
Package ‘ICRanks’

January 20, 2025

Type Package

Title Simultaneous Confidence Intervals for Ranks

Version 3.1

Date 2019-06-21

Author Diaa Al Mohamad and Erik W. van Zwet and Jelle J. Goeman

Maintainer Diaa Al Mohamad <diaa.almohamad@gmail.com>

Description Algorithms to construct simultaneous confidence inter-
vals for the ranks of means mu_1,...,mu_n based on an independent Gaussian sample using mul-
tiple testing techniques.

SystemRequirements C++11

License GPL (>= 2)

Imports Rcpp (>= 0.12.11), multcomp, gmp

LinkingTo Rcpp

RoxygenNote 6.0.1.9000

NeedsCompilation yes

Repository CRAN

Date/Publication 2019-06-21 22:00:58 UTC

Contents

ic.ranks . 2

Index 6

1

2 ic.ranks

ic.ranks Confidence intervals for ranks

Description

This function calculates simultaneous confidence (sets) intervals (CIs) at a pre-specified level (1-
alpha) for the ranks of centers mu_1,...,mu_n which are observed through a sample y using multiple
testing techniques. Several possibilities are presented through a "Method" variable. There are
bascially two main choices; one which uses the partitioing principle and the likelihood ratio test
and the the other is based on Tukey’s pairwise comparison procedure. See choices below, and for
more details see the references.

Usage

ic.ranks(y, sigma = rep(1, length(y)), Method = c("ExactLR", "BoundLR",
"Tukey", "SeqTukey", "ApproximateLR", "TukeyNoTies", "RescaledExactLR",
"RescaledTukey"), BoundChoice = c("Upper", "Lower"),
ApproxAlgo = c("Exact", "Upper"), alpha = 0.05, control = list(crit
= NULL, trace = TRUE, adjustL = FALSE, adjustU = FALSE, n_adjust =
length(y) - 1, N = 10^4, MM = 10^3, gridSize = 5, RandPermut = 0,
SwapPerm = TRUE))

Arguments

y a real vector of observed data.
sigma a vector of standard deviations. If sigma is a single value, then we consider that

all centers have the same standard deviation.
Method a character indicating the method used to produce the confidence intervals. The

"ExactLR" produces confidence intervals using the partitioning principle and the
likelihood ratio test. The "BoundLR" choice produces lower- or upper-bound
confidence intervals (according to the "BoundChoice") for the ranks using a fast
algorithm. The "Tukey" choice produces simultaneous confidence intervals for
the ranks using Tukey’s HSD. The "SeqTukey" produces simultaneous confi-
dence intervals for the ranks using a sequential-rejective algorithm. The "Ap-
proximate" choice provides approximate confidence intervals which are shorter
than the exact ones by considering a subset of the partitions (the correctly or-
dered ones, see refs and below for details). The "TukeyNoTies" choice calcu-
lates a readustement for Tukey’s method under the assumption that there are no
ties and then use Tukey’s method again with adjusted level. The "RescaledEx-
actLR" choice calculates a readustement for the "ExactLR" method by adjusting
each and every local test. The "RescaledTukey" choice calculates a readuste-
ment for the "Tukey" method by pluging it into a partitioning procedure and
then adjusting each and every local test.

BoundChoice a character entry which is only relevant if the "Bound" choice is picked in the
Method parameter. The default value is "Upper" which results in the upper-
bound CIs for the ranks. If "Lower" is chosen, then the lower-bound CIs are
generated.

ic.ranks 3

ApproxAlgo a character entry ("Upper" by default). This parameter controls which approxi-
mation is to be used.

alpha the significance level of the internal tests we perform (which corresponds to
the FWER control of the corresponding multiple testing procedure). CIs have
simultaneous significance level of 1-alpha.

control is a list of control parameters.
crit is the critical value for Tukey’s HSD. If it is kept NULL, then it is calculated

internally. The use of this parameter becomes handful in case the user wishes
to make several simulations. By providing it, we avoid repeating a Monte-Carlo
estimation of the quantile and thus we gain in execution time. In some cases
(espcially when all centers have the same standard deviation), the critical value
for Tukey’s HSD can be found in some statistical tables.

trace a logical parameter which supresses the printing of the details of the method
which was chosen. The default is TRUE (shows details).

adjustL a logical variable (default to FALSE) indicating if an adjustment on the lower
bound according to the data must be considered (if possible). This choice is
only relevenat if Method is chosen as "BoundLR" and BoundChoice is chosen
as "Lower".

adjustU a logical variable (default to FALSE) which gives the user the choice to ad-
just the upper bound CIs through the parameter "n_adjust". This choice is only
relevenat if Method is chosen as "BoundLR" and BoundChoice is chosen as
"Upper".

n_adjust an integer-valued entry for advanced control over the lower- or upper-bound
algorithms. When the "adjustL" parameter is TRUE, the new value of n_adjust
is chosen automatically as the best adjustment on the lower affine bound of the
chi-square quantiles according to the data. If adjustU is TRUE, then n_adjust
contains the point at which the upper affine bound is tangent on the chi-square
quantiles. Possible values 1,...,n-1. If both adjustL and adjustU variables are left
FALSE, then the default choice is that the lower affine bound passes between
the chi-square quantiles at 1 and n-1 degrees of freedom, and the upper affine
bound is tangent on n-1.

N the number of iterations used in order to calculate the Studentized range quantile
for Tukey’s algorithms.

MM the number of Monte-Carlo simultations required to estimate the (simultaneous)
coverage. This is used in all rescaling methods.

RandPermut is the number of additional permutations to perform when using either the "Ex-
actLR" or the "BoundLR" algorithms and only when the standard deviations are
different. When the standard deviations are the same, this has no influence on
the result.

SwapPerm corresponds to performing swap permutations (yes = TRUE, no = FALSE). This
is used in all the methods except for "Tukey" and "ExactLR" (the latter when
the standard deviations are not the same).

Details

The vector of observations needs to be sorted. Otherwise, it is done internally. The observa-
tions are supposed to be independent realizations of Guassian distributions with unknown centers

4 ic.ranks

mu_1,...,mu_n and known standard deviations sigma = (sigma_1,...,sigma_n).

The exact-partitioning confidence intervals (option "ExactLR") are calculated using an algorithm
with exponential complexity. The hypotheses in each level of the partitioning are coded using the
combinatorial number system.

The lower- and upper-bound CIs are calculated with a polynomial algorithm. The bracketing ob-
tained from the lower and upper bounds is generally very narrow with a maximum gap of 1. More-
over, in regular situations, the lower and upper bounds coincide on at least 50 percent of the centers
yielding the exact-partitioning result. Thus, the bracketing is an alternative for an exact-partitioning
algorithm for medium- and large-size samples (n>50). When a calculus of the lower- and upper-
bound CIs is required, the default choice is when no adjustment on neither the lower nor the upper
bounds is taken into account. Thus, the lower affine bound of the chi-square is a line passing by the
quantiles at 1 and n-1 degrees of freedom, whereas the upper affine bound is a line tangent on the
chi-square quantiles at n-1 degrees of freedom. The adjustment on the lower bound CIs can in some
contexts improve on the CIs and increase the number of centers where the lower and upper bounds
coincide. The best option is to adjust for both the lower and upper bounds (separately).

Both "Tukey" and "SeqTukey" are based on multiple comparison testing and are superior to the
LR-based CIs if the centers are far apart from each other and if the standard deviations are not
significantly different from each other. The sequential rejective variant of Tukey’s HSD rejects
at least as much as Tukey’s HSD and thus produces generally shorter confidence intervals for the
ranks.

The "TukeyNoTies" method assumes that the true vector of parameters has no ties and therefore,
instead of calculating a quantile q corresponding to mu=0 with set rank [1,n] for mu_i, we calculate
a quantile corresponding to mu=0 with rank {i} for mu_i. The method provides shorter SCI for the
ranks but is still conservative.

When the standard deviations are not the same for all the means, the methods based on the partition-
ing principle are not guaranteed to produce the same results. The "Block" algorithm, however, is
always compatible with the lower and upper CIs provided by option "BoundLR". When the number
of means exceeds 10, then performing any method based on the partitioning procedure requires a
long execution time since the complexity of the algorithm is super exponential of order exp(exp(n)).

When the standard deviations are not the same the approximate methods based on the LRT are not
guaranteed to cover and if the standard deviations are very different, the resulting SCIs are anticon-
servative. If the standard deviations are close to each other, then the result is still conservative.

In terms of execution time. The Tukey method is the fastest. It can be used always. The methods
based on the partitioning principle have all exponential complexity. Therefore, when the standard
deviations are the same, the "ExactLR" would produce results up to 40 means. When they are
not the same, no method based on the partitioning principle can be used for more than 10 means
unless we limit the number of random permutations that we use which in case of great differences
in the standard deviations might lead to anticonservative results. More details can be found in the
references.

Value

a list of two vectors containing the lower and upper bounds of the confidence intervals for the sorted
observed centers.

ic.ranks 5

Author(s)

Diaa Al Mohamad and Jelle J. Goeman and Erik W. van Zwet. Correspondence can be made to
diaa.almohamad@gmail.com

References

Diaa Al Mohamad and Erik W. van Zwet and Jelle J. Goeman and Aldo Solari, Simultaneous confi-
dence sets for ranks using the partitioning principle - Technical report (2017). https://arxiv.org/abs/1708.02729

Diaa Al Mohamad and Jelle J. Goeman and Erik W. van Zwet, An improvement of Tukey’s HSD
with application to ranking institutions (2017). https://arxiv.org/abs/1708.02428

Diaa Al Mohamad and Jelle J. Goeman and Erik W. van Zwet, Simultaneous Confidence Intervals
for Ranks With Application to Ranking Institutions (2018). https://arxiv.org/abs/1812.05507

Examples

n = 5; TrueCenters = 1:n
alpha = 0.05; sigma = rep(0.5,n)
y = as.numeric(sapply(1:n, function(ll) rnorm(1,TrueCenters[ll],sd=sigma[ll])))
ind = sort.int(y, index.return = TRUE)$ix
y = y[ind]
sigma = sigma[ind] # The sigmas need to follow the order of the y's
res = ic.ranks(y, sigma, Method = "ExactLR",alpha = 0.05, control = list(trace = TRUE))
LowerExact = res$Lower; UpperExact = res$Upper
#res = ic.ranks(y, sigma, Method = "BoundLR", BoundChoice = "Lower",
control = list(adjustL = FALSE, adjustU = FALSE))
#LowerL = res$Lower; UpperL = res$Upper
#res = ic.ranks(y, sigma, Method = "BoundLR", BoundChoice = "Upper",
control = list(adjustL = FALSE, adjustU = FALSE, trace=FALSE))
#LowerU = res$Lower; UpperU = res$Upper
res = ic.ranks(y, sigma, Method = "Tukey")
LowerTuk = res$Lower; UpperTuk = res$Upper
res = ic.ranks(y, sigma, Method = "SeqTukey")
LowerTukSeq = res$Lower; UpperTukSeq = res$Upper
res = ic.ranks(y, sigma, Method = "TukeyNoTies")
LowerTukNoTies = res$Lower; UpperTukNoTies = res$Upper
resLR1 = ic.ranks(y, sigma, Method = "RescaledExactLR", alpha = alpha,

control = list(trace = TRUE, gridSize = 4, MM = 100, RandPermut=factorial(n)))
LowerExact
#LowerL
#LowerU
LowerTuk
resLR1$Lower
resLR1$Upper

Index

ic.ranks, 2

6

	ic.ranks
	Index

