Package 'LFDR.MME'

January 20, 2025

Type Package
Title Estimating Local False Discovery Rates Using the Method of Moments
Version 1.0
Date 2020-11-17
Author Ali Karimnezhad
Maintainer Ali Karimnezhad <ali.karimnezhad@gmail.com></ali.karimnezhad@gmail.com>
Description Estimation of the local false discovery rate using the method of moments.
Depends R(>= 2.14.2)
Encoding UTF-8
biocViews Bayesian, MathematicalBiology, MultipleComparison
License GPL-3
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2020-11-20 09:10:08 UTC

Contents

	LFDR.MM	 	 •	 	 	•	•	 	•	 •	 	•	•		•	 •	•		1
Index																			4

LFDR.MM

Performs a Multiple Hypothesis Testing Using the Method of Moments

Description

Based on a given vector of chi-square test statistics, provides estimates of local false discoveries.

Usage

LFDR.MM(x)

Arguments

х

A vector of chi-square test statistics with one degree of freedom.

Details

For N given features (genes, proteins, SNPs, etc.), the function tests the null hypothesis H_{0i} , i = 1, ..., N, indicating that there is no association between feature i and a specific disease, versus its alternative hypothesis H_{1i} . For each unassociated feature i, it is suppoed that the corresponding test stiatistic x_i follows a central chi-square distribution with one degree of freedom. For each associated feature i, it is assumed that the corresponding test stiatistic x_i follows a non-central chi-square distribution with one degree of freedom. For each association is measured by estimating the local false discovery rate (LFDR), the posterior probability that the null hypothesis H_{0i} given the test statistic x_i is true. This package returns three components as mentioned in the **Value** section.

Value

Outputs three elements as seen below:

pi0.hat	estimate of proportion of unassocaited features π_0 .
ncp.hat	estimate of the non-centrality parameter λ of the chi-square model for associated features.
lfdr.hat	estimates of local false discovery rates.

Author(s)

Code: Ali Karimnezhad. Documentation: Ali Karimnezhad.

References

Karimnezhad, A. (2020). A Simple Yet Efficient Parametric Method of Local False Discovery Rate Estimation Designed for Genome-Wide Association Data Analysis. Retrieved from https://arxiv.org/abs/1909.13307

Examples

vector of test statistics for assocaited features
stat.assoc<- rchisq(n=1000,df=1, ncp = 3)
vector of test statistics for unassocaited features
stat.unassoc<- rchisq(n=9000,df=1, ncp = 0)
vector of test statistics
stat<- c(stat.assoc,stat.unassoc)</pre>

LFDR.MM

output <- LFDR.MM(x=stat)</pre>

Estimated pi0
output\$p0.hat

Estimated non-centrality parameter
output\$ncp.hat

Estimated LFDRs
output\$lfdr.hat

Index

* Chi-Square Distribution
LFDR.MM, 1
* Empirical Bayes
LFDR.MM, 1
* Local False Discovery Rate
LFDR.MM, 1
* Multiple Hypothesis Testing
LFDR.MM, 1
* Null Hypothesis
LFDR.MM, 1

LFDR.MM, 1