
Package ‘LindenmayeR’
January 20, 2025

Type Package

Title Functions to Explore L-Systems (Lindenmayer Systems)

Version 0.1.13

Date 2017-07-31

Description L-systems or Lindenmayer systems are parallel rewriting systems which can
be used to simulate biological forms and certain kinds of fractals.
Briefly, in an L-system a series of symbols in a string are replaced
iteratively according to rules to give a more complex string. Eventually,
the symbols are translated into turtle graphics for plotting. Wikipedia has
a very good introduction: en.wikipedia.org/wiki/L-system This package
provides basic functions for exploring L-systems.

License GPL (>= 3)

Depends stringr, grid

ByteCompile TRUE

BugReports https://github.com/bryanhanson/LindenmayeR/issues

RoxygenNote 6.0.1

NeedsCompilation no

Author Bryan Hanson [aut, cre]

Maintainer Bryan Hanson <hanson@depauw.edu>

Repository CRAN

Date/Publication 2017-07-31 21:52:31 UTC

Contents
LindenmayeR-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
drawLsys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Lsys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Index 6

1

https://github.com/bryanhanson/LindenmayeR/issues


2 drawLsys

LindenmayeR-package Lindenmayer System Functions

Description

Functions to Explore L-Systems (Lindenmayer Systems)

Details

Lindenmayer or L-systems are parallel rewriting systems which can be used to simulate biological
forms and certain kinds of fractals. Briefly, in an L-system a series of symbols in a string are
replaced iteratively according to rules to give a more complex string. Eventually, the symbols are
translated into turtle graphics for plotting. Wikipedia has a very good introduction: https://en.
wikipedia.org/wiki/L-system This package provides basic functions for exploring L-systems.

Author(s)

Bryan A. Hanson

drawLsys Draw a 2D L-System Using Turtle Graphics

Description

This function takes input strings, previously created with Lsys, translates them into 2D turtle graph-
ics instructions, and then plots the results.

Usage

drawLsys(string = NULL, drules = NULL, st = c(5, 50, 0), stepSize = 1,
ang = 90, which = length(string), shrinkFactor = NULL, ...)

Arguments

string A character vector giving the strings containing the turtle graphics instructions.
Created by Lsys. The "language" and character set of this string is arbitary.
Compare the examples below for the modified Koch curve and the Sierpinski
triangle.

drules A data frame containing columns "symbols" and "action". These contain the
input symbols and the corresponding drawing action. The symbol column is in
the character set used by Lsys and is arbitary. The action column entries must
be from the set c("F", "f", "+", "-", "[", "]"). These are the final drawing
instructions and are interpreted as follows:

"F" Move forward drawing as you go.
"f" Move forward w/o drawing.

https://en.wikipedia.org/wiki/L-system
https://en.wikipedia.org/wiki/L-system


drawLsys 3

"+" Turn by positive ang.
"-" Turn by negative ang.
"[" Save current position and heading.
" "] Restore saved position and heading (allows one to go back).

See the examples. Note that the "action" entry always uses these symbols,
though not all of them need be used.

st A numeric vector of length 3 giving the screen coordinates where the start of the
curve should be placed. The screen is 100 x 100 with the lower left corner as
0,0. The third element is the initial drawing angle in degrees.

stepSize Numeric. The length of the drawing step.

ang Numeric. The angle in degrees when a change in direction is requested.

which Integer. The entries in string which should be drawn. Defaults to the last (most
complex) entry. If length(which) > 1 each plot is drawn in its own window.

shrinkFactor A numeric vector of the same length as string. As each plot is made, stepSize
will be divided by the corresponding value in shrinkFactor. This allows one
to scale down the increasingly large/complex plots to make them occupy a space
similar to the less complex plots.

... Additional parameters to be passed to the grid drawing routines. Most likely,
something of the form gp = gpar(...). See gpar and the last example.

Value

None; side effect is a plot.

Warning

Remember that if retAll = TRUE, Lsys returns the initial string plus the results of all iterations. In
this case, if you want the 5th iteration, you should specify which = 6 since the initial string is in
string[1].

Examples

require('grid')

# Modified Koch curve
rkoch1 <- data.frame(inp = c("F"), out = c("F+F-F-F+F"), stringsAsFactors = FALSE)
k1 <- Lsys(init = "F", rules = rkoch1, n = 3)
dkoch <- data.frame(symbol = c("F", "f", "+", "-", "[", "]"),
action = c("F", "f", "+", "-", "[", "]"), stringsAsFactors = FALSE)
drawLsys(string = k1, stepSize = 3, st = c(10, 50, 0), drules = dkoch)
grid.text("Modified Koch Curve (n = 3)", 0.5, 0.25)

# Classic Koch snowflake
rkoch2 <- data.frame(inp = c("F"), out = c("F-F++F-F"), stringsAsFactors = FALSE)
k2 <- Lsys(init = "F++F++F", rules = rkoch2, n = 4)
drawLsys(string = k2, stepSize = 1, ang = 60, st = c(10, 25, 0), drules = dkoch)
grid.text("Classic Koch Snowflake (n = 4)", 0.5, 0.5)



4 Lsys

# Sierpinski Triangle
rSierp <- data.frame(inp = c("A", "B"), out = c("B-A-B", "A+B+A"), stringsAsFactors = FALSE)
s <- Lsys(init = "A", rules = rSierp, n = 6)
dSierp <- data.frame(symbol = c("A", "B", "+", "-", "[", "]"),
action = c("F", "F", "+", "-", "[", "]"), stringsAsFactors = FALSE)
drawLsys(string = s, stepSize = 1, ang = 60, st = c(20, 25, 0), drules = dSierp)
grid.text("Sierpinski Triangle (n = 6)", 0.5, 0.1)

# Islands & Lakes
islands_rules <- data.frame(inp = c("F", "f"), out = c("F+f-FF+F+FF+Ff+FF-f+FF-F-FF-Ff-FFF",
"ffffff"), stringsAsFactors = FALSE)
islands <- Lsys(init = "F+F+F+F", rules = islands_rules, n = 2)
draw_islands <- data.frame(symbol = c("F", "f", "+", "-", "[", "]"),
action = c("F", "f", "+", "-", "[", "]"), stringsAsFactors = FALSE)
drawLsys(string = islands, step = 1, ang = 90, st = c(70, 35, 90),
drules = draw_islands, gp = gpar(col = "red", fill = "gray"))

# A primitive tree (aka Pythagoras Tree)
prim_rules <- data.frame(inp = c("0", "1"),
out = c("1[+0]-0", "11"), stringsAsFactors = FALSE)
primitive_plant <- Lsys(init = "0", rules = prim_rules, n = 7)
draw_prim <- data.frame(symbol = c("0", "1", "+", "-", "[", "]"),
action = c("F", "F", "+", "-", "[", "]"), stringsAsFactors = FALSE)
drawLsys(string = primitive_plant, stepSize = 1, ang = 45, st = c(50, 5, 90),
drules = draw_prim, which = 7)
grid.text("Primitive Tree (n = 6)", 0.5, 0.75)

# A more realistic botanical structure
# Some call this a fractal tree, I think it is more like seaweed
# Try drawing the last iteration (too slow for here, but looks great)
fractal_tree_rules <- data.frame(inp = c("X", "F"),
out = c("F-[[X]+X]+F[+FX]-X", "FF"), stringsAsFactors = FALSE)
fractal_tree <- Lsys(init = "X", rules = fractal_tree_rules, n = 7)
draw_ft <- data.frame(symbol = c("X", "F", "+", "-", "[", "]"),
action = c("f", "F", "+", "-", "[", "]"), stringsAsFactors = FALSE)
drawLsys(string = fractal_tree, stepSize = 2, ang = 25, st = c(50, 5, 90),
drules = draw_ft, which = 5, gp = gpar(col = "chocolate4", fill = "honeydew"))
grid.text("Fractal Seaweed (n = 4)", 0.25, 0.25)

Lsys Rewrite an Axiom Using Production Rules to Give a String Ready for
Turtle Graphics

Description

This is the central function for rewriting an initial string of symbols (the axiom) into a new string
using production rules. Production rules are very simple: if the symbol is A, turn it into something.
If it is B, turn it into something else. Production rules typically contain instructions about moving
while drawing, moving w/o drawing, changing direction, or storing the current state for re-use later.



Lsys 5

Usage

Lsys(init = NULL, rules = NULL, n = 5, retAll = TRUE, verbose = 1L)

Arguments

init A character string giving variables (symbols) to use as the initial string Also
known as the axiom.

rules A data frame containing columns "inp" and "out". These contain the input vari-
ables and the corresponding replacement string. See the examples in drawLsys.

n An integer giving the number of cycles or iterations desired.

retAll Logical. If TRUE, the result at each cycle will be returned, otherwise only the
last result is returned.

verbose An integer giving the level of information desired as the calculation proceeds.
verbose = 1L gives basic information at each cycle. Any value greater than 1
gives much more detail. Supress messages by using a value less than 1.

Details

The job of this function is to take an input "axiom" and apply the "production rules" and other
paramters to create a new string of drawing instructions. The "language" or character set of the
axiom and production rules are arbitary, and the internet and literature contains many different ex-
amples. The same fractal could be drawn using completely different sets of symbols. The string
produced by this function is processed by drawLsys. See there for further explanation and exam-
ples.

Value

If retAll = FALSE, a character vector of length 1 giving the string at the end processing. Otherwise,
a character vector of length n + 1 containing init plus the results at the end of each iteration.

See Also

drawLsys for examples, including plotting.



Index

∗ package
LindenmayeR-package, 2

∗ plot
drawLsys, 2

∗ utilities
Lsys, 4

drawLsys, 2, 5

gpar, 3

LindenmayeR (LindenmayeR-package), 2
LindenmayeR-package, 2
Lsys, 2, 3, 4

6


	LindenmayeR-package
	drawLsys
	Lsys
	Index

