GWlasso: Geographically Weighted Lasso
Performs geographically weighted Lasso regressions. Find optimal bandwidth, fit a geographically weighted lasso or ridge regression, and make predictions.
These methods are specially well suited for ecological inferences. Bandwidth selection algorithm is from A. Comber and P. Harris (2018) <doi:10.1007/s10109-018-0280-7>.
Version: |
1.0.1 |
Depends: |
R (≥ 3.5.0) |
Imports: |
dplyr, ggplot2, ggside, glmnet, GWmodel, lifecycle, magrittr, methods, progress, rlang, sf, tidyr |
Suggests: |
knitr, maps, rmarkdown |
Published: |
2024-11-22 |
DOI: |
10.32614/CRAN.package.GWlasso |
Author: |
Matthieu Mulot
[aut, cre, cph],
Sophie Erb [aut] |
Maintainer: |
Matthieu Mulot <matthieu.mulot at gmail.com> |
BugReports: |
https://github.com/nibortolum/GWlasso/issues |
License: |
MIT + file LICENSE |
URL: |
https://github.com/nibortolum/GWlasso,
https://nibortolum.github.io/GWlasso/ |
NeedsCompilation: |
no |
Materials: |
README NEWS |
CRAN checks: |
GWlasso results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=GWlasso
to link to this page.