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HEMDAG-package HEMDAG: Hierarchical Ensemble Methods for Directed Acyclic
Graphs

Description

The HEMDAG package:

• provides an implementation of several Hierarchical Ensemble Methods (HEMs) for Directed
Acyclic Graphs (DAGs);

• reconciles flat predictions with the topology of the ontology;

• can enhance predictions of virtually any flat learning methods by taking into account the hier-
archical relationships between ontology classes;

• provides biologically meaningful predictions that obey the true-path-rule, the biological and
logical rule that governs the internal coherence of biomedical ontologies;

• is specifically designed for exploiting the hierarchical relationships of DAG-structured tax-
onomies, such as the Human Phenotype Ontology (HPO) or the Gene Ontology (GO), but can
be safely applied to tree-structured taxonomies as well (as FunCat), since trees are DAGs;

• scales nicely both in terms of the complexity of the taxonomy and in the cardinality of the
examples;

• provides several utility functions to process and analyze graphs;

• provides several performance metrics to evaluate HEMs algorithms;

A comprehensive tutorial showing how to apply HEMDAG to real case bio-medical case studies is
available at https://hemdag.readthedocs.io.

https://hemdag.readthedocs.io
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Details

The HEMDAG package implements the following Hierarchical Ensemble Methods for DAGs:

1. HTD-DAG: Hierarchical Top Down (htd);

2. GPAV-DAG: Generalized Pool-Adjacent Violators, Burdakov et al. (gpav);

3. TPR-DAG: True-Path Rule (tpr.dag);

4. DESCENS: Descendants Ensemble Classifier (tpr.dag);

5. ISO-TPR: Isotonic-True-Path Rule (tpr.dag);

6. Max, And, Or: Heuristic Methods, Obozinski et al. (obozinski.heuristic.methods);

Author(s)

Marco Notaro1 (https://orcid.org/0000-0003-4309-2200);
Alessandro Petrini1 (https://orcid.org/0000-0002-0587-1484);
Giorgio Valentini1 (https://orcid.org/0000-0002-5694-3919);

Maintainer: Marco Notaro <marco.notaro@unimi.it>

1 AnacletoLab, Computational Biology and Bioinformatics Laboratory, Computer Science Depart-
ment, University of Milan, Italy

References

Marco Notaro, Max Schubach, Peter N. Robinson and Giorgio Valentini, Prediction of Human Phe-
notype Ontology terms by means of Hierarchical Ensemble methods, BMC Bioinformatics 2017,
18(1):449, doi: 10.1186/s128590171854y

adj.upper.tri Binary upper triangular adjacency matrix

Description

Compute a binary square upper triangular matrix where rows and columns correspond to the nodes’
name of the graph g.

Usage

adj.upper.tri(g)

Arguments

g a graph of class graphNELL representing the hierarchy of the class.

https://orcid.org/0000-0003-4309-2200
https://orcid.org/0000-0002-0587-1484
https://orcid.org/0000-0002-5694-3919
https://sites.google.com/site/anacletolaboratory/
https://doi.org/10.1186/s12859-017-1854-y
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Details

The nodes of the matrix are topologically sorted (by using the tsort function of the RBGL pack-
age). Let’s denote with adj our adjacency matrix. Then adj represents a partial order data set in
which the class j dominates the class i. In other words, adj[i,j]=1 means that j dominates i;
adj[i,j]=0 means that there is no edge between the class i and the class j. Moreover the nodes
of adj are ordered such that adj[i,j]=1 implies i < j, i.e. adj is upper triangular.

Value

An adjacency matrix which is square, logical and upper triangular.

Examples

data(graph);
adj <- adj.upper.tri(g);

auprc AUPRC measures

Description

Compute the Area under the Precision Recall Curve (AUPRC) through precrec package.

Usage

auprc.single.class(labels, scores, folds = NULL, seed = NULL)

auprc.single.over.classes(target, predicted, folds = NULL, seed = NULL)

Arguments

labels vector of the true labels (0 negative, 1 positive examples).

scores a numeric vector of the values of the predicted labels (scores).

folds number of folds on which computing the AUPRC. If folds=NULL (def.), the
AUPRC is computed one-shot, otherwise the AUPRC is computed averaged
across folds.

seed initialization seed for the random generator to create folds. Set seed only if
folds̸=NULL. If seed=NULL and folds ̸=NULL, the AUPRC averaged across folds
is computed without seed initialization.

target matrix with the target multilabel: rows correspond to examples and columns
to classes. target[i, j] = 1 if example i belongs to class j, target[i, j] = 0
otherwise.

predicted a numeric matrix with predicted values (scores): rows correspond to examples
and columns to classes.
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Details

The AUPRC (for a single class or for a set of classes) is computed either one-shot or averaged
across stratified folds.

auprc.single.class computes the AUPRC just for a given class.

auprc.single.over.classes computes the AUPRC for a set of classes, returning also the aver-
aged values across the classes.

For all those classes having zero annotations, the AUPRC is set to 0. These classes are discarded in
the computing of the AUPRC averaged across classes, both when the AUPRC is computed one-shot
or averaged across stratified folds.

Names of rows and columns of labels and predicted matrix must be provided in the same order,
otherwise a stop message is returned.

Value

auprc.single.class returns a numeric value corresponding to the AUPRC for the considered
class; auprc.single.over.classes returns a list with two elements:

1. average: the average AUPRC across classes;

2. per.class: a named vector with AUPRC for each class. Names correspond to classes.

Examples

data(labels);
data(scores);
data(graph);
root <- root.node(g);
L <- L[,-which(colnames(L)==root)];
S <- S[,-which(colnames(S)==root)];
prc.single.class <- auprc.single.class(L[,3], S[,3], folds=5, seed=23);
prc.over.classes <- auprc.single.over.classes(L, S, folds=5, seed=23);

auroc AUROC measures

Description

Compute the Area under the ROC Curve (AUROC) through precrec package.

Usage

auroc.single.class(labels, scores, folds = NULL, seed = NULL)

auroc.single.over.classes(target, predicted, folds = NULL, seed = NULL)
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Arguments

labels vector of the true labels (0 negative, 1 positive examples).

scores a numeric vector of the values of the predicted labels (scores).

folds number of folds on which computing the AUROC. If folds=NULL (def.), the
AUROC is computed one-shot, otherwise the AUROC is computed averaged
across folds.

seed initialization seed for the random generator to create folds. Set seed only if
folds̸=NULL. If seed=NULL and folds ̸=NULL, the AUROC averaged across
folds is computed without seed initialization.

target annotation matrix: rows correspond to examples and columns to classes. target[i, j] =
1 if example i belongs to class j, target[i, j] = 0 otherwise.

predicted a numeric matrix with predicted values (scores): rows correspond to examples
and columns to classes.

Details

The AUROC (for a single class or for a set of classes) is computed either one-shot or averaged
across stratified folds.

auroc.single.class computes the AUROC just for a given class.

auroc.single.over.classes computes the AUROC for a set of classes, including their average
values across all the classes.

For all those classes having zero annotations, the AUROC is set to 0.5. These classes are included in
the computing of the AUROC averaged across classes, both when the AUROC is computed one-shot
or averaged across stratified folds.

The AUROC is set to 0.5 to all those classes having zero annotations. Names of rows and columns
of labels and predicted must be provided in the same order, otherwise a stop message is returned.

Value

auroc.single.class returns a numeric value corresponding to the AUROC for the considered
class; auprc.single.over.classes returns a list with two elements:

1. average: the average AUROC across classes;

2. per.class: a named vector with AUROC for each class. Names correspond to classes.

Examples

data(labels);
data(scores);
data(graph);
root <- root.node(g);
L <- L[,-which(colnames(L)==root)];
S <- S[,-which(colnames(S)==root)];
auc.single.class <- auroc.single.class(L[,3], S[,3], folds=5, seed=23);
auc.over.classes <- auroc.single.over.classes(L, S, folds=5, seed=23);
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build.ancestors Build ancestors

Description

Build ancestors for each node of a graph.

Usage

build.ancestors(g)

build.ancestors.per.level(g, levels)

build.ancestors.bottom.up(g, levels)

Arguments

g a graph of class graphNEL. It represents the hierarchy of the classes.

levels a list of character vectors. Each component represents a graph level and the
elements of any component correspond to nodes. The level 0 coincides with the
root node.

Value

build.ancestos returns a named list of vectors. Each component corresponds to a node x of the
graph and its vector is the set of its ancestors including also x.

build.ancestors.per.level returns a named list of vectors. Each component corresponds to a
node x of the graph and its vector is the set of its ancestors including also x. The nodes are ordered
from root (included) to leaves.

build.ancestors.bottom.up a named list of vectors. Each component corresponds to a node x
of the graph and its vector is the set of its ancestors including also x. The nodes are ordered from
leaves to root (included).

Examples

data(graph);
root <- root.node(g);
anc <- build.ancestors(g);
lev <- graph.levels(g, root=root);
anc.tod <-build.ancestors.per.level(g,lev);
anc.bup <- build.ancestors.bottom.up(g,lev);
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build.children Build children

Description

Build children for each node of a graph.

Usage

build.children(g)

build.children.top.down(g, levels)

build.children.bottom.up(g, levels)

Arguments

g a graph of class graphNEL. It represents the hierarchy of the classes.

levels a list of character vectors. Each component represents a graph level and the
elements of any component correspond to nodes. The level 0 coincides with the
root node.

Value

build.children returns a named list of vectors. Each component corresponds to a node x of the
graph and its vector is the set of its children.

build.children.top.down returns a named list of character vectors. Each component corresponds
to a node x of the graph (i.e. parent node) and its vector is the set of its children. The nodes are
ordered from root (included) to leaves.

build.children.bottom.up returns a named list of character vectors. Each component corre-
sponds to a node x of the graph (i.e. parent node) and its vector is the set of its children. The nodes
are ordered from leaves (included) to root.

Examples

data(graph);
root <- root.node(g);
children <- build.children(g);
lev <- graph.levels(g, root=root);
children.tod <- build.children.top.down(g,lev);
children.bup <- build.children.bottom.up(g,lev);
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build.consistent.graph

Build consistent graph

Description

Build a graph in which all nodes are reachable from root.

Usage

build.consistent.graph(g = g, root = "00")

Arguments

g an object of class graphNEL.

root name of the class that is on the top-level of the hierarchy (def. root="00").

Details

All nodes not accessible from root (if any) are removed from the graph and printed on stdout.

Value

A graph (as an object of class graphNEL) in which all nodes are accessible from root.

Examples

data(graph);
root <- root.node(g);
G <- graph::addNode(c("X","Y","Z"), g);
G <- graph::addEdge(c("X","Y","Z"), c("HP:0011844","HP:0009810","HP:0012385"), G);
G <- build.consistent.graph(G, root=root);

build.descendants Build descendants

Description

Build descendants for each node of a graph.

Usage

build.descendants(g)

build.descendants.per.level(g, levels)

build.descendants.bottom.up(g, levels)
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Arguments

g a graph of class graphNEL. It represents the hierarchy of the classes.

levels a list of character vectors. Each component represents a graph level and the
elements of any component correspond to nodes. The level 0 coincides with the
root node.

Value

build.descendants returns a named list of vectors. Each component corresponds to a node x of
the graph, and its vector is the set of its descendants including also x.

build.descendants.per.level returns a named list of vectors. Each component corresponds to
a node x of the graph and its vector is the set of its descendants including also x. The nodes are
ordered from root (included) to leaves.

build.descendants.bottom.up returns a named list of vectors. Each component corresponds to
a node x of the graph and its vector is the set of its descendants including also x. The nodes are
ordered from leaves to root (included).

Examples

data(graph);
root <- root.node(g);
desc <- build.descendants(g);
lev <- graph.levels(g, root=root);
desc.tod <- build.descendants.per.level(g,lev);
desc.bup <- build.descendants.bottom.up(g,lev);

build.edges.from.hpo.obo

Parse an HPO obo file

Description

Read an HPO obo file (HPO) and write the edges of the dag on a plain text file. The format of
the file is a sequence of rows and each row corresponds to an edge represented through a pair of
vertexes separated by blank.

Usage

build.edges.from.hpo.obo(obofile = "hp.obo", file = "edge.file")

Arguments

obofile an HPO obo file. The extension of the obofile can be plain (".txt") or compressed
(".gz").

file name of the file of the edges to be written. The extension of the file can be plain
(".txt") or compressed (".gz").

http://human-phenotype-ontology.github.io/
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Details

A faster and more flexible parser to handle obo file can be found here.

Value

A text file representing the edges in the format: source destination (i.e. one row for each edge).

Examples

## Not run:
hpobo <- "http://purl.obolibrary.org/obo/hp.obo";
build.edges.from.hpo.obo(obofile=hpobo, file="hp.edge");
## End(Not run)

build.parents Build parents

Description

Build parents for each node of a graph.

Usage

build.parents(g, root = "00")

build.parents.top.down(g, levels, root = "00")

build.parents.bottom.up(g, levels, root = "00")

build.parents.topological.sorting(g, root = "00")

Arguments

g a graph of class graphNEL. It represents the hierarchy of the classes.

root name of the class that it is on the top-level of the hierarchy (def. root="00").

levels a list of character vectors. Each component represents a graph level and the
elements of any component correspond to nodes. The level 0 represents the root
node.

Value

build.parents returns a named list of character vectors. Each component corresponds to a node
x of the graph (i.e. child node) and its vector is the set of its parents (the root node is not included).

build.parents.top.down returns a named list of character vectors. Each component corresponds
to a node x of the graph (i.e. child node) and its vector is the set of its parents. The order of nodes
follows the levels of the graph from root (excluded) to leaves.

https://github.com/marconotaro/obogaf-parser
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build.parents.bottom.up returns a named list of character vectors. Each component corresponds
to a node x of the graph (i.e. child node) and its vector is the set of its parents. The nodes are ordered
from leaves to root (excluded).

build.parents.topological.sorting a named list of character vectors. Each component corre-
sponds to a node x of the graph (i.e. child node) and its vector is the set of its parents. The nodes
are ordered according to a topological sorting, i.e. parents node come before children node.

Examples

data(graph);
root <- root.node(g)
parents <- build.parents(g, root=root);
lev <- graph.levels(g, root=root);
parents.tod <- build.parents.top.down(g, lev, root=root);
parents.bup <- build.parents.bottom.up(g, lev, root=root);
parents.tsort <- build.parents.topological.sorting(g, root=root);

build.scores.matrix Build scores matrix

Description

Build a scores matrix from file

Usage

build.scores.matrix.from.list(file = "scores.list.txt", split = "[(\t,|)]")

build.scores.matrix.from.tupla(file = "scores.tupla.txt")

Arguments

file name of the text file to be read. The matrix of the input file can be either a list
(e.g in the form example nodeX|score), or a tupla (i.e. in the form example
nodeX score).The file extension can be plain (".txt") or compressed (".gz").

split character vector containing a regular expression use for splitting.

Value

A named scores matrix.

Examples

file.list <- system.file("extdata/scores.list.txt.gz", package="HEMDAG");
file.tupla <- system.file("extdata/scores.tupla.txt.gz", package="HEMDAG");
S <- build.scores.matrix.from.list(file.list, split="[(\t,|)]");
S <- build.scores.matrix.from.tupla(file.tupla);
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build.subgraph Build subgraph

Description

Build a subgraph with only the supplied nodes and any edges between them.

Usage

build.subgraph(nd, g, edgemode = "directed")

Arguments

nd a vector with the nodes for which the subgraph must be built.

g a graph of class graphNEL. It represents the hierarchy of the classes.

edgemode can be "directed" or "undirected".

Value

A subgraph with only the supplied nodes.

Examples

data(graph);
anc <- build.ancestors(g);
nd <- anc[["HP:0001371"]];
subg <- build.subgraph(nd, g, edgemode="directed");

build.submatrix Build submatrix

Description

Terms having less than n annotations are pruned. Terms having exactly n annotations are discarded
as well.

Usage

build.submatrix(ann, n)

Arguments

ann the annotation matrix (0/1). Rows are examples and columns are functional
terms.

n an integer number representing the number of annotations to be pruned.
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Value

An annotation matrix having only those terms with more than n annotations.

Examples

data(labels);
subm <- build.submatrix(L,5);

check.annotation.matrix.integrity

Annotation matrix checker

Description

Assess the integrity of an annotation matrix where a transitive closure of annotations was performed.

Usage

check.annotation.matrix.integrity(anc, ann.spec, ann)

Arguments

anc the ancestor list.

ann.spec the annotation matrix of the most specific annotations (0/1): rows are genes and
columns are terms.

ann the full annotation matrix (0/1), i.e. the matrix where the transitive closure of
the annotation was performed. Rows are examples and columns are terms.

Value

If the transitive closure of the annotations is performed correctly, OK is returned, otherwise an error
message is printed on the stdout.

Examples

data(graph);
data(labels);
anc <- build.ancestors(g);
tca <- transitive.closure.annotations(L, anc);
check.annotation.matrix.integrity(anc, L, tca);
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check.dag.integrity DAG checker

Description

Check the integrity of a dag.

Usage

check.dag.integrity(g, root = "00")

Arguments

g a graph of class graphNEL. It represents the hierarchy of the classes.

root name of the class that is on the top-level of the hierarchy (def. root="00").

Value

If all the nodes are accessible from the root "dag is ok" is printed, otherwise a message error and
the list of the not accessible nodes is printed on the stdout.

Examples

data(graph);
root <- root.node(g);
check.dag.integrity(g, root=root);

compute.flipped.graph Flip graph

Description

Compute a directed graph with edges in the opposite direction.

Usage

compute.flipped.graph(g)

Arguments

g a graphNEL directed graph

Value

A graph (as an object of class graphNEL) with edges in the opposite direction w.r.t. g.
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Examples

data(graph);
g.flipped <- compute.flipped.graph(g);

constraints.matrix Constraints matrix

Description

Return a matrix with two columns and as many rows as there are edges. The entries of the first
columns are the index of the node the edge comes from (i.e. children nodes), the entries of the
second columns indicate the index of node the edge is to (i.e. parents nodes). Referring to a dag
this matrix defines a partial order.

Usage

constraints.matrix(g)

Arguments

g a graph of class graphNELL. It represents the hierarchy of the classes.

Value

A constraints matrix w.r.t the graph g.

Examples

data(graph);
m <- constraints.matrix(g);

create.stratified.fold.df

DataFrame for stratified cross validation

Description

Create a data frame for stratified cross-validation.

Usage

create.stratified.fold.df(labels, scores, folds = 5, seed = 23)
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Arguments

labels vector of the true labels (0 negative, 1 positive).

scores a numeric vector of the values of the predicted labels.

folds number of folds of the cross validation (def. folds=5).

seed initialization seed for the random generator to create folds (def. seed=23). If
seed=NULL, the stratified folds are generated without seed initialization.

Details

Folds are stratified, i.e. contain the same amount of positive and negative examples.

Value

A data frame with three columns:

• scores: contains the predicted scores;

• labels: contains the labels as pos or neg;

• folds: contains the index of the fold in which the example falls. The index can range from 1
to the number of folds.

Examples

data(labels);
data(scores);
df <- create.stratified.fold.df(L[,3], S[,3], folds=5, seed=23);

distances.from.leaves Distances from leaves

Description

Compute the minimum distance of each node from one of the leaves of the graph.

Usage

distances.from.leaves(g)

Arguments

g a graph of class graphNEL. It represents the hierarchy of the classes.

Value

A named vector. The names are the names of the nodes of the graph g, and their values represent
the distance from the leaves. A value equal to 0 is assigned to the leaves, 1 to nodes with distance
1 from a leaf and so on.
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Examples

data(graph);
dist.leaves <- distances.from.leaves(g);

example.datasets Small real example datasets

Description

Collection of real sub-datasets used in the examples of the HEMDAG package

Usage

data(graph)
data(labels)
data(scores)
data(wadj)
data(test.index)

Details

The DAG g contained in graph data is an object of class graphNEL. The graph g has 23 nodes and 30
edges and represents the "ancestors view" of the HPO term Camptodactyly of finger ("HP:0100490").

The matrix L contained in the labels data is a 100 X 23 matrix, whose rows correspond to genes
(Entrez GeneID) and columns to HPO classes. L[i, j] = 1 means that the gene i belong to class j,
L[i, j] = 0 means that the gene i does not belong to class j. The classes of the matrix L correspond
to the nodes of the graph g.

The matrix S contained in the scores data is a named 100 X 23 flat scores matrix, representing the
likelihood that a given gene belongs to a given class: higher the value higher the likelihood. The
classes of the matrix S correspond to the nodes of the graph g.

The matrix W contained in the wadj data is a named 100 X 100 symmetric weighted adjacency
matrix, whose rows and columns correspond to genes.The genes names (Entrez GeneID) of the
adjacency matrix W correspond to the genes names of the flat scores matrix S and to genes names of
the target multilabel matrix L.

The vector of integer numbers test.index contained in the test.index data refers to the index of
the examples of the scores matrix S to be used in the test set. It is useful only in holdout experiments.

Note

Some examples of full data sets for the prediction of HPO terms are available at the following link.
Note that the processing of the full datasets should be done similarly to the processing of the small
data examples provided directly in this package. Please read the README clicking the link above to
know more details about the available full datasets.

https://homes.di.unimi.it/notaro/DATA/DATA_BMC/
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find.best.f Best hierarchical F-score

Description

Select the best hierarchical F-score by choosing an appropriate threshold in the scores.

Usage

find.best.f(
target,
predicted,
n.round = 3,
verbose = TRUE,
b.per.example = FALSE

)

Arguments

target matrix with the target multilabel: rows correspond to examples and columns
to classes. target[i, j] = 1 if example i belongs to class j, target[i, j] = 0
otherwise.

predicted a numeric matrix with continuous predicted values (scores): rows correspond to
examples and columns to classes.

n.round number of rounding digits to be applied to predicted (default=3).

verbose a boolean value. If TRUE (def.) the number of iterations are printed on stdout.

b.per.example a boolean value.

• TRUE: results are returned for each example;
• FALSE: only the average results are returned;

Details

All the examples having no positive annotations are discarded. The predicted scores matrix (predicted)
is rounded according to parameter n.round and all the values of predicted are divided by max(predicted).
Then all the thresholds corresponding to all the different values included in predicted are at-
tempted, and the threshold leading to the maximum F-measure is selected.

Names of rows and columns of target and predicted matrix must be provided in the same order,
otherwise a stop message is returned.

Value

Two different outputs respect to the input parameter b.per.example:
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• b.per.example==FALSE: a list with a single element average. A named vector with 7 elements
relative to the best result in terms of the F.measure: Precision (P), Recall (R), Specificity (S),
F.measure (F), av.F.measure (av.F), Accuracy (A) and the best selected Threshold (T). F is the
F-measure computed as the harmonic mean between the average precision and recall; av.F is
the F-measure computed as the average across examples and T is the best selected threshold;

• b.per.example==FALSE: a list with two elements:

1. average: a named vector with with 7 elements relative to the best result in terms of the
F.measure: Precision (P), Recall (R), Specificity (S), F.measure (F), av.F.measure (av.F),
Accuracy (A) and the best selected Threshold (T);

2. per.example: a named matrix with the Precision (P), Recall (R), Specificity (S), Accuracy
(A), F-measure (F), av.F-measure (av.F) and the best selected Threshold (T) for each
example. Row names correspond to examples, column names correspond respectively
to Precision (P), Recall (R), Specificity (S), Accuracy (A), F-measure (F), av.F-measure
(av.F) and the best selected Threshold (T);

Examples

data(graph);
data(labels);
data(scores);
root <- root.node(g);
L <- L[,-which(colnames(L)==root)];
S <- S[,-which(colnames(S)==root)];
fscore <- find.best.f(L, S, n.round=3, verbose=TRUE, b.per.example=TRUE);

find.leaves Leaves

Description

Find leaves of a directed graph.

Usage

find.leaves(g)

Arguments

g a graph of class graphNEL. It represents the hierarchy of the classes.

Value

A vector with the names of the leaves of g.

Examples

data(graph);
leaves <- find.leaves(g);
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fmax Compute Fmax

Description

Compute the best hierarchical Fmax either one-shot or averaged across folds

Usage

compute.fmax(
target,
predicted,
n.round = 3,
verbose = TRUE,
b.per.example = FALSE,
folds = NULL,
seed = NULL

)

Arguments

target matrix with the target multilabel: rows correspond to examples and columns
to classes. target[i, j] = 1 if example i belongs to class j, target[i, j] = 0
otherwise.

predicted a numeric matrix with predicted values (scores): rows correspond to examples
and columns to classes.

n.round number of rounding digits to be applied to predicted (default=3).

verbose a boolean value. If TRUE (def.) the number of iterations are printed on stdout.

b.per.example a boolean value.

• TRUE: results are returned for each example;
• FALSE: only the average results are returned;

folds number of folds on which computing the Fmax If folds=NULL (def.), the Fmax
is computed one-shot, otherwise the Fmax is computed averaged across folds.

seed initialization seed for the random generator to create folds. Set seed only if
folds̸=NULL. If seed=NULL and folds ̸=NULL, the Fmax averaged across folds
is computed without seed initialization.

Details

Names of rows and columns of target and predicted matrix must be provided in the same order,
otherwise a stop message is returned.



full.annotation.matrix 23

Value

Two different outputs respect to the input parameter b.per.example:

• b.per.example==FALSE: a list with a single element average. A named vector with 7 elements
relative to the best result in terms of the F.measure: Precision (P), Recall (R), Specificity (S),
F.measure (F), av.F.measure (av.F), Accuracy (A) and the best selected Threshold (T). F is the
F-measure computed as the harmonic mean between the average precision and recall; av.F is
the F-measure computed as the average across examples and T is the best selected threshold;

• b.per.example==FALSE: a list with two elements:
1. average: a named vector with with 7 elements relative to the best result in terms of the

F.measure: Precision (P), Recall (R), Specificity (S), F.measure (F), av.F.measure (av.F),
Accuracy (A) and the best selected Threshold (T);

2. per.example: a named matrix with the Precision (P), Recall (R), Specificity (S), Accuracy
(A), F-measure (F), av.F-measure (av.F) and the best selected Threshold (T) for each
example. Row names correspond to examples, column names correspond respectively
to Precision (P), Recall (R), Specificity (S), Accuracy (A), F-measure (F), av.F-measure
(av.F) and the best selected Threshold (T);

Examples

data(graph);
data(labels);
data(scores);
root <- root.node(g);
L <- L[,-which(colnames(L)==root)];
S <- S[,-which(colnames(S)==root)];
fmax <- compute.fmax(L, S, n.round=3, verbose=TRUE, b.per.example=TRUE, folds=5, seed=23);

full.annotation.matrix

Full annotation matrix

Description

Build a full annotations matrix using the ancestor list and the most specific annotations matrix w.r.t.
a given weighted adjacency matrix (wadj). The rows of the full annotation matrix correspond to
all the examples of the given weighted adjacency matrix and the columns to the class/terms. The
transitive closure of the annotations is performed.

Usage

full.annotation.matrix(W, anc, ann.spec)

Arguments

W a symmetric adjacency weighted matrix of the graph.
anc the ancestor list.
ann.spec the annotation matrix of the most specific annotations (0/1): rows are genes and

columns are terms.
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Details

The examples present in the annotation matrix (ann.spec) but not in the adjacency weighted matrix
(W) are purged.

Value

A full annotation table T, that is a matrix where the transitive closure of annotations is performed.
Rows correspond to genes of the weighted adjacency matrix and columns to terms. T [i, j] = 1
means that gene i is annotated for the term j, T [i, j] = 0 means that gene i is not annotated for the
term j.

Examples

data(wadj);
data(graph);
data(labels);
anc <- build.ancestors(g);
full.ann <- full.annotation.matrix(W, anc, L);

gpav Generalized Pool-Adjacent Violators (GPAV)

Description

Implementation of GPAV (Generalized Pool-Adjacent Violators) algorithm. (Burdakov et al., In: Di
Pillo G, Roma M, editors. An O(n2) Algorithm for Isotonic Regression. Boston, MA: Springer US;
2006. p. 25–33. Available from: doi: 10.1007/0387300651_3

Usage

gpav(Y, W = NULL, adj)

Arguments

Y vector of scores relative to a single example. Y must be a numeric named vector,
where names correspond to classes’ names, i.e. nodes of the graph g (root node
included).

W vector of weight relative to a single example. If W=NULL (def.) it is assumed that
W is a unitary vector of the same length of the columns’ number of the matrix S
(root node included).

adj adjacency matrix of the graph which must be sparse, logical and upper triangu-
lar. Number of columns of adj must be equal to the length of Y and W.

https://doi.org/10.1007/0-387-30065-1_3
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Details

Given the constraints adjacency matrix of the graph, a vector of scores ŷ ∈ Rn and a vector of
strictly positive weights w ∈ Rn, the GPAV algorithm returns a vector ȳ which is as close as possible,
in the least-squares sense, to the response vector ŷ and whose components are partially ordered in
accordance with the constraints matrix adj. In other words, GPAV solves the following problem:

ȳ =

 min
∑

i∈V (ŷi − ȳi)
2

∀i, j ∈ par(i) ⇒ ȳj ≥ ȳi

where V are the number of vertexes of the graph.

Value

A list of 3 elements:

• YFit: a named vector with the scores of the classes corrected according to the GPAV algorithm.
• blocks: list of vectors, containing the partitioning of nodes (represented with an integer num-

ber) into blocks;
• W: vector of weights.

Examples

data(graph);
data(scores);
Y <- S[3,];
adj <- adj.upper.tri(g);
Y.gpav <- gpav(Y,W=NULL,adj);

gpav.holdout GPAV holdout

Description

Correct the computed scores in a hierarchy according to the GPAV algorithm by applying a classical
holdout procedure.

Usage

gpav.holdout(
S,
g,
testIndex,
W = NULL,
parallel = FALSE,
ncores = 1,
norm = TRUE,
norm.type = NULL

)
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Arguments

S a named flat scores matrix with examples on rows and classes on columns (root
node included).

g a graph of class graphNEL. It represents the hierarchy of the classes.

testIndex a vector of integer numbers corresponding to the indexes of the elements (rows)
of the scores matrix S to be used in the test set.

W vector of weight relative to a single example. If W=NULL (def.) it is assumed that
W is a unitary vector of the same length of the columns’ number of the matrix S
(root node included).

parallel a boolean value. Should the parallel version GPAV be run?

• TRUE: execute the parallel implementation of GPAV (gpav.parallel);
• FALSE (def.): execute the sequential implementation of GPAV (gpav.over.examples);

ncores number of cores to use for parallel execution. Set ncores=1 if parallel=FALSE,
otherwise set ncores to the desired number of cores.

norm a boolean value. Should the flat score matrix be normalized? By default norm=FALSE.
If norm=TRUE the matrix S is normalized according to the normalization type se-
lected in norm.type.

norm.type a string character. It can be one of the following values:

1. NULL (def.): none normalization is applied (norm=FALSE)
2. maxnorm: each score is divided for the maximum value of each class;
3. qnorm: quantile normalization. preprocessCore package is used;

Value

A named matrix with the scores of the classes corrected according to the GPAV algorithm. Rows of
the matrix are shrunk to testIndex.

Examples

data(graph);
data(scores);
data(test.index);
S.gpav <- gpav.holdout(S, g, testIndex=test.index, norm=FALSE, norm.type=NULL);

gpav.over.examples GPAV over examples

Description

Compute GPAV across all the examples.

Usage

gpav.over.examples(S, g, W = NULL)
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Arguments

S a named flat scores matrix with examples on rows and classes on columns (root
node included).

g a graph of class graphNEL. It represents the hierarchy of the classes.

W vector of weight relative to a single example. If W=NULL (def.) it is assumed that
W is a unitary vector of the same length of the columns’ number of the matrix S
(root node included).

Value

A named matrix with the scores of the classes corrected according to the GPAV algorithm.

See Also

gpav.parallel

Examples

data(graph);
data(scores);
S.gpav <- gpav.over.examples(S,W=NULL,g);

gpav.parallel GPAV over examples – parallel implementation

Description

Compute GPAV across all the examples (parallel implementation).

Usage

gpav.parallel(S, g, W = NULL, ncores = 8)

Arguments

S a named flat scores matrix with examples on rows and classes on columns (root
node included).

g a graph of class graphNEL. It represents the hierarchy of the classes.

W vector of weight relative to a single example. If W=NULL (def.) it is assumed that
W is a unitary vector of the same length of the columns’ number of the matrix S
(root node included).

ncores number of cores to use for parallel execution (def. 8). If ncores=0, the maxi-
mum number of cores minus one are used.

Value

A named matrix with the scores of the classes corrected according to the GPAV algorithm.
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Examples

data(graph);
data(scores);
if(Sys.info()['sysname']!="Windows"){

S.gpav <- gpav.parallel(S,W=NULL,g,ncores=2);
}

gpav.vanilla GPAV vanilla

Description

Correct the computed scores in a hierarchy according to the GPAV algorithm.

Usage

gpav.vanilla(
S,
g,
W = NULL,
parallel = FALSE,
ncores = 1,
norm = FALSE,
norm.type = NULL

)

Arguments

S a named flat scores matrix with examples on rows and classes on columns (root
node included).

g a graph of class graphNEL. It represents the hierarchy of the classes.
W vector of weight relative to a single example. If W=NULL (def.) it is assumed that

W is a unitary vector of the same length of the columns’ number of the matrix S
(root node included).

parallel a boolean value. Should the parallel version GPAV be run?
• TRUE: execute the parallel implementation of GPAV (gpav.parallel);
• FALSE (def.): execute the sequential implementation of GPAV (gpav.over.examples);

ncores number of cores to use for parallel execution. Set ncores=1 if parallel=FALSE,
otherwise set ncores to the desired number of cores.

norm a boolean value. Should the flat score matrix be normalized? By default norm=FALSE.
If norm=TRUE the matrix S is normalized according to the normalization type se-
lected in norm.type.

norm.type a string character. It can be one of the following values:
1. NULL (def.): none normalization is applied (norm=FALSE)
2. maxnorm: each score is divided for the maximum value of each class;
3. qnorm: quantile normalization. preprocessCore package is used;
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Value

A named matrix with the scores of the classes corrected according to the GPAV algorithm.

Examples

data(graph);
data(scores);
S.gpav <- gpav.vanilla(S, g, W=NULL, parallel=FALSE, ncores=1, norm=FALSE, norm.type=NULL);

graph.levels Build graph levels

Description

Group a set of nodes in according to their maximum depth in the graph. Firstly, it inverts the weights
of the graph and then it applies the Bellman Ford algorithm to find the shortest path, achieving in
this way the longest path.

Usage

graph.levels(g, root = "00")

Arguments

g an object of class graphNEL.

root name of the class that it is on the top-level of the hierarchy (def. root="00").

Value

A list of the nodes grouped w.r.t. the distance from the root: the first element of the list corresponds
to the root node (level 0), the second to nodes at maximum distance 1 (level 1), the third to the node
at maximum distance 3 (level 2) and so on.

Examples

data(graph);
root <- root.node(g);
lev <- graph.levels(g, root=root);
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hierarchical.checkers Hierarchical constraints checker

Description

Check if the true path rule is violated or not. In other words this function checks if the score of a
parent or an ancestor node is always larger or equal than that of its children or descendants nodes.

Usage

check.hierarchy.single.sample(y.hier, g, root = "00")

check.hierarchy(S.hier, g, root = "00")

Arguments

y.hier vector of scores relative to a single example. It must be a named numeric vector
(names are functional classes).

g a graph of class graphNEL. It represents the hierarchy of the classes.

root name of the class that is on the top-level of the hierarchy (def. root="00").

S.hier the matrix with the scores of the classes corrected in according to hierarchy. It
must be a named matrix: rows are examples and columns are functional classes.

Value

A list of 3 elements:

• status:

– OK if none hierarchical constraints have bee broken;
– NOTOK if there is at least one hierarchical constraints broken;

• hierarchy_constraints_broken:

– TRUE: example did not respect the hierarchical constraints;
– FALSE: example broke the hierarchical constraints;

• hierarchy_constraints_satisfied: how many terms satisfied the hierarchical constraint;

Examples

data(graph);
data(scores);
root <- root.node(g);
S.hier <- htd(S,g,root);
S.hier.single.example <- S.hier[sample(ncol(S.hier),1),];
check.hierarchy.single.sample(S.hier.single.example, g, root=root);
check.hierarchy(S.hier, g, root);
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htd HTD-DAG

Description

Implementation of the top-down procedure to correct the scores of the hierarchy according to the
constraints that the score of a node cannot be greater than a score of its parents.

Usage

htd(S, g, root = "00")

Arguments

S a named flat scores matrix with examples on rows and classes on columns.

g a graph of class graphNEL. It represents the hierarchy of the classes.

root name of the class that it is the top-level of the hierarchy (def:00).

Details

The HTD-DAG algorithm modifies the flat scores according to the hierarchy of a DAG G through a
unique run across the nodes of the graph. For a given example x, the flat predictions f(x) = ŷ
are hierarchically corrected to ȳ, by per-level visiting the nodes of the DAG from top to bottom
according to the following simple rule:

ȳi :=

 ŷi if i ∈ root(G)
minj∈par(i) ȳj if minj∈par(i) ȳj < ŷi
ŷi otherwise

The node levels correspond to their maximum path length from the root.

Value

A matrix with the scores of the classes corrected according to the HTD-DAG algorithm.

Examples

data(graph);
data(scores);
root <- root.node(g);
S.htd <- htd(S,g,root);
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htd.holdout HTD-DAG holdout

Description

Correct the computed scores in a hierarchy according to the HTD-DAG algorithm applying a classical
holdout procedure.

Usage

htd.holdout(S, g, testIndex, norm = FALSE, norm.type = NULL)

Arguments

S a named flat scores matrix with examples on rows and classes on columns.

g a graph of class graphNEL. It represents the hierarchy of the classes.

testIndex a vector of integer numbers corresponding to the indexes of the elements (rows)
of the scores matrix S to be used in the test set.

norm a boolean value. Should the flat score matrix be normalized? By default norm=FALSE.
If norm=TRUE the matrix S is normalized according to the normalization type se-
lected in norm.type.

norm.type a string character. It can be one of the following values:

1. NULL (def.): none normalization is applied (norm=FALSE)

2. maxnorm: each score is divided for the maximum value of each class;

3. qnorm: quantile normalization. preprocessCore package is used;

Value

A matrix with the scores of the classes corrected according to the HTD-DAG algorithm. Rows of the
matrix are shrunk to testIndex.

Examples

data(graph);
data(scores);
data(test.index);
S.htd <- htd.holdout(S, g, testIndex=test.index, norm=FALSE, norm.type=NULL);
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htd.vanilla HTD-DAG vanilla

Description

Correct the computed scores in a hierarchy according to the HTD-DAG algorithm.

Usage

htd.vanilla(S, g, norm = FALSE, norm.type = NULL)

Arguments

S a named flat scores matrix with examples on rows and classes on columns.

g a graph of class graphNEL. It represents the hierarchy of the classes.

norm a boolean value. Should the flat score matrix be normalized? By default norm=FALSE.
If norm=TRUE the matrix S is normalized according to the normalization type se-
lected in norm.type.

norm.type a string character. It can be one of the following values:

1. NULL (def.): none normalization is applied (norm=FALSE)
2. maxnorm: each score is divided for the maximum value of each class;
3. qnorm: quantile normalization. preprocessCore package is used;

Value

A matrix with the scores of the classes corrected according to the HTD-DAG algorithm.

Examples

data(graph);
data(scores);
S.htd <- htd.vanilla(S, g, norm=FALSE, norm.type=NULL);

lexicographical.topological.sort

Lexicographical topological sorting

Description

Nodes of a graph are sorted according to a lexicographical topological ordering.

Usage

lexicographical.topological.sort(g)
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Arguments

g an object of class graphNEL.

Details

A topological sorting is a linear ordering of the nodes such that given an edge from u to v, the node
u comes before node v in the ordering. Topological sorting is not possible if the graph g contains
self-loop. To implement the topological sorting algorithm we applied the Kahn’s algorithm.

Value

A vector in which the nodes of the graph g are sorted according to a lexicographical topological
order.

Examples

data(graph);
T <- lexicographical.topological.sort(g);

multilabel.F.measure multilabel F-measure

Description

Method for computing Precision, Recall, Specificity, Accuracy and F-measure for multiclass and
multilabel classification.

Usage

F.measure.multilabel(target, predicted, b.per.example = FALSE)

## S4 method for signature 'matrix,matrix'
F.measure.multilabel(target, predicted, b.per.example = FALSE)

Arguments

target matrix with the target multilabel: rows correspond to examples and columns
to classes. target[i, j] = 1 if example i belongs to class j, target[i, j] = 0
otherwise.

predicted a numeric matrix with discrete predicted values: rows correspond to examples
and columns to classes. predicted[i, j] = 1 if example i is predicted belonging
to class j, target[i, j] = 0 otherwise.

b.per.example a boolean value.

• TRUE: results are returned for each example;
• FALSE: only the average results are returned;
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Details

Names of rows and columns of target and predicted matrix must be provided in the same order,
otherwise a stop message is returned.

Value

Two different outputs respect to the input parameter b.per.example:

• b.per.example==FALSE: a list with a single element average. A named vector with average
precision (P), recall (R), specificity (S), F-measure (F), average F-measure (avF) and Accuracy
(A) across examples. F is the F-measure computed as the harmonic mean between the average
precision and recall; av.F is the F-measure computed as average across examples;

• b.per.example==FALSE: a list with two elements:

1. average: a named vector with average precision (P), recall (R), specificity (S), F-measure
(F), average F-measure (avF) and Accuracy (A) across examples;

2. per.example: a named matrix with the Precision (P), Recall (R), Specificity (S), Accuracy
(A), F-measure (F) and av.F-measure (av.F) for each example. Row names correspond to
examples, column names correspond respectively to Precision (P), Recall (R), Specificity
(S), Accuracy (A), F-measure (F) and av.F-measure (av.F);

Examples

data(labels);
data(scores);
data(graph);
root <- root.node(g);
L <- L[,-which(colnames(L)==root)];
S <- S[,-which(colnames(S)==root)];
S[S>0.7] <- 1;
S[S<0.7] <- 0;
fscore <- F.measure.multilabel(L,S);

normalize.max Max normalization

Description

Normalize the scores of a scores matrix by dividing the score values of each class for the maximum
score of the class.

Usage

normalize.max(S)

Arguments

S a scores matrix. Rows are examples and columns are classes.
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Value

A scores matrix with the scores normalized.

Examples

data(scores);
maxnorm <- normalize.max(S);

obozinski.heuristic.methods

Obozinski heuristic methods

Description

Implementation of the Obozinski’s heuristic methods Max, And, Or (Obozinski et al., Genome Biol-
ogy, 2008, doi: 10.1186/gb20089s1s6).

Usage

obozinski.max(S, g, root = "00")

obozinski.and(S, g, root = "00")

obozinski.or(S, g, root = "00")

Arguments

S a named flat scores matrix with examples on rows and classes on columns.
g a graph of class graphNEL. It represents the hierarchy of the classes.
root name of the class that it is the top-level of the hierarchy (def:00).

Details

Obozinski’s heuristic methods:

1. Max: reports the largest logistic regression (LR) value of self and all descendants: pi =
maxj∈descendants(i)p̂j ;

2. And: reports the product of LR values of all ancestors and self. This is equivalent to comput-
ing the probability that all ancestral terms are "on" assuming that, conditional on the data, all
predictions are independent: pi =

∏
j∈ancestors(i) p̂j ;

3. Or: computes the probability that at least one of the descendant terms is "on" assuming again
that, conditional on the data, all predictions are independent: 1− pi =

∏
j∈descendants(i)(1−

p̂j);

Value

A matrix with the scores of the classes corrected according to the chosen Obozinski’s heuristic
algorithm.

https://doi.org/10.1186/gb-2008-9-s1-s6
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Examples

data(graph);
data(scores);
root <- root.node(g);
S.max <- obozinski.max(S,g,root);
S.and <- obozinski.and(S,g,root);
S.or <- obozinski.or(S,g,root);

obozinski.holdout Obozinski’s heuristic methods – holdout

Description

Compute the Obozinski’s heuristic methods Max, And, Or (Obozinski et al., Genome Biology, 2008 )
applying a classical holdout procedure.

Usage

obozinski.holdout(
S,
g,
testIndex,
heuristic = "and",
norm = FALSE,
norm.type = NULL

)

Arguments

S a named flat scores matrix with examples on rows and classes on columns.

g a graph of class graphNEL. It represents the hierarchy of the classes.

testIndex a vector of integer numbers corresponding to the indexes of the elements (rows)
of the scores matrix S to be used in the test set.

heuristic a string character. It can be one of the following three values:

1. "max": run the method heuristic.max;
2. "and": run the method heuristic.and;
3. "or": run the method heuristic.or;

norm a boolean value. Should the flat score matrix be normalized? By default norm=FALSE.
If norm=TRUE the matrix S is normalized according to the normalization type se-
lected in norm.type.

norm.type a string character. It can be one of the following values:

1. NULL (def.): none normalization is applied (norm=FALSE)
2. maxnorm: each score is divided for the maximum value of each class;
3. qnorm: quantile normalization. preprocessCore package is used;
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Value

A matrix with the scores of the classes corrected according to the chosen heuristic algorithm. Rows
of the matrix are shrunk to testIndex.

Examples

data(graph);
data(scores);
data(test.index);
S.and <- obozinski.holdout(S, g, testIndex=test.index, heuristic="and", norm=FALSE, norm.type=NULL);

obozinski.methods Obozinski’s heuristic methods calling

Description

Compute the Obozinski’s heuristic methods Max, And, Or (Obozinski et al., Genome Biology, 2008 ).

Usage

obozinski.methods(S, g, heuristic = "and", norm = FALSE, norm.type = NULL)

Arguments

S a named flat scores matrix with examples on rows and classes on columns.
g a graph of class graphNEL. It represents the hierarchy of the classes.
heuristic a string character. It can be one of the following three values:

1. "max": run the method obozinski.max;
2. "and": run the method obozinski.and;
3. "or": run the method obozinski.or;

norm a boolean value. Should the flat score matrix be normalized? By default norm=FALSE.
If norm=TRUE the matrix S is normalized according to the normalization type se-
lected in norm.type.

norm.type a string character. It can be one of the following values:
1. NULL (def.): none normalization is applied (norm=FALSE)
2. maxnorm: each score is divided for the maximum value of each class;
3. qnorm: quantile normalization. preprocessCore package is used;

Value

A matrix with the scores of the classes corrected according to the chosen heuristic algorithm.

Examples

data(graph);
data(scores);
S.and <- obozinski.methods(S, g, heuristic="and", norm=TRUE, norm.type="maxnorm");
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pxr Precision-Recall curves

Description

Compute the Precision-Recall (PxR) values through precrec package.

Usage

precision.at.all.recall.levels.single.class(labels, scores)

precision.at.given.recall.levels.over.classes(
target,
predicted,
folds = NULL,
seed = NULL,
recall.levels = seq(from = 0.1, to = 1, by = 0.1)

)

Arguments

labels vector of the true labels (0 negative, 1 positive examples).

scores a numeric vector of the values of the predicted labels (scores).

target matrix with the target multilabel: rows correspond to examples and columns
to classes. target[i, j] = 1 if example i belongs to class j, target[i, j] = 0
otherwise.

predicted a numeric matrix with predicted values (scores): rows correspond to examples
and columns to classes.

folds number of folds on which computing the PXR. If folds=NULL (def.), the PXR
is computed one-shot, otherwise the PXR is computed averaged across folds.

seed initialization seed for the random generator to create folds. Set seed only if
folds̸=NULL. If seed=NULL and folds̸=NULL, the PXR averaged across folds is
computed without seed initialization.

recall.levels a vector with the desired recall levels (def: from:0.1, to:0.9, by:0.1).

Details

precision.at.all.recall.levels.single.class computes the precision at all recall levels just
for a single class.

precision.at.given.recall.levels.over.classes computes the precision at fixed recall lev-
els over classes.
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Value

precision.at.all.recall.levels.single.class returns a two-columns matrix, representing
a pair of precision and recall values. The first column is the precision, the second the recall;
precision.at.given.recall.levels.over.classes returns a list with two elements:

1. average: a vector with the average precision at different recall levels across classes;
2. fixed.recall: a matrix with the precision at different recall levels: rows are classes, columns

precision at different recall levels;

Examples

data(labels);
data(scores);
data(graph);
root <- root.node(g);
L <- L[,-which(colnames(L)==root)];
S <- S[,-which(colnames(S)==root)];
labels <- L[,1];
scores <- S[,1];
rec.levels <- seq(from=0.25, to=1, by=0.25);
pxr.single <- precision.at.all.recall.levels.single.class(labels, scores);
pxr <- precision.at.given.recall.levels.over.classes(L, S, folds=5, seed=23,

recall.levels=rec.levels);

read.graph Read a directed graph from a file

Description

Read a directed graph from a file and build a graphNEL object.

Usage

read.graph(file = "graph.txt.gz")

Arguments

file name of the file to be read. The format of the file is a sequence of rows and each
row corresponds to an edge represented through a pair of vertexes separated by
blanks. The extension of the file can be plain (".txt") or compressed (".gz").

Value

An object of class graphNEL.

Examples

ed <- system.file("extdata/graph.edges.txt.gz", package= "HEMDAG");
g <- read.graph(file=ed);
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read.undirected.graph Read an undirected graph from a file

Description

Read a graph from a file and build a graphNEL object. The format of the input file is a sequence
of rows. Each row corresponds to an edge represented through a pair of vertexes (blank separated)
and the weight of the edge.

Usage

read.undirected.graph(file = "graph.txt.gz")

Arguments

file name of the file to be read. The extension of the file can be plain (".txt") or
compressed (".gz").

Value

A graph of class graphNEL.

Examples

edges <- system.file("extdata/edges.txt.gz", package="HEMDAG");
g <- read.undirected.graph(file=edges);

root.node Root node

Description

Find the root node of a directed graph.

Usage

root.node(g)

Arguments

g a graph of class graphNEL. It represents the hierarchy of the classes.

Value

Name of the root node.



42 scores.normalization

Examples

data(graph);
root <- root.node(g);

scores.normalization Scores normalization function

Description

Normalize a scores matrix w.r.t. max normalization (maxnorm) or quantile normalization (qnorm)

Usage

scores.normalization(norm.type = "maxnorm", S)

Arguments

norm.type can be one of the following two values:

• maxnorm (def.): each score is divided w.r.t. the max of each class;

• qnorm: a quantile normalization is applied. Package preprocessCore is
used;

S A named flat scores matrix with examples on rows and classes on columns.

Details

To apply the quantile normalization the preprocessCore package must be properly installed.

Value

The matrix of the scores flat normalized w.r.t. maxnorm or qnorm.

Examples

data(scores);
norm.types <- c("maxnorm","qnorm");
for(norm.type in norm.types){

scores.normalization(norm.type=norm.type, S=S);
}
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specific.annotation.list

Specific annotations list

Description

Build the annotation list starting from the matrix of the most specific annotations.

Usage

specific.annotation.list(ann)

Arguments

ann an annotation matrix (0/1). Rows are examples and columns are the most spe-
cific functional terms. It must be a named matrix.

Value

A named list, where names of each component correspond to examples (genes) and elements of
each component are the associated functional terms.

Examples

data(labels);
spec.list <- specific.annotation.list(L);

specific.annotation.matrix

Specific annotation matrix

Description

Build the annotation matrix of the most specific functional terms.

Usage

specific.annotation.matrix(file = "gene2pheno.txt.gz")

Arguments

file text file representing the associations gene-OBO terms. The file must be writ-
ten as sequence of rows. Each row represents a gene/protein and all its asso-
ciations with an ontology term (pipe separated), i.e. in the form e.g.: gene1
|obo1|obo2|...|oboN.
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Details

The input plain text file (representing the associations gene-OBO terms) can be obtained by cloning
the GitHub repository obogaf-parser, a perl5 module specifically designed to handle HPO and GO
obo file and their gene annotation file (gaf file).

Value

The annotation matrix of the most specific annotations (0/1): rows are genes and columns are
functional terms (such as GO or HPO). Let’s denote M the labels matrix. If M [i, j] = 1, means
that the gene i is annotated with the class j, otherwise M [i, j] = 0.

Examples

gene2pheno <- system.file("extdata/gene2pheno.txt.gz", package="HEMDAG");
spec.ann <- specific.annotation.matrix(file=gene2pheno);

stratified.cross.validation

Stratified cross validation

Description

Generate data for the stratified cross-validation.

Usage

stratified.cv.data.single.class(examples, positives, kk = 5, seed = NULL)

stratified.cv.data.over.classes(labels, examples, kk = 5, seed = NULL)

Arguments

examples indices or names of the examples. Can be either a vector of integers or a vector
of names.

positives vector of integers or vector of names. The indices (or names) refer to the indices
(or names) of ’positive’ examples.

kk number of folds (def. kk=5).

seed seed of the random generator (def. seed=NULL). If is set to NULL no initializa-
tion is performed.

labels labels matrix. Rows are genes and columns are classes. Let’s denote M the
labels matrix. If M [i, j] = 1, means that the gene i is annotated with the class
j, otherwise M [i, j] = 0.

Details

Folds are stratified, i.e. contain the same amount of positive and negative examples.

https://github.com/marconotaro/obogaf-parser
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Value

stratified.cv.data.single.class returns a list with 2 two component:

• fold.non.positives: a list with k components. Each component is a vector with the indices (or
names) of the non-positive elements. Indexes (or names) refer to row numbers (or names) of
a data matrix;

• fold.positives: a list with k components. Each component is a vector with the indices (or
names) of the positive elements. Indexes (or names) refer to row numbers (or names) of a data
matrix;

stratified.cv.data.over.classes returns a list with n components, where n is the number of
classes of the labels matrix. Each component n is in turn a list with k elements, where k is the
number of folds. Each fold contains an equal amount of positives and negatives examples.

Examples

data(labels);
examples.index <- 1:nrow(L);
examples.name <- rownames(L);
positives <- which(L[,3]==1);
x <- stratified.cv.data.single.class(examples.index, positives, kk=5, seed=23);
y <- stratified.cv.data.single.class(examples.name, positives, kk=5, seed=23);
z <- stratified.cv.data.over.classes(L, examples.index, kk=5, seed=23);
k <- stratified.cv.data.over.classes(L, examples.name, kk=5, seed=23);

tpr.dag TPR-DAG ensemble variants

Description

Collection of the true-path-rule-based hierarchical learning ensemble algorithms and its variants.

TPR-DAG is a family of algorithms on the basis of the choice of the bottom-up step adopted for
the selection of positive children (or descendants) and of the top-down step adopted to assure
ontology-based predictions. Indeed, in their more general form the TPR-DAG algorithms adopt a two
step learning strategy:

1. in the first step they compute a per-level bottom-up visit from leaves to root to propagate
positive predictions across the hierarchy;

2. in the second step they compute a per-level top-down visit from root to leaves in order to
assure the consistency of the predictions.

It is worth noting that levels (both in the first and second step) are defined in terms of the maximum
distance from the root node (see graph.levels).
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Usage

tpr.dag(
S,
g,
root = "00",
positive = "children",
bottomup = "threshold.free",
topdown = "gpav",
t = 0,
w = 0,
W = NULL,
parallel = FALSE,
ncores = 1

)

Arguments

S a named flat scores matrix with examples on rows and classes on columns.

g a graph of class graphNEL. It represents the hierarchy of the classes.

root name of the class that it is on the top-level of the hierarchy (def. root="00").

positive choice of the positive nodes to be considered in the bottom-up strategy. Can be
one of the following values:

• children (def.): positive children are are considered for each node;
• descendants: positive descendants are are considered for each node;

bottomup strategy to enhance the flat predictions by propagating the positive predictions
from leaves to root. It can be one of the following values:

• threshold.free (def.): positive nodes are selected on the basis of the
threshold.free strategy;

• threshold: positive nodes are selected on the basis of the threshold strat-
egy;

• weighted.threshold.free: positive nodes are selected on the basis of the
weighted.threshold.free strategy;

• weighted.threshold: positive nodes are selected on the basis of the weighted.threshold
strategy;

• tau: positive nodes are selected on the basis of the tau strategy. NOTE:
tau is only a DESCENS variant. If you select tau strategy you must set
positive=descendants;

topdown strategy to make scores “hierarchy-aware”. It can be one of the following values:

• htd: HTD-DAG strategy is applied (htd);
• gpav (def.): GPAV strategy is applied (gpav);

t threshold for the choice of positive nodes (def. t=0). Set t only for the variants
requiring a threshold for the selection of the positive nodes, otherwise set t=0.

w weight to balance between the contribution of the node i and that of its positive
nodes. Set w only for the weighted variants, otherwise set w=0.
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W vector of weight relative to a single example. If W=NULL (def.) it is assumed that
W is a unitary vector of the same length of the columns’ number of the matrix S
(root node included). Set W only if topdown=gpav.

parallel a boolean value:

• TRUE: execute the parallel implementation of GPAV (gpav.parallel);
• FALSE (def.): execute the sequential implementation of GPAV (gpav.over.examples);

Use parallel only if topdown=GPAV; otherwise set parallel=FALSE.

ncores number of cores to use for parallel execution. Set ncores=1 if parallel=FALSE,
otherwise set ncores to the desired number of cores. Set ncores if and only if
topdown=GPAV; otherwise set ncores=1.

Details

The vanilla TPR-DAG adopts a per-level bottom-up traversal of the DAG to correct the flat predictions
ŷi according to the following formula:

ȳi :=
1

1 + |ϕi|
(ŷi +

∑
j∈ϕi

ȳj)

where ϕi are the positive children of i. Different strategies to select the positive children ϕi can be
applied:

1. threshold-free strategy: the positive nodes are those children that can increment the score of
the node i, that is those nodes that achieve a score higher than that of their parents:

ϕi := {j ∈ child(i)|ȳj > ŷi}

2. threshold strategy: the positive children are selected on the basis of a threshold that can be
selected in two different ways:

(a) for each node a constant threshold t̄ is a priori selected:

ϕi := {j ∈ child(i)|ȳj > t̄}

For instance if the predictions represent probabilities it could be meaningful to a priori
select t̄ = 0.5.

(b) the threshold is selected to maximize some performance metric M estimated on the train-
ing data, as for instance the Fmax or the AUPRC. In other words the threshold is selected
to maximize some measure of accuracy of the predictions M(j, t) on the training data
for the class j with respect to the threshold t. The corresponding set of positives ∀i ∈ V
is:

ϕi := {j ∈ child(i)|ȳj > t∗j , t
∗
j = argmax

t
M(j, t)}

For instance t∗j can be selected from a set of t ∈ (0, 1) through internal cross-validation
techniques.

The weighted TPR-DAG version can be designed by adding a weight w ∈ [0, 1] to balance between
the contribution of the node i and that of its positive children ϕ, through their convex combination:

ȳi := wŷi +
(1− w)

|ϕi|
∑
j∈ϕi

ȳj



48 tpr.dag

If w = 1 no weight is attributed to the children and the TPR-DAG reduces to the HTD-DAG algorithm,
since in this way only the prediction for node i is used in the bottom-up step of the algorithm. If
w = 0 only the predictors associated to the children nodes vote to predict node i. In the intermediate
cases we attribute more importance to the predictor for the node i or to its children depending on
the values of w. By combining the weighted and the threshold variant, we design the weighted-
threshold variant.

Since the contribution of the descendants of a given node decays exponentially with their distance
from the node itself, to enhance the contribution of the most specific nodes to the overall deci-
sion of the ensemble we design the ensemble variant DESCENS. The novelty of DESCENS consists
in strongly considering the contribution of all the descendants of each node instead of only that of
its children. Therefore DESCENS predictions are more influenced by the information embedded in
the leaves nodes, that are the classes containing the most informative and meaningful information
from a biological and medical standpoint. For the choice of the “positive” descendants we use the
same strategies adopted for the selection of the “positive” children shown above. Furthermore, we
designed a variant specific only for DESCENS, that we named DESCENS-τ . The DESCENS-τ variant
balances the contribution between the “positives” children of a node i and that of its “positives”
descendants excluding its children by adding a weight τ ∈ [0, 1]:

ȳi :=
τ

1 + |ϕi|
(ŷi +

∑
j∈ϕi

ȳj) +
1− τ

1 + |δi|
(ŷi +

∑
j∈δi

ȳj)

where ϕi are the “positive” children of i and δi = ∆i \ ϕi the descendants of i without its children.
If τ = 1 we consider only the contribution of the “positive” children of i; if τ = 0 only the
descendants that are not children contribute to the score, while for intermediate values of τ we can
balance the contribution of ϕi and δi positive nodes.

Simply by replacing the HTD-DAG top-down step (htd) with the GPAV approach (gpav) we design the
ISO-TPR variant. The most important feature of ISO-TPR is that it maintains the hierarchical con-
straints by construction and it selects the closest solution (in the least square sense) to the bottom-up
predictions that obeys the True Path Rule.

Value

A named matrix with the scores of the classes corrected according to the chosen TPR-DAG ensemble
algorithm.

See Also

gpav, htd

Examples

data(graph);
data(scores);
data(labels);
root <- root.node(g);
S.tpr <- tpr.dag(S, g, root, positive="children", bottomup="threshold.free",
topdown="gpav", t=0, w=0, W=NULL, parallel=FALSE, ncores=1);
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tpr.dag.cv TPR-DAG cross-validation experiments

Description

Correct the computed scores in a hierarchy according to the a TPR-DAG ensemble variant.

Usage

tpr.dag.cv(
S,
g,
ann,
norm = FALSE,
norm.type = NULL,
positive = "children",
bottomup = "threshold",
topdown = "gpav",
W = NULL,
parallel = FALSE,
ncores = 1,
threshold = seq(from = 0.1, to = 0.9, by = 0.1),
weight = 0,
kk = 5,
seed = 23,
metric = "auprc",
n.round = NULL

)

Arguments

S a named flat scores matrix with examples on rows and classes on columns.

g a graph of class graphNEL. It represents the hierarchy of the classes.

ann an annotation matrix: rows correspond to examples and columns to classes.
ann[i, j] = 1 if example i belongs to class j, ann[i, j] = 0 otherwise. ann
matrix is necessary to maximize the hyper-parameter(s) of the chosen parametric
TPR-DAG ensemble variant respect to the metric selected in metric. For the
parametric-free ensemble variant set ann=NULL.

norm a boolean value. Should the flat score matrix be normalized? By default norm=FALSE.
If norm=TRUE the matrix S is normalized according to the normalization type se-
lected in norm.type.

norm.type a string character. It can be one of the following values:

1. NULL (def.): none normalization is applied (norm=FALSE)
2. maxnorm: each score is divided for the maximum value of each class (scores.normalization);
3. qnorm: quantile normalization. preprocessCore package is used (scores.normalization);
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positive choice of the positive nodes to be considered in the bottom-up strategy. Can be
one of the following values:

• children (def.): positive children are are considered for each node;
• descendants: positive descendants are are considered for each node;

bottomup strategy to enhance the flat predictions by propagating the positive predictions
from leaves to root. It can be one of the following values:

• threshold.free: positive nodes are selected on the basis of the threshold.free
strategy;

• threshold (def.): positive nodes are selected on the basis of the threshold
strategy;

• weighted.threshold.free: positive nodes are selected on the basis of the
weighted.threshold.free strategy;

• weighted.threshold: positive nodes are selected on the basis of the weighted.threshold
strategy;

• tau: positive nodes are selected on the basis of the tau strategy. NOTE:
tau is only a DESCENS variant. If you select tau strategy you must set
positive=descendants;

topdown strategy to make the scores hierarchy-consistent. It can be one of the following
values:

• htd: HTD-DAG strategy is applied (htd);
• gpav (def.): GPAV strategy is applied (gpav);

W vector of weight relative to a single example. If W=NULL (def.) it is assumed that
W is a unitary vector of the same length of the columns’ number of the matrix S
(root node included). Set W only if topdown=gpav.

parallel a boolean value:

• TRUE: execute the parallel implementation of GPAV (gpav.parallel);
• FALSE (def.): execute the sequential implementation of GPAV (gpav.over.examples);

Use parallel only if topdown=gpav; otherwise set parallel=FALSE.

ncores number of cores to use for parallel execution. Set ncores=1 if parallel=FALSE,
otherwise set ncores to the desired number of cores. Set ncores if topdown=gpav,
otherwise set ncores=1.

threshold range of threshold values to be tested in order to find the best threshold (def:
from:0.1, to:0.9, by:0.1). The denser the range is, the higher the probabil-
ity to find the best threshold is, but the execution time will be higher. For the
threshold-free variants, set threshold=0.

weight range of weight values to be tested in order to find the best weight (def: from:0.1,
to:0.9, by:0.1). The denser the range is, the higher the probability to find the
best threshold is, but the execution time will be higher. For the weight-free vari-
ants, set weight=0.

kk number of folds of the cross validation (def: kk=5) on which tuning the param-
eters threshold, weight and tau of the parametric ensemble variants. For the
parametric-free variants (i.e. if bottomup = threshold.free), set kk=NULL.
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seed initialization seed for the random generator to create folds (def. 23). If seed=NULL
folds are generated without seed initialization. If bottomup=threshold.free,
set seed=NULL.

metric a string character specifying the performance metric on which maximizing the
parametric ensemble variant. It can be one of the following values:

1. auprc (def.): the parametric ensemble variant is maximized on the basis of
AUPRC (auprc);

2. fmax: the parametric ensemble variant is maximized on the basis of Fmax
(multilabel.F.measure;

3. NULL: threshold.free variant is parameter-free, so none optimization is
needed.

n.round number of rounding digits (def. 3) to be applied to the hierarchical scores matrix
for choosing the best threshold on the basis of the best Fmax. If bottomup==threshold.free
or metric="auprc", set n.round=NULL.

Details

The parametric hierarchical ensemble variants are cross-validated maximizing the parameter on the
metric selected in metric.

Value

A named matrix with the scores of the functional terms corrected according to the chosen TPR-DAG
ensemble algorithm.

Examples

data(graph);
data(scores);
data(labels);
S.tpr <- tpr.dag.cv(S, g, ann=NULL, norm=FALSE, norm.type=NULL, positive="children",
bottomup="threshold.free", topdown="gpav", W=NULL, parallel=FALSE, ncores=1,
threshold=0, weight=0, kk=NULL, seed=NULL, metric=NULL, n.round=NULL);

tpr.dag.holdout TPR-DAG holdout experiments

Description

Correct the computed scores in a hierarchy according to the selected TPR-DAG ensemble variant by
applying a classical holdout procedure.
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Usage

tpr.dag.holdout(
S,
g,
ann,
testIndex,
norm = FALSE,
norm.type = NULL,
W = NULL,
parallel = FALSE,
ncores = 1,
positive = "children",
bottomup = "threshold",
topdown = "htd",
threshold = seq(from = 0.1, to = 0.9, by = 0.1),
weight = seq(from = 0.1, to = 0.9, by = 0.1),
kk = 5,
seed = 23,
metric = "auprc",
n.round = NULL

)

Arguments

S a named flat scores matrix with examples on rows and classes on columns.

g a graph of class graphNEL. It represents the hierarchy of the classes.

ann an annotation matrix: rows correspond to examples and columns to classes.
ann[i, j] = 1 if example i belongs to class j, ann[i, j] = 0 otherwise. ann
matrix is necessary to maximize the hyper-parameter(s) of the chosen parametric
TPR-DAG ensemble variant respect to the metric selected in metric. For the
parametric-free ensemble variant set ann=NULL.

testIndex a vector of integer numbers corresponding to the indexes of the elements (rows)
of the scores matrix S to be used in the test set.

norm a boolean value. Should the flat score matrix be normalized? By default norm=FALSE.
If norm=TRUE the matrix S is normalized according to the normalization type se-
lected in norm.type.

norm.type a string character. It can be one of the following values:

1. NULL (def.): none normalization is applied (norm=FALSE)
2. maxnorm: each score is divided for the maximum value of each class;
3. qnorm: quantile normalization. preprocessCore package is used;

W vector of weight relative to a single example. If W=NULL (def.) it is assumed that
W is a unitary vector of the same length of the columns’ number of the matrix S
(root node included). Set W only if topdown=gpav.

parallel a boolean value:

• TRUE: execute the parallel implementation of GPAV (gpav.parallel);
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• FALSE (def.): execute the sequential implementation of GPAV (gpav.over.examples);

Use parallel only if topdown=gpav; otherwise set parallel=FALSE.

ncores number of cores to use for parallel execution. Set ncores=1 if parallel=FALSE,
otherwise set ncores to the desired number of cores. Set ncores if and only if
topdown=gpav; otherwise set ncores=1.

positive choice of the positive nodes to be considered in the bottom-up strategy. Can be
one of the following values:

• children (def.): positive children are are considered for each node;
• descendants: positive descendants are are considered for each node;

bottomup strategy to enhance the flat predictions by propagating the positive predictions
from leaves to root. It can be one of the following values:

• threshold.free: positive nodes are selected on the basis of the threshold.free
strategy (def.);

• threshold (def.): positive nodes are selected on the basis of the threshold
strategy;

• weighted.threshold.free: positive nodes are selected on the basis of the
weighted.threshold.free strategy;

• weighted.threshold: positive nodes are selected on the basis of the weighted.threshold
strategy;

• tau: positive nodes are selected on the basis of the tau strategy. NOTE:
tau is only a DESCENS variant. If you select tau strategy you must set
positive=descendants;

topdown strategy to make the scores hierarchy-consistent. It can be one of the following
values:

• htd: HTD-DAG strategy is applied (htd);
• gpav (def.): GPAV strategy is applied (gpav);

threshold range of threshold values to be tested in order to find the best threshold (def:
from:0.1, to:0.9, by:0.1). The denser the range is, the higher the probabil-
ity to find the best threshold is, but the execution time will be higher. For the
threshold-free variants, set threshold=0.

weight range of weight values to be tested in order to find the best weight (def: from:0.1,
to:0.9, by:0.1). The denser the range is, the higher the probability to find the
best threshold is, but the execution time will be higher. For the weight-free vari-
ants, set weight=0.

kk number of folds of the cross validation (def: kk=5) on which tuning the param-
eters threshold, weight and tau of the parametric ensemble variants. For the
parametric-free variants (i.e. if bottomup = threshold.free), set kk=NULL.

seed initialization seed for the random generator to create folds (def. 23). If seed=NULL
folds are generated without seed initialization. If bottomup=threshold.free,
set seed=NULL.

metric a string character specifying the performance metric on which maximizing the
parametric ensemble variant. It can be one of the following values:

1. auprc (def.): the parametric ensemble variant is maximized on the basis of
AUPRC (auprc);
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2. fmax: the parametric ensemble variant is maximized on the basis of Fmax
(multilabel.F.measure;

3. NULL: threshold.free variant is parameter-free, so none optimization is
needed.

n.round number of rounding digits (def. 3) to be applied to the hierarchical scores matrix
for choosing the best threshold on the basis of the best Fmax. If bottomup==threshold.free
or metric="auprc", set n.round=NULL.

Details

The parametric hierarchical ensemble variants are cross-validated maximizing the parameter on the
metric selected in metric,

Value

A named matrix with the scores of the classes corrected according to the chosen TPR-DAG ensemble
algorithm. Rows of the matrix are shrunk to testIndex.

Examples

data(graph);
data(scores);
data(labels);
data(test.index);
S.tpr <- tpr.dag.holdout(S, g, ann=NULL, testIndex=test.index, norm=FALSE, norm.type=NULL,
positive="children", bottomup="threshold.free", topdown="gpav", W=NULL, parallel=FALSE,
ncores=1, threshold=0, weight=0, kk=NULL, seed=NULL, metric=NULL, n.round=NULL);

transitive.closure.annotations

Transitive closure of annotations

Description

Perform the transitive closure of the annotations using ancestors and the most specific annotation
matrix. The annotations are propagated from bottom to top, enriching the most specific annotations
table. Rows correspond to genes and columns to functional terms.

Usage

transitive.closure.annotations(ann.spec, anc)

Arguments

ann.spec the annotation matrix of the most specific annotations (0/1): rows are genes and
columns are functional terms.

anc the ancestor list.
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Value

The annotation table T: rows correspond to genes and columns to OBO terms. T [i, j] = 1 means
that gene i is annotated for the term j, T [i, j] = 0 means that gene i is not annotated for the term j.

Examples

data(graph);
data(labels);
anc <- build.ancestors(g);
tca <- transitive.closure.annotations(L, anc);

tupla.matrix Tupla matrix

Description

Transform a named score matrix in a tupla, i.e. in the form nodeX nodeY score.

Usage

tupla.matrix(m, output.file = "net.file.gz", digits = 3)

Arguments

m a named score matrix. It can be either a m x n matrix (where m are example and
n are functional terms, e.g. GO terms) or it can be a square named matrix m x m,
where m are examples.

output.file name of the file on which the matrix must be written.

digits number of digits to be used to save scores of m (def. digits=3). The extension
of the file can be plain (".txt") or compressed (".gz").

Details

Only the non-zero interactions are kept, while the zero interactions are discarded.

Value

A tupla score matrix stored in output.file.

Examples

data(wadj);
file <- tempfile();
tupla.matrix(W, output.file=file, digits=3);
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unstratified.cv.data Unstratified cross validation

Description

This function splits a dataset in k-fold in an unstratified way, i.e. a fold does not contain an equal
amount of positive and negative examples. This function is used to perform k-fold cross-validation
experiments in a hierarchical correction contest where splitting dataset in a stratified way is not
needed.

Usage

unstratified.cv.data(S, kk = 5, seed = NULL)

Arguments

S matrix of the flat scores. It must be a named matrix, where rows are example
(e.g. genes) and columns are classes/terms (e.g. GO terms).

kk number of folds in which to split the dataset (def. k=5).

seed seed for random generator. If NULL (def.) no initialization is performed.

Value

A list with k = kk components (folds). Each component of the list is a character vector contains
the index of the examples, i.e. the index of the rows of the matrix S.

Examples

data(scores);
foldIndex <- unstratified.cv.data(S, kk=5, seed=23);

weighted.adjacency.matrix

Weighted adjacency matrix

Description

Build a symmetric weighted adjacency matrix (wadj matrix) of a graph.

Usage

weighted.adjacency.matrix(file = "edges.txt")
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Arguments

file name of the plain text file to be read (def. edges). The format of the file is a
sequence of rows. Each row corresponds to an edge represented through a pair
of vertexes (blank separated) and the weight of the edges. For instance: nodeX
nodeY score. The file extension can be plain (".txt") or compressed (".gz").

Value

A named symmetric weighted adjacency matrix of the graph.

Examples

edges <- system.file("extdata/edges.txt.gz", package="HEMDAG");
W <- weighted.adjacency.matrix(file=edges);

write.graph Write a directed graph on file

Description

Read an object of class graphNEL and write the graph as sequence of rows on a plain text file.

Usage

write.graph(g, file = "graph.txt.gz")

Arguments

g a graph of class graphNEL.

file name of the file to be written. The extension of the file can be plain (".txt") or
compressed (".gz").

Value

A plain text file representing the graph. Each row corresponds to an edge represented through a pair
of vertexes separated by blank.

Examples

data(graph);
file <- tempfile();
write.graph(g, file=file);
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