
Package ‘LilRhino’
January 20, 2025

Type Package

Title For Implementation of Feed Reduction, Learning Examples, NLP and
Code Management

Version 1.2.2

Author Travis Barton (2018)

Maintainer Travis Barton <travisdatabarton@gmail.com>

Description This is for code management functions, NLP tools, a Monty Hall simulator, and for im-
plementing my own variable reduction technique called Feed Reduction. The Feed Reduc-
tion technique is not yet published, but is merely a tool for implementing a series of binary neu-
ral networks meant for reducing data into N dimensions, where N is the number of possible val-
ues of the response variable.

License GPL-2

Encoding UTF-8

Suggests textclean

Imports FNN, stringi, beepr, ggplot2, keras, dplyr, readr, parallel,
tm, e1071, SnowballC, data.table, fastmatch, neuralnet

NeedsCompilation no

Repository CRAN

Date/Publication 2022-04-27 22:10:14 UTC

Contents
Binary_Network . 2
Bootstrap_Data_Frame . 3
Bootstrap_Vocab . 5
Codes_done . 6
Cross_val_maker . 7
Feed_Reduction . 7
Load_Glove_Embeddings . 9
Monty_Hall . 10
Nearest_Centroid . 11
Num_Al_Sep . 11

1

2 Binary_Network

Percent . 12
Pretreatment . 13
Random_Brains . 14
Sentence_Vector . 15
Stopword_Maker . 16
Table_percent . 17
Vector_Puller . 17

Index 19

Binary_Network Binary Decision Neural Network Wrapper

Description

Used as a function of Feed_Reduction, Binary_Networt uses a 3 layer neural network with an adam
optimizer, leaky RELU for the first two activation functions, followed by a softmax on the last
layer. The loss function is binary_crossentropy. This is a keras wrapper, and uses tensorflow in the
backend.

Usage

Binary_Network(X, Y, X_test, val_split, nodes, epochs, batch_size, verbose = 0)

Arguments

X Training data.

Y Training Labels. These must be binary.

X_test The test Data

val_split The validation split for keras.

nodes The number of nodes in the hidden layers.

epochs The number of epochs for the network

batch_size The batch size for the network

verbose Weither or not you want details about the run as its happening. 0 = silent, 1 =
progress bar, 2 = one line per epoch.

Details

This function is a subset for the larger function Feed_Network. The output is the list containing
the training and testing data converted into an approximation of probability space for that binary
decision.

Value

Train The training data in approximate probability space

Test The testing data in ’double’ approximate probability space

Bootstrap_Data_Frame 3

Author(s)

Travis Barton

References

Check out http://wbbpredictions.com/wp-content/uploads/2018/12/Redditbot_Paper.pdf and Keras
for details

See Also

Feed_Network

Examples

Not run:
if(8 * .Machine$sizeof.pointer == 64){

#Feed Network Testing
library(keras)
library(dplyr)
install_keras()
dat <- keras::dataset_mnist()
X_train = array_reshape(dat$train$x/255, c(nrow(dat$train$x/255), 784))
y_train = to_categorical(dat$train$y, 10)
X_test = array_reshape(dat$test$x/255, c(nrow(dat$test$x/255), 784))
y_test =to_categorical(dat$test$y, 10)

index_train = which(dat$train$y == 6 | dat$train$y == 5)
index_train = sample(index_train, length(index_train))
index_test = which(dat$test$y == 6 | dat$test$y == 5)
index_test = sample(index_test, length(index_test))

temp = Binary_Network(X_train[index_train,],
y_train[index_train,c(7, 6)], X_test[index_test,], .3, 350, 30, 50)

}

End(Not run)

Bootstrap_Data_Frame A function for bootstraping textual data so that all levels have the same
number of entries.

Description

This function takes a corpus and a set of labels and uses Bootstrap_Vocab to increase the size of
each label until they are all the same length. Stop words are not bootstrapped.

4 Bootstrap_Data_Frame

Usage

Bootstrap_Data_Frame(text, tags, stopwords, min_length = 7, max_length = 15)

Arguments

text text is the collection of textual data to bootstrap up.

tags tags are the collection of tags that will be used to bootstrap. There should be one
for every entry in ’text’. They do not have to be unique.

stopwords stopwords to make sure are not apart of the bootstrapping process. It is advised
to eliminate the most common words. See Stop_Word_Maker()

min_length The shortest length allowable for bootstrapped words

max_length The longest length allowable for bootstrapped words

Details

Most of the bootstrapped words will be nonseneical. The intention of this package is not to create
new sentences, but to instead trick your model into thinking it has equal lengthed levels. This
method is meant for bag of words style models.

Value

A data frame of your original documents along with the bootstrapped ones (column 1) along with
their tags (column 2).

Author(s)

Travis Barton

Examples

test_set = c('I like cats', 'I like dogs', 'we love animals', 'I am a vet',
'US politics bore me', 'I dont like to vote',
'The rainbow looked nice today dont you think tommy')

test_tags = c('animals', 'animals', 'animals', 'animals',
'politics', 'politics',
'misc')

Bootstrap_Data_Frame(test_set, test_tags, c("I", "we"), min_length = 3, max_length = 8)

Bootstrap_Vocab 5

Bootstrap_Vocab An internal function for Bootstrap_Data_Frame.

Description

This function takes a selection of documents and bootstraps words from said sentences until there
are N total sentences (both sudo and original).

Usage

Bootstrap_Vocab(vocab, N, stopwds, min_length = 7, max_length = 15)

Arguments

vocab The collection of documents to boostrap.

N The total amount of sentences to end up with

stopwds A list of stopwords to not include in the bootstrapping proccess

min_length The shortest allowable bootstrapped doument

max_length The longest allowable bootstrapped document

Details

The min and max length arguements to not gaurantee that a sentence will reach that length. These
senteces will be nonsensical.

Value

A vector of bootstrapped sentences.

Author(s)

Travis Barton

Examples

testing_set = c(paste('this is test', as.character(seq(1, 10, 1))))

Bootstrap_Vocab(testing_set, 20, c('this'))

6 Codes_done

Codes_done For announcing when code is done.

Description

for alerting you when your code is done.

Usage

Codes_done(title, msg, sound = FALSE, effect = 1)

Arguments

title The title of the notification

msg The message to be sent

sound Optional sound to blurt as well

effect If sound it blurted, what should it be? (check beepr package for sound options)

Details

Only for Linix (as far as I know)

Author(s)

smacdonald (stack overflow) with modificaion by Travis Barton

References

https://stackoverflow.com/questions/3365657/is-there-a-way-to-make-r-beep-play-a-sound-at-the-end-
of-a-script

Examples

Codes_done("done", "check it", sound = TRUE, effect = 1)

Cross_val_maker 7

Cross_val_maker For Creating a test and train set from a whole set

Description

for making one dataset into two (test and train)

Usage

Cross_val_maker(data, alpha)

Arguments

data matrix of data you want to split

alpha the percent of data to split

Value

returns a list with accessable with the ’$’ sign. Test and Train are labeled as such.

Author(s)

Travis Barton

Examples

dat <- Cross_val_maker(iris, .1)
train <- dat$Train
test <- dat$Test

Feed_Reduction A Function for converting data into approximations of probability
space.

Description

It takes the number of unique labels in the training data and tries to predict a one vs all binary
neural network for each unique label. The output is an approximation of the probability that each
individual input does not not match the label. Travis Barton (2018) http://wbbpredictions.com/wp-
content/uploads/2018/12/Redditbot_Paper.pdf

Usage

Feed_Reduction(X, Y, X_test, val_split = .1,
nodes = NULL, epochs = 15,
batch_size = 30, verbose = 0)

8 Feed_Reduction

Arguments

X Training data

Y Training labels

X_test Testing data

val_split The validation split for the keras, binary, neural networks

nodes The number nodes for the hidden layers, default is 1/4 of the length of the train-
ing data.

epochs The number of epochs for the fitting of the networks

batch_size The batch size for the networks

verbose Weither or not you want details about the run as its happening. 0 = silent, 1 =
progress bar, 2 = one line per epoch.

Details

This is a new technique for dimensionality reduction of my own creation. Data is converted to the
same number of dimensions as there are unique labels. Each dimension is an approximation of the
probability that the data point is inside the a unique label. The return value is a list the training and
test data with their dimensionality reduced.

Value

Train The training data in the new probability space

Test The testing data in the new probability space

Author(s)

Travis Barton.

References

Check out http://wbbpredictions.com/wp-content/uploads/2018/12/Redditbot_Paper.pdf for details
on the proccess

See Also

Binary_Network

Examples

Not run:
if(8 * .Machine$sizeof.pointer == 64){
#Feed Network Testing
library(keras)

install_keras()
dat <- keras::dataset_mnist()
X_train = array_reshape(dat$train$x/255, c(nrow(dat$train$x/255), 784))

Load_Glove_Embeddings 9

y_train = dat$train$y
X_test = array_reshape(dat$test$x/255, c(nrow(dat$test$x/255), 784))
y_test = dat$test$y

Reduced_Data2 = Feed_Reduction(X_train, y_train, X_test,
val_split = .3, nodes = 350,
30, 50, verbose = 1)

library(e1071)
names(Reduced_Data2$test) = names(Reduced_Data2$train)
newdat = as.data.frame(cbind(rbind(Reduced_Data2$train, Reduced_Data2$test), c(y_train, y_test)))
colnames(newdat) = c(paste("V", c(1:11), sep = ""))
mod = svm(V11~., data = newdat, subset = c(1:60000),

kernel = 'linear', cost = 1, type = 'C-classification')
preds = predict(mod, newdat[60001:70000,-11])
sum(preds == y_test)/10000

}

End(Not run)

Load_Glove_Embeddings Function for loading in pre-trained or personal word embedding soft-
wares.

Description

Loads in GloVes’ pretrained 42 billion token embeddings, trained on the common crawl.

Usage

Load_Glove_Embeddings(path = 'glove.42B.300d.txt', d = 300)

Arguments

path The path to the embeddings file.

d The dimension of the embeddings file.

Details

The embeddings file should be the word, followed by numeric values, ending with a carriage return.

Value

The embeddings matrix.

Author(s)

Travis Barton

10 Monty_Hall

Examples

#This code only works if you have the 5g file found here: <https://nlp.stanford.edu/projects/glove/>

Not run: emb = Load_Glove_Embeddings()

Monty_Hall Monty Hall Simulator

Description

A simulator for the famous Monty Hall Problem

Usage

Monty_Hall(Games = 10, Choice = "Stay")

Arguments

Games The number of games to run on the simulation

Choice Wether you would like the simulation to either ’Stay’ with the first chosen door,
’Switch’ to the other door, or ’Random’ where you randomly decide to either
stay or switch.

Details

This is just a toy example of the famous Monty Hall problem. It returns a ggplot bar chart showing
the counts for wins or loses in the simulation.

Value

A ggplot graph is produced. There is no return value.

Author(s)

Travis Barton

Examples

Monty_Hall(100, 'Stay')

Nearest_Centroid 11

Nearest_Centroid For performing the nearest centroid problem (with modifications) on
MNST data specifically (general to come)

Description

For Chen’s homework, I’ll change this when I generalize it.

Usage

Nearest_Centroid(X_train, X_test, Y_train)

Arguments

X_train Training data

X_test data to be tested

Y_train training labels

Note

Based on homework from Guangling Chen’s M251 class at SJSU

Author(s)

Travis Barton

Num_Al_Sep Number/alpha numeric seperator for strings.

Description

A Function for the separating of numbers from letters. ’b4’ for example would be converted to ’b
4’.

Usage

Num_Al_Sep(vec)

Arguments

vec The string vector in which you wish to separate the numbers from the letters.

Value

output The separated vector.

12 Percent

Note

This is a really simple function really used inside other functions.

Author(s)

Travis Barton

Examples

test_vec = 'The most iconic American weapon has to be the AR15'
res = Num_Al_Sep(test_vec)
print(res)

Percent Percent of confusion matrix

Description

For finding the accuracy of confusion matricies with true/pred values

Usage

Percent(true, test)

Arguments

true The true values
test the test values

Details

Make sure your strings have the right values and create a square matrix.

Value

the percent acc.

Author(s)

Travis Barton

Examples

true <- rep(1:10, 10)
test <- rep(1:10, 10)
test[c(2, 22, 33, 89)] = 1
Percent(true, test)
#or
#percent(table(true, test))

Pretreatment 13

Pretreatment Pretreatment of textual documents for NLP.

Description

This function goes through a number of pretreatment steps in preparation for vectorization. These
steps are designed to help the data become more standard so that there are fewer outliers when
training during NLP. The following effects are applied: 1. Non-alpha/numerics are removed. 2.
Numbers are separated from letters. 3. Numbers are replaced with their word equivalents. 4. Words
are stemmed (optional). 5. Words are lowercased (optinal).

Usage

Pretreatment(title_vec, stem = TRUE, lower = TRUE, parallel = FALSE)

Arguments

title_vec Vector of documents to be pre-treated.

stem Boolian variable to decide whether to stem or not.

lower Boolian variable to decide whether to lowercase words or not.

parallel Boolian variable to decide whether to run this function in parallel or not.

Details

This function returns a list. It should be able to accept any format that the function lapply would
accept. The parallelization is done with the function Mcapply from the package ’parallel’ and will
only work on systems that allow forking (Sorry windows users). Future updates will allow for
socketing.

Value

output The list of character strings post-pretreatment

Author(s)

Travis Barton

Examples

Not run: # for some reason it takes longer than 5 seconds on CRAN's computers
test_vec = c('This is a test', 'Ahoy!', 'my battle-ship is on... b6!')
res = Pretreatment(test_vec)
print(res)

End(Not run)

14 Random_Brains

Random_Brains Random Brains: Neural Network Implementation of Random Forest

Description

Creates a random forest style collection of neural networks for classification

Usage

Random_Brains(data, y, x_test,
variables = ceiling(ncol(data)/10),
brains = floor(sqrt(ncol(data))),
hiddens = c(3, 4))

Arguments

data The data that holds the predictors ONLY.
y The responce variable
x_test The testing predictors
variables The number of predictors to select for each brain in ’data’. The default is one

tenth of the number of columns in ’data’.
brains The number of neural networks to create. The default is the square root of the

number of columns in ’data’.
hiddens The is a vector with length equal to the desired number of hidden layers. Each

entry in the vector corresponds to the number of nodes in that layer. The de-
fault is c(3, 4) which is a two layer network with 3 and 4 nodes in the layers
respectively.

Details

This function is meant to mirror the classic random forest function exctly. The only difference being
that it uses shallow neural networks to build the forest instead of decision trees.

Value

predictions The predictions for x_test.
num_brains The number of neural networks used to decide the predictions.
predictors_per_brain

The number of variabled used for the neural networks used to decide the predic-
tions.

hidden_layers The vector describing the number of layers, as well as how many there were.
preds_per_brain

This matrix describes which columns where selected by each brain. Each row is
a new brain. each column describes the index of the column used.

raw_results The matrix of raw predictions from the brains. Each row is the cummulative
predictions of all the brains. Which prediciton won by majority vote can be seen
in ’predictions

Sentence_Vector 15

Note

The neural networks are created using the neuralnet package!

Author(s)

Travis Barton

Examples

dat = Cross_val_maker(iris, .2)

train = dat$Train
test = dat$Test

Final_Test = Random_Brains(train[,-5],
train$Species, as.matrix(test[,-5]),
variables = 3, brains = 2)

table(Final_Test$predictions, as.numeric(test$Species))

Sentence_Vector Function for extracting the sentence vector from an embeddings ma-
trix.

Description

Function for extracting the sentence vector from an embeddings matrix in a fast and convenient
manner.

Usage

Sentence_Vector(Sentence, emb_matrix, dimension, stopwords)

Arguments

Sentence The sentence to find the vector of.

emb_matrix The embeddings matrix to search.

dimension The dimension of the vector to return.

stopwords Words that should not be included in the averaging proccess.

Details

The function splits the sentence into words, eliminates all stopwords, finds the vectors of each word,
then averages the word vectors into a sentence vector.

16 Stopword_Maker

Value

The sentence vector from an embeddings matrix.

Author(s)

Travis Barton

Examples

emb = data.frame(matrix(c(1, 2, 3, 4, 5, 5,
4, 3, 2, 1, 1, 5, 3, 2, 4), nrow = 3),
row.names = c('sentence', 'in', 'question'))

Sentence_Vector(c('this is the sentence in question'), emb, 5, c('this', 'is', 'the'))

Stopword_Maker For the finding of the N most populous words in a corpus.

Description

This function finds the N most used words in a corpus. This is done to identify stop words to
better prune data sets before training.

Usage

Stopword_Maker(titles, cutoff = 20)

Arguments

titles The documents in which the most populous words are sought.
cutoff The number of N top most used words to keep as stop words.

Value

output A vector of the N most populous words.

Author(s)

Travis Barton

Examples

test_set = c('this is a testset', 'I am searching for a list of words',
'I like turtles',
'A rocket would be a fast way of getting to work, but I do not think it is very practical')
res = Stopword_Maker(test_set, 4)
print(res)

Table_percent 17

Table_percent Table Percent

Description

Finds the acc of square tables.

Usage

Table_percent(in_table)

Arguments

in_table a confusion matrix

Details

The table must be square

Note

make sure its square.

Author(s)

Travis Barton

Examples

true <- rep(1:10, 10)
test <- rep(1:10, 10)
test[c(2, 22, 33, 89)] = 1
Table_percent(table(true, test))

Vector_Puller Function for extacting word vectors from embeddings.

Description

Function for extacting word vectors from embeddings. This function is an internal function for
’Sentence_Puller’. It averages the word vectors and returns the average of these vectors.

Usage

Vector_Puller(words, emb_matrix, dimension)

18 Vector_Puller

Arguments

words The word to be extracted.

emb_matrix The embeddings matrix. It must be a data frame.

dimension The Dimension of the embeddings to extract. They do not have to match that of
the matrix, but they cannot exceed its maximum column count.

Details

This is a simple and fast internal function.

Value

The vector that corresponds to the average of the word vectors.

Author(s)

Travis Barton

Examples

This is an example emb_matrix

emb = data.frame(matrix(c(1, 2, 3, 4, 5, 5, 4, 3, 2, 1), nrow = 2), row.names = c('cow', 'moo'))

Vector_Puller(c('cow', 'moo'), emb, 5)

Index

∗ FeedNetwork
Binary_Network, 2

∗ NeuralNetwork
Binary_Network, 2

Binary_Network, 2
Bootstrap_Data_Frame, 3
Bootstrap_Vocab, 5

Codes_done, 6
Cross_val_maker, 7

Feed_Reduction, 7

Load_Glove_Embeddings, 9

Monty_Hall, 10

Nearest_Centroid, 11
Num_Al_Sep, 11

Percent, 12
Pretreatment, 13

Random_Brains, 14

Sentence_Vector, 15
Stopword_Maker, 16

Table_percent, 17

Vector_Puller, 17

19

	Binary_Network
	Bootstrap_Data_Frame
	Bootstrap_Vocab
	Codes_done
	Cross_val_maker
	Feed_Reduction
	Load_Glove_Embeddings
	Monty_Hall
	Nearest_Centroid
	Num_Al_Sep
	Percent
	Pretreatment
	Random_Brains
	Sentence_Vector
	Stopword_Maker
	Table_percent
	Vector_Puller
	Index

