5000000, 10000000,

1, 10000000, 15000000), ncol = 3, nrow = 2, byrow = TRUE))

apply function "show" to all genotypes for first marker in each chromosome
applyFnToGenes(show, markers_arg = ENV$markers[! duplicated(ENV$markers$chromosome), 3])

apply function "show" to all genotypes on chromosomes 24 and 26
applyFnToGenes(show, chrs_arg=c(24, 26))

applyFnToMarkers apply a function to the genotypes from a set of markers

Description

A matrix of the genotypes for all the specified markers is generated. Then, the call back function,
op, is called with the markers, NULL (for the range), and the ’environment’.

Usage

applyFnToMarkers(op = function (markers, range, envir) {},
markers_arg,
envir = ENV)

Arguments

op Is a function of three arguments. It will be called once by applyFnToMarkers
in a try/catch context. The arguments are:

markers Marker data for each marker in geno. A marker is a data frame with
the following 5 observations:
locus_link is the ordinal ranking of this marker among all loci
locus_link_fill is the position of corresponding marker genotype data in

the unified_genotype_table
MarkerName is the text name of the marker
chromosome is the integer chromosome number
position is the integer base pair position of marker

range NULL: to indicate no explicit range was specified.

6 applyFnToRanges

envir An ’environment’ holding Mega2R data frames and state data.

markers_arg a data frame with the following 5 observations:

locus_link is the ordinal ranking of this marker among all loci
locus_link_fill is the position of corresponding marker genotype data in the

unified_genotype_table
MarkerName is the text name of the marker
chromosome is the integer chromosome number
position is the integer base pair position of marker

envir an ’environment’ that contains all the data frames created from the SQLite
database.

Value

None

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)
show = function(m, r, e) {

print(r)
print(m)
print(head(getgenotypes(m, envir = e)))

}

apply function "show" to all genotypes > 5,000,000 bp
applyFnToMarkers(show, ENV$markers[ENV$markers$position > 5000000,])

applyFnToRanges apply a function to all the genotypes for markers found in several spec-
ified ranges

Description

First, for each range, determine the markers that fall between the start and end base pair of the
range. Then, for each set of markers generate a matrix of the genotypes of those markers. Finally,
the op function is called for each range with the arguments: markers, range, and ’environment’.

Usage

applyFnToRanges(op = function (markers, range, envir) {},
ranges_arg = NULL,
indices_arg = NULL,
fuzz_arg = 0,
envir = ENV)

applyFnToRanges 7

Arguments

op Is a function of three arguments. It will be called repeatedly by applyFnToRanges
in a try/catch context. The arguments are:

markers Marker data for each marker in geno. A marker is a data frame with
the following 5 observations:
locus_link is the ordinal ranking of this marker among all loci
locus_link_fill is the position of corresponding marker genotype data in

the unified_genotype_table
MarkerName is the text name of the marker
chromosome is the integer chromosome number
position is the integer base pair position of marker

range An indicator of which range argument of applyFnToRanges these mark-
ers correspond to.

envir An ’environment’ holding Mega2R data frames and state data.

ranges_arg is a data frame that contains at least 4 observations: a name, a chromosome, a
start base pair position and an end base pair position.

indices_arg is a vector of 3 integers that specify the location of chromosome, start base pair
column and end base pair column of the ranges_arg data frame. An optional
fourth integer indicates the column containing the name of the ranges.

fuzz_arg is an integer vector of length one or two. The first argument is used to reduce the
start base pair selected from each range and the second to increase the end base
pair position. (If only one value is present, it is used for both changes.) Note:
The values can be positive or negative.

envir an ’environment’ that contains all the data frames created from the SQLite
database.

Value

None

Note

If the ranges_arg and indices_arg are NULL or missing, then the default ranges that have been set
by setRanges are used. If setRanges has not been called, a default set of the ranges is used.

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)

show = function(m, r, e) {
print(r)
print(m)
print(head(getgenotypesraw(m, envir = e)))

}

apply function "show" to all genotypes on chromosomes 1 for two base pair

8 clean_mega2rtutorial_data

ranges
applyFnToRanges(show,

ranges_arg =
matrix(c(1, 2244000, 2245000,

1, 3762500, 3765000),
ncol = 3, nrow = 2, byrow = TRUE),

indices_arg = 1:3)

apply function "show" to all genotypes on chromosomes 1 for two base pair
ranges
applyFnToRanges(show,

ranges_arg =
matrix(c(1, 2240000, 2245000, "range1",

1, 3760000, 3765000, "range2"),
ncol = 4, nrow = 2, byrow = TRUE),

indices_arg = 1:4)

clean_mega2rtutorial_data

remove tutorial data

Description

This function removes the Mega2R tutorial (inst/exdata) data that was copied to the specified direc-
tory.

Usage

clean_mega2rtutorial_data(dir = file.path(tempdir(), "Mega2Rtutorial"))

Arguments

dir The directory to remove the tutorial data to. By default, this is tempdir()/Mega2Rtutorial

Value

None

Examples

clean_mega2rtutorial_data()

computeDosage 9

computeDosage computeDosage function

Description

Convert the genotypesraw() allele patterns of 0x10001, 0x10002 (or 0x20001), 0x20002, 0 to the
numbers 0, 1, 2, 9 for each marker. (Reverse, the order iff allele "1" has the minor allele frequency.)

Usage

computeDosage(markers_arg, range_arg, envir)

Arguments

markers_arg a data.frame with the following 5 observations:

locus_link is the ordinal ranking of this marker among all loci
locus_link_fill is the position of corresponding genotype data in the unified_genotype_table
MarkerName is the text name of the marker
chromosome is the integer chromosome number
position is the integer base pair position of marker

range_arg one row of a ranges_arg. The latter is a data frame of at least three integer
columns. The columns indicate a range: a chromosome number, a start base
pair value, and an end base pair value.

envir ’environment’ containing SQLite database and other globals especially the phe-
notype_table, phe.

Value

a matrix of samples X markers for all the markers that have nonzero changes.

See Also

DOfamSKATRC

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = init_famSKATRC(db, verbose = TRUE)
dimDosage = function(m, r, e) {print(dim(computeDosage(m, r, e)))}
applyFnToRanges(dimDosage, ENV$refRanges[50:60,], ENV$refIndices, envir=ENV)
This will use return dosage matrices for the markers in the ranges 50 - 60,
but is basically ignores the results.

10 DOfamSKATRC

dbmega2_import read Mega2 SQLite database into R

Description

Read the fields of SQLite data base tables that are required for Mega2R into data frames. These
data frames are stored in an ’environment’ which is returned. This function also adds some state
data, extra data frames, and computed data frames to the ’environment’.

Usage

dbmega2_import(dbname,
bpPosMap = NULL,
verbose = FALSE)

Arguments

dbname file path to SQLite database.
bpPosMap index that specifies which map in the map_table should be used for marker chro-

mosome/position. If it is NULL, the internal variable base_pair_position_index
is used instead. showMapNames() shows the association between map name and
map number.

verbose print out statistics on the name/size of each table read and show column headers.
Also, save the verbose value for use by other Mega2R functions.

Value

envir an environment that contains all the data frames made from the SQLite database.

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = dbmega2_import(db, verbose = TRUE)

ENV = dbmega2_import(db)

DOfamSKATRC DofamSKATRC call back function

Description

Convert the genotypesraw() allele patterns of 0x10001, 0x10002 (or 0x20001), 0x20002, 0 to the
numbers 0, 1, 2, 9 for each marker. (Reverse, the order iff allele "1" has the minor allele fre-
quency.) Ignore markers that have no variants. Finally, invoke famSKAT_RC with the converted
genotype matrix. Save information about the range and the p.value calculated by famSKAT_RC in
envir$famSKATRC_results. If you want to change the argument values to this function they should
be changed instead when calling the Mega2famSKATRC function.

DOfamSKATRC 11

Usage

DOfamSKATRC(
markers_arg,
range_arg,
envir,
pheno = 3,
id = NULL,
covariates = NULL,
sqrtweights_c = NULL,
sqrtweights_r = NULL,
binomialimpute = TRUE,
acc = 1e-06,
maf = 0.05,
phi = c(0, 0.2, 0.5, 0.9)

)

Arguments

markers_arg a data.frame with the following 5 observations:

locus_link is the ordinal ranking of this marker among all loci
locus_link_fill is the position of corresponding genotype data in the unified_genotype_table
MarkerName is the text name of the marker
chromosome is the integer chromosome number
position is the integer base pair position of marker

range_arg one row of a ranges_arg. The latter is a data frame of at least three integer
columns. The columns indicate a range: a chromosome number, a start base
pair value, and an end base pair value.

envir ’environment’ containing SQLite database and other globals especially the phe-
notype_table, phe.

pheno is an index into the phenotypes_table to select the phenotype. Missing pheno-
types are represented by NA.

id a vector of individuals to be included in the test, a subset of the family members.
If NULL is given, all members will be used.

covariates a matrix of covariates for the phenotype.

sqrtweights_c weight function for common variants, if NULL use weight set in init_famSKAT

sqrtweights_r weight function for rare variants, if NULL use weight set in init_famSKAT.

binomialimpute if TRUE, impute missing genotypes using a binomial distribution.

acc accuracy used in Davies approximation.

maf threshold used to separate rare from common variants.

phi a vector of ratios ratios; each indicates the contribution of rare variants.

Value

None

12 DOpedgene

Note

This function accumulates output in the data frame, envir$famSKATRC_results. It will print out the
lines as they are generated if envir$verbose is TRUE. It does not write the data frame to a file. You
must save the data frame. You also must initialize the data frame when necessary.

See Also

init_famSKATRC, Mega2famSKATRC

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = init_famSKATRC(db, verbose = TRUE)
ENV$famSKATRC_results = ENV$famSKATRC_results[0,]
Mega2famSKATRC(gs=1:1, envir=ENV, pheno=3)
this sets one of the many arguments for DOfamSKATRC
but basically prepares the ENV for the direct use of DOfamSKATRC (below).

donttestcheck: try this below instead if there is time
Mega2famSKATRC(genes=c("CEP104"), envir=ENV, pheno=3)

DOfamSKATRC is called within Mega2famSKATRC. init_famSKATRC and Mega2famSKATRC need to be
called to set up the environment for famSKAT_RC to run. BUT, you should ignore DOfamSKATRC
and use Mega2famSKATRC instead.
#
applyFnToRanges(DOfamSKATRC, ENV$refRanges[50:60,], ENV$refIndices, envir=ENV)
this will use all the default argument values for DOfamSKATRC

DOpedgene pedgene call back function

Description

First, ignore call backs that have less than two markers. Second, convert the genotypesraw() patterns
of 0x10001, 0x10002 (or 0x20001), 0x20002, 0 from the genotype matrix to the numbers 0, 1, 2, 0
for each marker. (Reverse, the order iff allele "1" has the minor allele frequency.) Next, prepend the
pedigree and person columns of the family data to this modified genotype matrix. Finally, invoke
pedgene with the family data and genotype matrix for several different weights. Save the kernel
and burden, value and p-value for each measurement in envir$pedgene_results.

Usage

DOpedgene(markers_arg, range_arg, envir = ENV)

DOSKAT 13

Arguments

markers_arg a data.frame with the following 5 observations:

locus_link is the ordinal ranking of this marker among all loci
locus_link_fill is the position of corresponding genotype data in the unified_genotype_table
MarkerName is the text name of the marker
chromosome is the integer chromosome number
position is the integer base pair position of marker

range_arg one row of a ranges_arg. The latter is a data frame of at least three integer
columns. The columns indicate a range: a chromosome number, a start base
pair value, and an end base pair value.

envir ’environment’ containing SQLite database and other globals

Value

None

Note

This function appends output to the data frame, envir$pedgene_results. It will print out the lines as
they are generated if envir$verbose is TRUE. The data frame envir$pedgene_results is initialized
by init_pedgene, and is appended to each time DOpedgene is run.

See Also

init_pedgene

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = init_pedgene(db)
ENV$verbose = TRUE
applyFnToRanges(DOpedgene, ENV$refRanges[50:60,], ENV$refIndices)

donttestcheck: try this below if there is time
applyFnToGenes(DOpedgene, genes_arg = c("CEP104"))

DOSKAT SKAT call back function

14 DOSKAT

Description

Convert the genotypesraw() allele patterns of 0x10001, 0x10002 (or 0x20001), 0x20002, 0 to the
numbers 0, 1, 2, 9 for each marker. (Reverse, the order iff allele "1" has the minor allele frequency.)
Ignore markers that have no variants (unless allMarkers is TRUE). Finally, invoke SKAT with the
converted genotype matrix, Null model saved in envir$obj, and any additionally supplied arguments.
Save information about the range and the p.value calculated by SKAT in envir$SKAT_results.

Usage

DOSKAT(markers_arg, range_arg, envir, ...)

Arguments

markers_arg a data.frame with the following 5 observations:

locus_link is the ordinal ranking of this marker among all loci
locus_link_fill is the position of corresponding genotype data in the unified_genotype_table
MarkerName is the text name of the marker
chromosome is the integer chromosome number
position is the integer base pair position of marker

range_arg one row of a ranges_arg. The latter is a data frame of at least three integer
columns. The columns indicate a range: a chromosome number, a start base
pair value, and an end base pair value.

envir ’environment’ containing SQLite database and other globals

... extra arguments for SKAT

Value

None

Note

This function accumulates output in the data frame, envir$SKAT_results. It will print out the lines
as they are generated if envir$verbose is TRUE. It does not write the data frame to a file. You must
save the data frame. You also must initialize the data frame when necessary.

See Also

init_SKAT, Mega2SKAT

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = init_SKAT(db, verbose = TRUE, allMarkers = FALSE)
Mega2SKAT(ENV$phe[, 3] - 1 ~ 1, "D", gs=1:1)

donttestcheck: try this below instead if there is time
Mega2SKAT(ENV$phe[, 3] - 1 ~ 1, "D", kernel = "linear.weighted",

dump_mega2rtutorial_data 15

weights.beta = c(0.5, 0.5), genes=c("CEP104"))

DOSKAT is called internally to Mega2SKAT. init_SKAT and Mega2SKAT need to be
called to set up the environment for DOSKAT to run. You should ignore DOSKAT
and use Mega2SKAT instead
#
applyFnToRanges(DOSKAT, ENV$refRanges[50:60,], ENV$refIndices)

dump_mega2rtutorial_data

dump tutorial data

Description

This function retrieves data stored in the Mega2rtutorial (inst/exdata). It dumps them in the specified
directory.

Usage

dump_mega2rtutorial_data(dir = file.path(tempdir(), "Mega2Rtutorial"))

Arguments

dir The directory to store the tutorial data to. By default, this is tempdir()/Mega2Rtutorial

Value

None

Examples

dump_mega2rtutorial_data()

getgenotypes fetch genotype character matrix for specified markers

Description

This function calls a C++ function that does all the heavy lifting. It passes the arguments necessary
for the C++ function: some from the caller’s arguments and some from data frames that are in
the "global" environment, envir. From the markers_arg argument, it fetches the locus_index and
the index in the unified_genotype_table. It also passes the allele nucleotide separator argument.
From the "global" environment, envir, it gets a bit vector of compressed genotype information, the
alleles for each marker, and some bookkeeping related data. Note: This function also contains a
dispatch/switch on the type of compression in the genotype vector. A different C++ function is
called when there is compression versus when there is no compression.

16 getgenotypesdos

Usage

getgenotypes(markers_arg, sepstr = "", envir = ENV)

Arguments

markers_arg a data.frame with the following 5 observations:

locus_link is the ordinal ranking of this marker among all loci
locus_link_fill is the position of corresponding genotype data in the unified_genotype_table
MarkerName is the text name of the marker
chromosome is the integer chromosome number
position is the integer base pair position of marker

sepstr separator string inserted between the alleles (default is none). When present,
this is typically a space, a tab or "/".

envir an environment that contains all the data frames created from the SQLite database.

Details

The unified_genotype_table contains one raw vector for each person. In the vector there are two
bits for each genotype. This function creates an output matrix by fixing the marker and collecting
genotype information for each person and then repeating for all the needed markers. (Currently,
this appears slightly faster than a scan which is fixes the person and iterates over markers.)

Value

a matrix of genotypes represented as two allele pairs. The matrix has one column for each marker
in markers_arg argument. There is one row for each person in the family (fam) table.

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)

getgenotypes(ENV$markers)

getgenotypesdos fetch dosage integer matrix for specified markers

Description

This function calls a C++ function that does all the heavy lifting. It passes the arguments necessary
for the C++ function: some from the caller’s arguments and some from data frames that are in
the "global" environment, envir. From its markers_arg argument, it gets the locus_index and the
index in the unified_genotype_table. From the "global" environment, envir, it gets a bit vector of
compressed genotype information, and some bookkeeping related data. Note: This function also
contains a dispatch/switch on the type of compression in the genotype vector. A different C++
function is called when there is compression versus when there is no compression.

getgenotypesdos 17

Usage

getgenotypesdos(markers_arg, envir = ENV)

Arguments

markers_arg a data.frame with the following 5 observations:

locus_link is the ordinal ranking of this marker among all loci

locus_link_fill is the position of corresponding genotype data in the unified_genotype_table

MarkerName is the text name of the marker

chromosome is the integer chromosome number

position is the integer base pair position of marker

envir an environment that contains all the data frames created from the SQLite database.

Details

The unified_genotype_table contains one raw vector for each person. In the vector, there are two
bits for each genotype. This function creates an output matrix by fixing the marker and collecting
genotype information for each person and then repeating for all the specified markers.

Value

a list of 3 values, named "ncol", "zero", "geno".

geno is a matrix of dosages as integers. The value 0 is given to the Major allele value, 1 is given
to the heterozygote value, and 2 is given to the Minor allele. In the matrix, there is usually
one column for each marker in the markers_arg argument. But if there would be only the one
allele 0 or 2 in the column, the column is ignorednot present. There is one row for each person
in the family (fam) table.

ncol Is the count of the actual number of columns in the geno matrix.

zero Is a vector with one entry per marker. The value will be 0 if the marker is not in the geno
matrix. Otherwise the value is the column number in the geno matrix where the marker data
appears.

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)

getgenotypesdos(ENV$markers[ENV$markers$chromosome == 1,])

18 getgenotypesgenabel

getgenotypesgenabel process the genotype matrix for specified markers and return the cor-
responding GenABEL genotype matrix

Description

This function calls a C++ function that does all the heavy lifting. It passes the arguments necessary
for the C++ function: some from the caller’s arguments and some from data frames that are in
the "global" environment, envir. From its markers_arg argument, it gets the locus_index and the
index in the unified_genotype_table. From the "global" environment, envir, it gets a bit vector of
compressed genotype information, allele information, and some bookkeeping related data. Note:
This function also contains a dispatch/switch on the type of compression in the genotype vector. A
different C++ function is called when there is compression versus when there is no compression.

Usage

getgenotypesgenabel(markers_arg, envir = ENV)

Arguments

markers_arg a data.frame with the following 5 observations:

locus_link is the ordinal ranking of this marker among all loci
locus_link_fill is the position of corresponding genotype data in the unified_genotype_table
MarkerName is the text name of the marker
chromosome is the integer chromosome number
position is the integer base pair position of marker

envir an environment that contains all the data frames created from the SQLite database.

Details

This function reads the genotype data in Mega2 compressed format and converts it to the GenABEL
compressed format. The unified_genotype_table contains one raw vector for each person. In the
vector, there are two bits for each genotype; each byte has the data for 4 markers. In GenABEL,
there is one raw vector per marker, and each byte has the data for 4 persons. The C++ function
does the conversion as well as adjusts the bits’ contents. For example, in GenABEL the genotype
represented by bits == 0, is what Mega2 represents with 2. Doing the conversion in C++ is 10 - 20
times faster than converting the Mega2 data to PLINK .tped files and then having GenABEL read
in and process/convert those files.

Value

the GenABEL gwaa.data-class object component that contains the genotype data.

Note

This function is called from Mega2ENVGenABEL; it is not intended to be called by the programmer.

getgenotypesraw 19

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)

aa = getgenotypesgenabel(ENV$markers[ENV$markers$chromosome == 1,])

aa

getgenotypesraw fetch genotype integer matrix for specified markers

Description

This function calls a C++ function that does all the heavy lifting. It passes the arguments necessary
for the C++ function: some from the caller’s arguments and some from data frames that are in
the "global" environment, envir. From its markers_arg argument, it gets the locus_index and the
index in the unified_genotype_table. From the "global" environment, envir, it gets a bit vector of
compressed genotype information, and some bookkeeping related data. Note: This function also
contains a dispatch/switch on the type of compression in the genotype vector. A different C++
function is called when there is compression versus when there is no compression.

Usage

getgenotypesraw(markers_arg, envir = ENV)

Arguments

markers_arg a data.frame with the following 5 observations:
locus_link is the ordinal ranking of this marker among all loci
locus_link_fill is the position of corresponding genotype data in the unified_genotype_table
MarkerName is the text name of the marker
chromosome is the integer chromosome number
position is the integer base pair position of marker

envir an environment that contains all the data frames created from the SQLite database.

Details

The unified_genotype_table contains one raw vector for each person. In the vector, there are two
bits for each genotype. This function creates an output matrix by fixing the marker and collecting
genotype information for each person and then repeating for all the needed markers.

Value

a matrix of genotypes represented as integers. Each 32 bit integer represents contains two allele
values: the high 16 bits contains the index of allele1 and the low 16 bits contains the index of
allele2. In the matrix, there is one column for each marker in the markers_arg argument. There is
one row for each person in the family (fam) table.

20 init_famSKATRC

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)

two ints in upper/lower half integer representing allele # for all persons in chromosome 1
getgenotypesraw(ENV$markers[ENV$markers$chromosome == 1,])

init_famSKATRC load Mega2 SQLite database and perform initialization for famSKA-
TRC usage

Description

This populates the R data frames with the specified Mega2 SQLite database. It initializes the
fam(ily) table and makes sure the person entries are unique. Finally, it generates a kinship matrix
from the family data. It also stores a weighting for the common and rare variant that may be used
later if NULL is specified as a weight in Mega2famSKATRC. The common weighting is the function
dbeta(maf, 1, 25). The rare weighting is the function dbeta(maf, 0.5, 0.5).

Usage

init_famSKATRC(db = NULL, verbose = FALSE, ALPHA = FALSE, ...)

Arguments

db specifies the path of a Mega2 SQLite database containing study data.

verbose TRUE indicates that diagnostic printouts should be enabled. This value is saved
in the returned environment.

ALPHA TRUE indicates that two runs of famSKAT_RC should be enabled. One with
ALPHA numeric ID’s and one with numeric IDs ... this is temporary. The
default is FALSE.

... fed to dbmega2_import(); should be bpPosMap= to select from the maps of base
pairs, if the default is not desired.

Value

"environment" containing data frames from an SQLite database and some computed values.

Note

init_famSKATRC creates a new data frame, envir$phe, containing phenotype observations. In addi-
tion, it initializes a matrix to aid in translating a genotype allele matrix to a genotype count matrix.

It also initializes the data frame envir$famSKATRC_results to zero rows.

init_pedgene 21

See Also

Mega2famSKATRC

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = init_famSKATRC(db, verbose = FALSE)
ls(ENV)

init_pedgene load Mega2 SQLite database and perform initialization for pedgene
usage

Description

This populates the R data frames from the specified Mega2 SQLite database.

Usage

init_pedgene(db = NULL, verbose = FALSE, traitname = "default", ...)

Arguments

db specifies the path of a Mega2 SQLite database containing study data.

verbose TRUE indicates that diagnostic printouts should be enabled. This value is saved
in the returned environment.

traitname Name of the affection status trait to use to set the case/control status; default
value = "default".

... fed to dbmega2_import(); should be bpPosMap= to select from the maps of base
pairs, if the default is not desired.

Value

"environment" containing data frames from an SQLite database and some computed values.

Note

init_pedgene calculates schaidPed and pedPer that are used later in the Dopedgene calculation. In
addition, it initializes a matrix to aid in translating a genotype allele matrix to a genotype count
matrix.

It also initializes the dataframe envir$pedgene_results to zero rows.

See Also

DOpedgene, Mega2pedgene, mkfam

22 init_SKAT

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = init_pedgene(db, traitname = "default")
ls(ENV)

init_SKAT load Mega2 SQLite database and perform initialization for SKAT us-
age

Description

This populates the R data frames from the specified Mega2 SQLite database. It then prunes the
samples to only include members that have a definite case or control status. Undefined samples are
ignored.

Usage

init_SKAT(db = NULL, verbose = FALSE, allMarkers = FALSE, ...)

Arguments

db specifies the path of a Mega2 SQLite database containing study data.

verbose TRUE indicates that diagnostic printouts should be enabled. This value is saved
in the returned environment.

allMarkers TRUE means use all markers in a given transcript even if there is no variation.
FALSE means ignore markers that show no variation; this is the default.

... fed to dbmega2_import(); should be bpPosMap= to select from the maps of base
pairs, if the default is not desired.

Value

"environment" containing data frames from an SQLite database and some computed values.

Note

init_SKAT creats a data frame, envir$phe, of phenotype observations. In addition, it initializes a
matrix to aid in translating a genotype allele matrix to a genotype count matrix.

It also initializes the data frame envir$SKAT_results to zero rows.

See Also

Mega2SKAT

Mega2ENVGenABEL 23

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = init_SKAT(db, verbose = FALSE, allMarkers = FALSE)
ls(ENV)

Mega2ENVGenABEL generate gwaa.data-class object

Description

create a gwaa.data-class object from the data frames in a Mega2 environment. This function is
a front end that eventually calls a C++ Rcpp function that reads the genotype data in Mega2 com-
pressed format and converts it to the GenABEL compressed format. The results of Mega2ENVGenABEL
are/should be the same as Mega2GenABEL, but the calculation is much faster, typically a factor of 10
to 20.

Usage

Mega2ENVGenABEL(
markers = NULL,
force = TRUE,
makemap = FALSE,
sort = TRUE,
envir = ENV

)

Arguments

markers data frame of markers to be processed

force pass value to gwaa conversion function

makemap pass value to gwaa conversion function

sort pass value to gwaa conversion function

envir ’environment’ containing SQLite database and other globals

Value

gwaa.data-class object created from Mega2R database

Examples

Not run:
require("GenABEL")
db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)
gwaa = Mega2ENVGenABEL(markers=ENV$markers[1:10,])

24 Mega2famSKATRC

str(gwaa)
head(summary(gwaa))

End(Not run)

Mega2famSKATRC execute the CRAN famSKAT_RC function on a subset of the gene tran-
scripts

Description

If the gene argument is NULL, execute the famSKAT_RC function on the first gs gene transcripts
(default is gs = 1:100). Update the envir$famSKATRC_results data frame with the results. Other-
wise, gene is a string vector of genes to process. The special value ’*’ stands for all the known
genes.

Usage

Mega2famSKATRC(gs = 1:100, genes = NULL, envir = ENV, ...)

Arguments

gs a subrange of the default transcripts (refRanges) over which to calculate the
DOfamSKATRC function.

genes a list of genes over which to calculate the DOfamSKATRC function. The value,
"*", means use all the transcripts in the selected Bioconductor database. If genes
is NULL, the gs range of the internal refRanges will be used.

envir ’environment’ containing SQLite database and other globals.

... extra arguments that are acceptable to famSKAT_RC. These are listed with the
DOfamSKATRC function.

Value

The data frame with the results is stored in the environment and named famSKATRC_results, viz.
envir$famSKATRC_results

Note

A helper function SKAT3arg is defined for the 3 argument callback function which in turn calls
DOfamSKATRC with the appropriate arguments (including those specific to the Mega2famSKATRC
function).

See Also

init_famSKATRC, DOfamSKATRC

Mega2gdsfmt 25

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = init_famSKATRC(db, verbose = FALSE)
ENV$verbose = FALSE
ENV$famSKATRC_results = ENV$famSKATRC_results[0,]
Mega2famSKATRC(gs=50:60, envir=ENV, pheno=3)

donttestcheck: try this below if there is time
Mega2famSKATRC(genes=c("CEP104"), envir=ENV, pheno=3)

ENV$famSKATRC_results

Mega2gdsfmt transcode mega2 to gdsfmt/SNP_ARRAY

Description

Reads the data frames in "envir" and builds a GDSFMT COREARRAY file from them.

Usage

Mega2gdsfmt(
filename = "test.gds",
markers = NULL,
snp.order = FALSE,
SeqArray = FALSE,
envir = ENV

)

Arguments

filename gdsfmt file to create

markers data frame of markers to be processed

snp.order TRUE indicates that the "genotype" data matrix has SNP as the first index which
changes more quickly than subsequent indices. FALSE indicates that SAMPLE
is the the first index.

SeqArray TRUE uses SeqArray labels for the gdsfmt vector elements. FALSE it uses
labels shown in SNPRelate

envir ’environment’ containing SQLite database and other globals

Value

writes the "filename" file containing the CoreArray data. Then returns an internal pointer, class
.gds, to the file data.

26 Mega2GenABEL

See Also

gdsfmt

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)
gdsfmtfile = file.path(where_mega2rtutorial_data(), "test.gds")
append_genotype_a = TRUE
append_genotype_b = append_genotype_c = FALSE
gn = Mega2gdsfmt(gdsfmtfile, envir=ENV)
gn

Mega2GenABEL generate gwaa.data-class object from a Mega2R database

Description

Call the Mega2R functions to: create a .tped file, a .tfam file and a .phe file. Then call the GenABEL
functions to process these files: the .tped and the .tfam file are processed by convert.snp.tped to
produce a tped.raw file. The latter is combined with a .phe (phenotype) file by load.gwaa.data to
create a gwaa.data-class object in memory. All these files are deleted when the exits.

Usage

Mega2GenABEL(markers = NULL, mapno = 0, envir = ENV)

Arguments

markers data frame of markers to be processed

mapno specify which map index to use for physical distances

envir ’environment’ containing SQLite database and other globals

Value

gwaa.data-class object generated from the Mega2R database

Examples

Not run:
require("GenABEL")
db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)
seqsimgwaa = Mega2GenABEL(markers=ENV$markers[1:10,])

str(seqsimgwaa)
head(summary(seqsimgwaa))

Mega2GenABELtst 27

End(Not run)

Mega2GenABELtst compare two gwaa.data-class objects

Description

Verify by fields, all the fields in two gwaa.data-class objects. Show more detailed marker informa-
tion iff the coding values are different. (When comparing two gwaa.data-class objects, one native
and one created via Mega2R sometimes when an allele frequency is .5 for both alleles, the allele
order 1/2 vs 2/1 can not be currently be determined.)

Usage

Mega2GenABELtst(mega_ = mega, gwaa_ = srdta, full = TRUE, envir = ENV)

Arguments

mega_ name of first gwaa.data-class object
gwaa_ name of second gwaa.data-class object
full if TRUE convert genotypes to text as.character(gwaa_@gtdata)

and as.character(mega_@gtdata). Then standardize the order for heterozygous
alleles and finally compare. This step is optional because it can be rather slow.

envir ’environment’ containing SQLite database and other globals

Value

None

Examples

Not run:
db = system.file("exdata", "seqsimm.db", package="Mega2R")
require("GenABEL")
ENV = read.Mega2DB(db)

y = Mega2ENVGenABEL()
Mega2GenABELtst(y, y, full = FALSE)

End(Not run)

Not run:
donttestcheck: if you have more time, try ...
x = Mega2GenABEL()
Mega2GenABELtst(x, y, full = FALSE)

End(Not run)

28 Mega2pedgene

Mega2pedgene Execute the pedgene function on a transcript ranges

Description

Execute the pedgene function on the first gs default gene transcript ranges (gs = 1:100). Update the
envir$pedgene_results data frame with the results.

Usage

Mega2pedgene(gs = 1:100, genes = NULL, envir = ENV)

Arguments

gs a subrange of the default transcript ranges over which to calculate the Doped-
gene function.

genes a list of genes over which to calculate the DOpedgene function. The value, "*",
means use all the transcripts in the selected Bioconductor database. If genes is
NULL, the gs range of the internal refRanges will be used.

envir ’environment’ containing SQLite database and other globals

Value

None the data frame with the results is stored in the environment and named pedgene_results, viz.
envir$pedgene_results

See Also

init_pedgene

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = init_pedgene(db)
ENV$verbose = TRUE
Mega2pedgene(gs = 50:60)

Mega2R-TBLS 29

Mega2R-TBLS Mega2R SQLite3 tables

Description

This character vector indicates the names of the Mega2 SQLite3 database tables to load. (Not all of
the existing tables are loaded.)

Usage

TBLS

Format

An object of class character of length 15.

Author(s)

Robert V Baron

Mega2R-TBLSFilter Mega2R SQLite3 table filter

Description

This list contains named values. The name corresponds to an SQLite database table. The value is a
character string of column names from the "named" table that should be fetched. A table is in this
list, if not all the database table columns are needed. The columns for each table are separated by
commas.

Usage

TBLSFilter

Format

An object of class list of length 7.

Note

For the data base tables not in this list, all columns are stored in the corresponding data frame.

Author(s)

Robert V Baron

30 Mega2SKAT

Mega2RVersion Mega2R version

Description

This string indicates the current release of Mega2R

Usage

Mega2RVersion

Format

An object of class character of length 1.

Author(s)

Robert V Baron

Mega2SKAT execute the CRAN SKAT function on a subset of the gene transcripts

Description

Execute the SKAT function on the first gs default gene transcripts (gs = 1:100). Update the en-
vir$SKAT_results data frame with the results.

Usage

Mega2SKAT(f, ty, gs = 1:100, genes = NULL, skat = SKAT::SKAT, envir = ENV, ...)

Arguments

f SKAT_Null_Model formula. If this is non NULL, envir$obj is initialized by
calling SKAT_Null_Model(f, out_type = ty). If you need to specify additional
arguments to the Model viz. (data, Adjustment, n.Resampling, type.Resampling)
or need to use a different model viz. SKAT_NULL_emmaX,
SKAT_Null_Model_ChrX set the formula to NULL, then before Mega2SKAT
is called, build the model you need and assign it to ENV$obj.

ty type of phenotype C/D = Continuous/Binary 5 (internal type 1/2)

gs a subrange of the default transcripts (refRanges) over which to calculate the
DOSKAT function.

genes a list of genes over which to calculate the DOSKAT function. The value, "*",
means use all the transcripts in the selected Bioconductor database. If genes is
NULL, the gs range of the internal refRanges will be used.

Mega2VCF 31

skat alternate SKAT function, viz. SKATBinary, SKAT_CommonRare. If it is also
necessary is to pass additional arguments to the SKAT function, they may be
added to the end of the Mega2SKAT function and will be passed. See examples

envir ’environment’ containing SQLite database and other globals
... extra arguments for SKAT

Value

None the data frame with the results is stored in the environment and named SKAT_results, viz.
envir$SKAT_results

Note

The SKAT_Null_Model is called if the formula, f, is not NULL. A helper function SKAT3arg is
defined for the 3 argument callback function which in turn calls DOSKAT with the appropriate argu-
ments (including those additional to the Mega2SKAT function).

See Also

init_SKAT

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = init_SKAT(db, verbose = FALSE, allMarkers = FALSE)
ENV$verbose = FALSE
ENV$SKAT_results = ENV$SKAT_results[0,]
Mega2SKAT(ENV$phe[, 3] - 1 ~ 1, "D", kernel = "linear.weighted",

weights.beta = c(0.5, 0.5), gs=50:60)

donttestcheck: try this below if there is time
Mega2SKAT(ENV$phe[, 3] - 1 ~ 1, "D", kernel = "linear.weighted",

weights.beta = c(0.5, 0.5), genes=c("CEP104"))

ENV$SKAT_results

Mega2VCF generate a VCF file set for a collection of markers

Description

Generate a VCF file from the specified Mega2 SQLite database. The file is named "prefix".vcf If
the markers argument is.null(), the entire envir$markers set is used, otherwise markers argument
MUST be rows of the markers (envir$markers) data frame. In addition, several other files are
generated to hold additional database information: "prefix".fam, "prefix".freq, "prefix".map, "pre-
fix".phe, and "prefix".pen, which contain the pedigree, allele frequency, marker genetic and physical
map position, member phenotype and phenotype penetrance data.

32 Mega2VCF

Usage

Mega2VCF(
prefix,
markers = NULL,
mapno = 0,
alleleOrder = "default",
envir = ENV

)

Arguments

prefix prefix of output files including the VCF file (see Description section above).
This prefix can include a path.

markers markers selected to be in the VCF output file

mapno specify which map index to use for genetic distances. The function showMapNames()
will print out the internal map numbers corresponding to all the maps in the
Mega2 database.

alleleOrder how to order alleles in VCF file. ’default’ is Mega2order, ’minor’ is minor
allele freq first, ’major’ is major allele freq first, and ’name’ is ascending ascii
character order of allele name.

envir ’environment’ containing SQLite database and other globals

Value

None

Note

This code in this package illustrates how to extract the various kinds of data in the Mega2 data
frames to use for further processing. Some of the data internal representations are a bit quirky but
the code "explains" it all.

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)
vcfdir = file.path(where_mega2rtutorial_data(), "vcfr")
if (!dir.exists(vcfdir)) dir.create(vcfdir)
vcffile = file.path(where_mega2rtutorial_data(), "vcfr", "vcf.01")
Mega2VCF(vcffile, ENV$markers[ENV$markers$chromosome == 1,][1:10,], envir = ENV)
list.files(vcfdir)

mkfam 33

mkfam assemble pedigree information into a data frame

Description

Generate a data frame with a row for each person. The observations are:

pedigree family pedigree name
person person name
father father of person
mother mother of person
sex sex of person
trait value of case/control phenotype for person

Usage

mkfam(brkloop = FALSE, traitname = "default", envir = ENV)

Arguments

brkloop I haven’t needed to set this TRUE yet. Maybe never will. If loops are broken, a
person will be replaced by a dopple ganger in the same family with a different
father/mother. The number of persons per family will be different when there
are broken loops. Also, the person_link numbers will be different for all the
persons after the first loop is broken.

traitname Name of the trait to use as case/control value; by default, "default"

envir An ’environment’ that contains all the data frames created from the SQLite
database.

Value

data frame that is described above

Note

The columns of this data frame come by selecting the values after merging the data frames: pedi-
gree_table, person_table, and trait_table.

Also, the father and mother columns from person_table are translated from the row index in the
person_table to the corresponding name.

This function stores the data frame in the ’environment’ and also returns it. The function setfam()
stores the data frame into the ’environment’ and adjusts the genotype_table and the phenotype_table.

34 mkMarkers

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)

fam = mkfam()

fam

mkMarkers create "markers" data frame

Description

Create the markers data frame. It contains 5 observations:

locus_link: locus offset of this marker

locus_link_fill: locus offset plus an accumulating fudge factor that jumps with each new chromo-
some because the count of markers per chromosome is force to be a multiple of 4. (This value
corresponds to the offset of the marker in the unified_genotype_table.)

MarkerName: name of the marker

chromosome: chromosome number of the marker

position: base pair position of the marker (selected by bpPosMap[below])

Usage

mkMarkers(bpPosMap = 1, envir = ENV)

Arguments

bpPosMap An integer that indicates the map (index) to use to merge the chromosome/position
fields from the map_table data frame to the marker_table data frame. See showMap-
Names() for the string name to index mapping.

envir an environment that contains all the data frames created from the SQLite database.

Details

Select a map (index) from the map_table to merge with the select marker_table data frame to make
the marker data frame. See showMapNames() for the string name to index mapping.

Value

None

mkphenotype 35

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db, verbose = FALSE)

mkMarkers(1)

ENV$markers

mkphenotype generate a phenotype data frame

Description

Convert data in phenotype_table to a data frame of columns that are phenotypes. The columns may
be affection status or quantitative values

Usage

mkphenotype(envir)

Arguments

envir "environment" containing SQLite database and other globals

Value

is a data frame with FID column, then IID column, and then an additional column for each pheno-
type.

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)
out = mkphenotype()

out

36 setAnnotations

read.Mega2DB load Mega2 database and initialize family data frame and markers
data frame

Description

Call dbmega2_import() with the specified database and create an ’environment’, with the SQLite
table data loaded into data frames. Also run mkfam() to create the pedigree data frame fam and
then store it with setfam(). setfam() modifies the unified_genotype_table (and phenotype_table)
to match the family members that remain.

Usage

read.Mega2DB(db, ...)

Arguments

db specify SQLite database to load

... additional arguments to pass to dbmega2_import

Value

an ’environment’ that contains all the data frames created from the SQLite database.

Note

By default, mkfam will remove one of each person that was replicated to break loops in the pedigree,
see mkfam for details. If you want to leave loops broken, the code is available, but you will have to
write your own version of read.Mega2DB with a different invokation of mkfam().

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db, verbose = TRUE)

setAnnotations set default name of transcription database and name of database map-
ping gene name to entrez gene id

Description

This function takes two string parameters: one to specify entrez gene ids to transcripts, the other to
map gene names to entrez gene id’s.

setfam 37

Usage

setAnnotations(txdb, entrezGene, envir = ENV)

Arguments

txdb name of Bioconductor transcription database.

entrezGene name of Bioconductor mapping of gene name or gene alias to entrez gene id

envir an ’environment’ that contains all the data frames created from the SQLite
database.

Value

None

Note

Mega2R will take care to load the necessary databases, but you will have to install them from
Bioconductor. This is explained at length in the package Vignette.

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)

setAnnotations("TxDb.Hsapiens.UCSC.hg19.knownGene", "org.Hs.eg.db")

ENV$txdb
ENV$entrezGene

setfam replace the pedigree data frame

Description

You should first modify the fam data frame to filter the members you need to remove. (For example,
you might want to delete members that have an unknown case/control status.) This function takes
a new data frame of pedigree information and replaces the fam data frame in the ’environment’
with it. Additionally, changing fam data frame will filter the genotypes data frame to only contain
persons matching those in the fam data frame. setfam also filters for the phenotype data records.

Usage

setfam(fam, envir = ENV)

38 setRanges

Arguments

fam data frame of family information filtered from fam data frame (generated by
mkfam).

envir an ’environment’ that contains all the data frames created from the SQLite
database.

Value

None

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)

fam = mkfam()
remove founders
fam = fam[!((fam[, 5] == fam[, 6]) & (fam[, 5] == 0)),]
setfam(fam)

ENV$fam

setRanges set default range data: chromosome and start/end base pair

Description

This function sets the default list of ranges used by applyFnToRanges. applyFnToRanges examines
each range and the set of markers that fall within the range will be processed.

Usage

setRanges(ranges, indices, envir = ENV)

Arguments

ranges a data frame that contains at least 4 observations: a name, a chromosome, a start
base pair position and an end base pair position.

indices a vector of 3 or 4 integers that specify the chromosome column, start base pair,
column and end base pair column of range data frame and lastly the name col-
umn. If the vector only contains 3 integers, a name will be generated from the
three range elements and it will be appended to the ranges and the last range
column will be added to the indices.

envir an ’environment’ that contains all the data frames created from the SQLite
database.

showMapNames 39

Value

None

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)

ranges = matrix(c(1, 2240000, 2245000,
1, 2245000, 2250000,
1, 3760000, 3761000,
1, 3761000, 3762000,
1, 3762000, 3763000,
1, 3763000, 3764000,
1, 3764000, 3765000,
1, 3765000, 3763760,
1, 3763760, 3767000,
1, 3767000, 3768000,
1, 3768000, 3769000,
1, 3769000, 3770000),
ncol = 3, nrow = 12, byrow = TRUE)

setRanges(ranges, 1:3)

ENV$refRanges

ranges = matrix(c(1, 2240000, 2245000,
1, 2245000, 2250000,
1, 3760000, 3761000,
1, 3761000, 3762000,
1, 3762000, 3763000,
1, 3763000, 3764000,
1, 3764000, 3765000,
1, 3765000, 3763760,
1, 3763760, 3767000,
1, 3767000, 3768000,
1, 3768000, 3769000,
1, 3769000, 3770000),
ncol = 3, nrow = 12, byrow = TRUE)

ranges = data.frame(ranges)
ranges$name = LETTERS[1:12]
names(ranges) = c("chr", "start", "end", "name")

setRanges(ranges, 1:4)

ENV$refRanges

showMapNames show the association between mapno and mapname

40 showMega2ENV

Description

Mega2R allows several different physical and genetic maps to be stored and used to select positions.
This function shows the association between map number and map name.

Usage

showMapNames(envir = ENV)

Arguments

envir an environment that contains all the data frames created from the SQLite database.

Value

None

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)

showMapNames()

showMega2ENV show Mega2R environment, viz. data frames and related info.

Description

Mega2R uses an environment to store the data frames when it reads SQLite database tables. This
function shows the data frames and their sizes; it also shows the count of samples and markers in
the database. Note: It is not necessary to provide an argument, if the environment is named ENV.

Usage

showMega2ENV(envir = ENV)

Arguments

envir an environment that contains all the data frames created from the SQLite database.

Value

None

showPhenoNames 41

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)

showMega2ENV()

showPhenoNames show the association between index no and phenotype

Description

Mega2R stores several phenotypes, both affective and quantitative. This function displays the map-
ping between phenotype (name), index, and the phenotype type (affection or quantitative).

Usage

showPhenoNames(envir = ENV)

Arguments

envir an environment that contains all the data frames created from the SQLite database.

Value

None

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)

showPhenoNames()

uniqueFamMember regenerate fam data frame with unique values in member column

Description

Reads the fam data frame in "envir" and returns a new one with unique entries in the member
column

Usage

uniqueFamMember(envir = ENV)

42 where_mega2rtutorial_data

Arguments

envir ’environment’ containing SQLite database and other globals

Value

a data frame with columns the same as the "fam" data frame but with the member column containing
unique entries

See Also

mkfam

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)
setfam(uniqueFamMember(envir = ENV))

where_mega2rtutorial_data

show directory of tutorial data

Description

This function shows the directory the Mega2Rtutorial (inst/exdata) was copied to.

Usage

where_mega2rtutorial_data(dir = file.path(tempdir(), "Mega2Rtutorial"))

Arguments

dir The directory to store the tutorial data to. By default, this is tempdir()/Mega2Rtutorial

Value

dir tutorial to hold vignette

Examples

directory = where_mega2rtutorial_data()

Index

∗ datasets
Mega2R-TBLS, 29
Mega2R-TBLSFilter, 29
Mega2RVersion, 30

applyFnToGenes, 3
applyFnToMarkers, 5
applyFnToRanges, 6

clean_mega2rtutorial_data, 8
computeDosage, 9

dbmega2_import, 10
DOfamSKATRC, 9, 10, 24
DOpedgene, 12, 21
DOSKAT, 13
dump_mega2rtutorial_data, 15

gdsfmt, 26
getgenotypes, 15
getgenotypesdos, 16
getgenotypesgenabel, 18
getgenotypesraw, 19

init_famSKATRC, 12, 20, 24
init_pedgene, 13, 21, 28
init_SKAT, 14, 22, 31

Mega2ENVGenABEL, 23
Mega2famSKATRC, 12, 21, 24
Mega2gdsfmt, 25
Mega2GenABEL, 26
Mega2GenABELtst, 27
Mega2pedgene, 21, 28
Mega2R-TBLS, 29
Mega2R-TBLSFilter, 29
Mega2RVersion, 30
Mega2SKAT, 14, 22, 30
Mega2VCF, 31
mkfam, 21, 33, 42
mkMarkers, 34

mkphenotype, 35

read.Mega2DB, 36

setAnnotations, 36
setfam, 37
setRanges, 38
showMapNames, 39
showMega2ENV, 40
showPhenoNames, 41

TBLS (Mega2R-TBLS), 29
TBLSFilter (Mega2R-TBLSFilter), 29

uniqueFamMember, 41

where_mega2rtutorial_data, 42

43

	applyFnToGenes
	applyFnToMarkers
	applyFnToRanges
	clean_mega2rtutorial_data
	computeDosage
	dbmega2_import
	DOfamSKATRC
	DOpedgene
	DOSKAT
	dump_mega2rtutorial_data
	getgenotypes
	getgenotypesdos
	getgenotypesgenabel
	getgenotypesraw
	init_famSKATRC
	init_pedgene
	init_SKAT
	Mega2ENVGenABEL
	Mega2famSKATRC
	Mega2gdsfmt
	Mega2GenABEL
	Mega2GenABELtst
	Mega2pedgene
	Mega2R-TBLS
	Mega2R-TBLSFilter
	Mega2RVersion
	Mega2SKAT
	Mega2VCF
	mkfam
	mkMarkers
	mkphenotype
	read.Mega2DB
	setAnnotations
	setfam
	setRanges
	showMapNames
	showMega2ENV
	showPhenoNames
	uniqueFamMember
	where_mega2rtutorial_data
	Index

