
Package ‘Iso’
January 20, 2025

Version 0.0-21

Date 2023-10-02

Title Functions to Perform Isotonic Regression

Author Rolf Turner <rolfturner@posteo.net>

Maintainer Rolf Turner <rolfturner@posteo.net>

Depends R (>= 1.7.0)

Description Linear order and unimodal order (univariate)
isotonic regression; bivariate isotonic regression
with linear order on both variables.

LazyData true

License GPL (>= 2)

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-10-02 06:50:13 UTC

Contents
biviso . 1
pava . 4
ufit . 5
vigour . 8

Index 9

biviso Bivariate isotonic regression.

Description

Bivariate isotonic regression with respect to simple (increasing) linear ordering on both variables.

1

2 biviso

Usage

biviso(y, w = NULL, eps = NULL, eps2 = 1e-9, ncycle = 50000,
fatal = TRUE, warn = TRUE)

Arguments

y The matrix of observations to be isotonized. It must of course have at least two
rows and at least two columns.

w A matrix of weights, greater than or equal to zero, of the same dimension as y.
If left NULL then w is created as a matrix all of whose entries are equal to 1.

eps Convergence criterion. The algorithm is deemed to have converged if each en-
try of the output matrix, after the completion of the current iteration, does not
differ by more than eps from the corresponding entry of the matrix after the
completion of the previous iteration. If this argument is not supplied it defaults
to sqrt(.Machine$double.eps).

eps2 Criterion used to determine whether isotonicity is “violated”, whence whether
(further) application of the “pool adjacent violators” procedure is required.

ncycle The maximum number of cycles of the iteration procedure. Must be at least 2
(otherwise an error is given). If the procedure has not converged after ncycle
iterations then an error is given. (See below.)

fatal Logical scalar. Should the function stop if the subroutine returns an error code
other than 0 or 4? If fatal is FALSE then output is returned by the function
even if there was a “serious” fault. One can set fatal=FALSE to inspect the
values of the objective matrix at various interim stages prior to convergence.
See Examples.

warn Logical scalar. Should a warning be produced if the subroutine returns a value
of ifault equal to 4 (or to any other non-zero value when fatal has been set
to FALSE)?

Details

See the paper by Bril et al., (References) and the references cited therein for details.

Value

A matrix of the same dimensions as y containing the corresponding isotonic values. It has an
attribute icycle equal to the number of cycles required to achieve convergence of the algorithm.

Error Messages

The subroutine comprising Algorithm AS 206 produces an error code ifault with values from 0
to 6 The meaning of these codes is as follows:

• 0: No error.

• 1: Convergence was not attained in ncycle cycles.

• 2: At least one entry of w was negative.

biviso 3

• 3: Either nrow(y) or ncol(y) was less than 2.

• 4: A near-zero weight less than delta=0.00001 was replaced by delta.

• 5: Convergence was not attained and a non-zero weight was replaced by delta.

• 6: All entries of w were less than delta.

If ifault==4 a warning is given. All of the other non-zero values of ifault result in an error being
given.

WARNING

This function appears not to achieve exact isotonicity, at least not quite. For instance one can do:

set.seed(42)
u <- matrix(runif(400),20,20)
iu <- biviso(u)
any(apply(iu,2,is.unsorted))

and get TRUE. It turns out that columns 13, 14, and 16 of iu have exceptions to isotonicity. E.g.
six of the values of diff(iu[,13]) are less than zero. However only one of these is less than
sqrt(.Machine$double.eps), and then only “marginally” smaller.

So some of these negative values are “numerically different” from zero, but not by much. The
largest in magnitude in this example, from column 16, is -2.217624e-08 — which is probably not
of “practical importance”.

Note also that this example occurs in a very artificial context in which there is no actual isotonic
structure underlying the data.

Author(s)

Rolf Turner <rolfturner@posteo.net>

References

Bril, Gordon; Dykstra, Richard; Pillers Carolyn, and Robertson, Tim ; Isotonic regression in two
independent variables; Algorithm AS 206; JRSSC (Applied Statistics), vol. 33, no. 3, pp. 352-357,
1984.

See Also

pava() pava.sa() ufit()

Examples

x <- 1:20
y <- 1:10
xy <- outer(x,y,function(a,b){a+b+0.5*a*b}) + rnorm(200)
ixy <- biviso(xy)

set.seed(42)
u <- matrix(runif(400),20,20)

4 pava

v <- biviso(u)
progress <- list()
for(n in 1:9) progress[[n]] <- biviso(u,ncycle=50*n,fatal=FALSE,warn=FALSE)

pava Linear order isotonic regression.

Description

The “pool adjacent violators algorithm” (PAVA) is applied to calculate the isotonic regression of a
set of data, with respect to the usual increasing (or decreasing) linear ordering on the indices.

Usage

pava(y, w, decreasing=FALSE, long.out=FALSE, stepfun=FALSE)
pava.sa(y, w, decreasing=FALSE, long.out=FALSE, stepfun=FALSE)

Arguments

y Vector of data whose isotonic regression is to be calculated.

w Optional vector of weights to be used for calculating a weighted isotonic regres-
sion; if w is not given, all weights are taken to equal 1.

decreasing Logical scalar; should the isotonic regression be calculated with respect to de-
creasing (rather than increasing) order?

long.out Logical argument controlling the nature of the value returned.

stepfun Logical scalar; if TRUE a step function representation of the isotonic regression
is returned.

Details

The function pava() uses dynamically loading of a fortran subroutine "pava" to effect the computa-
tions. The function pava.sa() ("sa" for "stand-alone") does all of the computations in raw R. Thus
pava.sa() could be considerably slower for large data sets.

The x values for the step function returned by these functions (if stepfun is TRUE) are thought of
as being 1, 2, . . . , n=length(y). The knots of the step function are the x values (indices) following
changes in the y values (i.e. the starting indices of the level sets, except for the first level set). The
y value corresponding to the first level set is the “left hand” value of y or yleft. The step function
is formed using the default arguments of stepfun(). In particular it is right continuous.

Value

If long.out is TRUE then the result returned consists of a list whose components are:

y the fitted values

w the final weights

ufit 5

tr a set of indices made up of the smallest index in each level set, which thus "keeps
track" of the level sets.

h a step function which represents the results of the isotonic regression. This
component is present only if stepfun is TRUE.

If long.out is FALSE and stepfun is TRUE then only the step function is returned.

If long.out and stepfun are both FALSE then only the vector of fitted values is returned.

Author(s)

Rolf Turner <rolfturner@posteo.net>

References

Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order Restricted Statistical Inference. Wiley,
New York.

See Also

ufit() stepfun() biviso()

Examples

Increasing order:
y <- (1:20) + rnorm(20)
ystar <- pava(y)
plot(y)
lines(ystar,type='s')
Decreasing order:
z <- NULL
for(i in 4:8) {
z <- c(z,rep(8-i+1,i)+0.05*(0:(i-1)))
}
zstar <- pava(z,decreasing=TRUE)
plot(z)
lines(zstar,type='s')
Using the stepfunction:
zstar <- pava(z,decreasing=TRUE,stepfun=TRUE)
plot(z)
plot(zstar,add=TRUE,verticals=FALSE,pch=20,col.points="red")

ufit Unimodal isotonic regression.

Description

A "divide and conquer" algorithm is applied to calculate the isotonic regression of a set of data, for
a unimodal order. If the mode of the unimodal order is not specified, then the optimal (in terms of
minimizing the error sum of squares) unimodal fit is calculated.

6 ufit

Usage

ufit(y, lmode=NULL, imode=NULL, x=NULL, w=NULL, lc=TRUE, rc=TRUE,
type=c("raw","stepfun","both"))

Arguments

y Vector of data whose isotonic regression is to be calculated.

lmode Numeric scalar specifiing the location of the mode. It must be one of the values
of x (see below) otherwise an error is thrown.

imode Integer scalar specifying the index, amongst the values of x (see below) of the
location of the mode. It must be one of the indices from 1 to n, where n is the
length of y, otherwise an error is thrown.
It is an error to specify both lmode and imode.
Note that if neither lmode nor imode is specified then the function performs an
exhaustive search among all possible mode locations for the optimal (in terms
of minimising the error sum of squares) location.

x A somewhat notional vector of x values corresponding to the data vector y; the
value of the mode must be given, or will be determined in terms of these x val-
ues. Conceptually the model is y = m(x) + E, where m() is a unimodal function
with mode at lmode, and where E is random "error". If x is not specified, it
defaults to an equi-spaced sequence of length n on [0,1] (where n is the length
of y).

w Optional vector of weights to be used for calculating a weighted isotonic regres-
sion; if w is not specified then all weights are taken to equal 1.

lc Logical scalar; should the isotonization be left continuous? If lc==FALSE then
the value of the isotonization just before the mode is set to NA, which causes line
plots to have a jump discontinuity at (just to the left of) the mode. The default is
lc=TRUE.

rc Logical scalar; should the isotonization be right continuous? If rc==FALSE then
the value of the isotonization just after the mode is set to NA, which causes line
plots to have a jump discontinuity at (just to the right of) the mode. The default
is rc=TRUE.

type String specifying the type of the output; see Value. May be abbreviated.

Details

This function dynamically loads fortran subroutines "pava", "ufit" and "unimode" to do the actual
work.

Value

If type=="raw" then the value is a list with components:

x The argument x if this is specified, otherwise the default value.

y The fitted values.

ufit 7

mode The value of the location of the mode as determined by lmode or imode if one of
these was specified. Otherwise it is the value of the location of the mode which
was found to minimize the error sum of squares.

mse The mean squared error.

If type=="both" then a component h which is the step function representation of the isotonic
regression is added to the foregoing list.

If type=="stepfun" then only the step function representation h is returned.

Author(s)

Rolf Turner <rolfturner@posteo.net>

References

Mureika, R. A., Turner, T. R. and Wollan, P. C. (1992). An algorithm for unimodal isotonic re-
gression, with application to locating a maximum. University of New Brunswick Department of
Mathematics and Statistics Technical Report Number 92 – 4.

Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order Restricted Statistical Inference. Wiley,
New York.

Shi, Ning-Zhong. (1988) A test of homogeneity for umbrella alternatives and tables of the level
probabilities. Commun. Statist. — Theory Meth. vol. 17, pp. 657 – 670.

Turner, T. R., and Wollan, P. C. (1997) Locating a maximum using isotonic regression. Computa-
tional Statistics and Data Analysis vol. 25, pp. 305 – 320.

See Also

pava() biviso()

Examples

y <- c(0,1,2,3,3,2)
f1 <- ufit(y,lmode=0.4) # The third entry of the default

value of x = c(0.0,0.2,0.4,0.6,0.8,1.0).
f2 <- ufit(y,imode=3) # Identical to f1.
f3 <- ufit(y,lmode=3,x=1:6) # Effectively the same as f1 and f2.

But is different in appearance.
f4 <- ufit(y,imode=3,x=1:6) # Identical to f3.

Not run:
ufit(y,lmode=3) # Throws an error.
ufit(y,imode=7) # Throws an error.

End(Not run)

x <- c(0.00,0.34,0.67,1.00,1.34,1.67,2.00,2.50,3.00,3.50,4.00,4.50,
5.00,5.50,6.00,8.00,12.00,16.00,24.00)

y <- c(0.0,61.9,183.3,173.7,250.6,238.1,292.6,293.8,268.0,285.9,258.8,
297.4,217.3,226.4,170.1,74.2,59.8,4.1,6.1)

z <- ufit(y,x=x,type="b")

8 vigour

plot(x,y)
lines(z,col="red")
plot(z$h,do.points=FALSE,col.hor="blue",col.vert="blue",add=TRUE)
abline(v=z$mode,col="green",lty=2)

vigour vigour

Description

Growth vigour of stands of spruce trees in New Brunswick, Canada.

Usage

data("vigour")

Format

A data frame with 23 observations (rows). The first column is the year of observation (1965 to 1987
inclusive). The other five columns are observations on the vigour of growth of the given stand in
each of the years.

Details

The stands each had different initial tree densities. It was expected that vigour would initially
increase (as the trees increased in size) and then level off and start to decrease as the growing trees
encroached upon each others’ space and competed more strongly for resources such as moisture,
nutrients, and light. It was further expected that the position of the mode of the vigour observations
would depend upon the initial densities.

Source

These data were collected and generously made available by Kirk Schmidt who was at the time
of collecting the data a graduate student in the Department of Forest Engineering at the University
of New Brunswick, Fredericton, New Brunswick, Canada. The data were collected as part of his
research for his Master’s degree (supervised by Professor Ted Needham) at the University of New
Brunswick. See Schmidt (1993).

References

K. D. Schmidt (1993). Development of a precommercial thinning guide for black spruce. Thesis
(M.Sc.F.), University of New Brunswick, Faculty of Forestry.

Examples

matplot(vigour[,1],vigour[,2:6],
main="Growth vigour of stands of New Brunswick spruce",
xlab="year",ylab="vigour",type="b")

Index

∗ datasets
vigour, 8

∗ nonlinear
biviso, 1
pava, 4
ufit, 5

∗ regression
biviso, 1
pava, 4
ufit, 5

biviso, 1, 5, 7

pava, 3, 4, 7
pava.sa, 3

stepfun, 5

ufit, 3, 5, 5

vigour, 8

9

	biviso
	pava
	ufit
	vigour
	Index

