Package 'GSED'

January 20, 2025

Type Package

Title Group Sequential Enrichment Design	
Version 2.6	
Date 2023-08-31	
Author Marie-Karelle Riviere	
Maintainer Marie-Karelle Riviere <eldamjh@gmail.com></eldamjh@gmail.com>	
Copyright All files are copyright Sanofi Aventis	
Description Provides function to apply ``Group sequential enrichment design incorporating subgroup selection" (GSED) method proposed by Magnusson and Turnbull (2013) doi:10.1002/sim.5738 >.	;-
License GPL-3	
Depends R (>= 3.1.2), memoise (>= 1.0.0), rootSolve (>= 1.6.6), survival (>= 2.37-7), R.utils (>= 2.3.0)	
NeedsCompilation no	
Repository CRAN	
Date/Publication 2023-08-31 10:10:12 UTC	
Contents	
	2 4 5 7 9 10
Index	12

2 boundaries_sim

GSED-package

Group Sequential Enrichment Design

Description

Provides function to apply "Group sequential enrichment design incorporating subgroup selection" (GSED) method proposed by Magnusson and Turnbull (2013) <doi:10.1002/sim.5738>.

Details

Package: GSED
Type: Package
Version: 2.6
Date: 2023-08-31

License: GPL-3

Author(s)

Marie-Karelle Riviere-Jourdan <eldamjh@gmail.com>

References

Baldur P. Magnusson and Bruce W. Turnbull. Group sequential enrichment design incorporating subgroup selection. Statistics in Medicine, 2013. <doi:10.1002/sim.5738>

boundaries_sim

Lower and upper boundaries for GSED

Description

boundaries_sim is used to estimate lower and upper boundaries for GSED based on simulations of trials.

Usage

```
boundaries_sim(K_stages, N_subsets, f, ratio_Delta_star_d1, ordering, increasing_theta=FALSE, seed=42, n_trials, alpha_spending, one_minus_alpha_spending, updateProgress=NULL)
```

boundaries_sim 3

Arguments

K_stages Integer indicating the number of stages in the design.N_subsets Integer representing the number of possible subgroups.

f Vector containing the prevalence rates of each subgroup. Must be of length

N_subsets.

ratio_Delta_star_d1

Vector containing the ratio between the (observed Fisher) information increments at each stage >1 with the (observed Fisher) information at stage 1. Must

be of length K_stages-1.

ordering Boolean indicating if the subgroups (theta) are ordered.

increasing_theta

Boolean indicating if greater values of theta parameters represent better treat-

ment effects. The default value is set at FALSE.

seed Interger representing the seed. The default value is set at 42.

n_trials Integer indicating the number of trials to simulate.

alpha_spending Vector containing the values of the alpha-spending function at each time of

the analysis (including 0 at time 0 and alpha at time 1). Must be of length

 $K_stages+1.$

one_minus_alpha_spending

Vector containing the values of the 1-alpha-spending function at each time of the analysis (including 0 at time 0 and 1-alpha at time 1). Must be of length

K_stages+1.

updateProgress (for Rshiny application)

Value

A list is returned, consisting of two vectors containing the lower and upper boundaries:

1 Vector of lower boundaries at each stage.

u Vector of upper boundaries at each stage.

Author(s)

Marie-Karelle Riviere-Jourdan <eldamjh@gmail.com>

References

Baldur P. Magnusson and Bruce W. Turnbull. Group sequential enrichment design incorporating subgroup selection. Statistics in Medicine, 2013. <doi:10.1002/sim.5738>

Examples

```
#For testing purpose only, larger number of simulations required (see in comments below) boundaries_sim(K_stages=2, N_subsets=3, f=c(0.6,0.2,0.2), ratio_Delta_star_d1=c(1), ordering=FALSE, seed=42, n_trials=3, alpha_spending=c(0,0.0125,0.025), one_minus_alpha_spending=c(0,0.4875,0.975))
```

4 magnusson_turnbull

```
\label{eq:sim_condition} $$\# boundaries_sim(K_stages=2, N_subsets=3, f=c(0.6,0.2,0.2), ratio_Delta_star_d1=c(1), $$\# ordering=FALSE, seed=42, n_trials=10000000, alpha_spending=c(0,0.0125,0.025), $$\# one_minus_alpha_spending=c(0,0.4875,0.975))$
```

magnusson_turnbull

Application of GSED on data

Description

magnusson_turnbull is used apply GSED design, selection or evaluation at each stage, on data.

Usage

```
magnusson_turnbull(stage_cur, keep=NA, N_subsets, Y, I, 1, u, ordering, increasing_theta=FALSE)
```

Arguments

stage_cur	Integer representing the current stage. 0 represents selection at stage 1, 1 represents evaluation at stage 1, while $k > 1$ represents evaluation at stage k .	
keep	Vector of indices of selected subgroups if selection at stage 1 is already performed. Values must be between 1 and N_subsets. By default filled with NA if the function is run for selection step.	
N_subsets	Integer representing the number of possible subgroups.	
Y	Efficient score test statistics. For stage_cur>0 (evaluation at stage 1 or k (k>1),), value representing the efficient score test statistic for all (pooled) selected subgroup. For stage_cur=0 (selection at stage 1), vector representing the efficient score test statistic for each subgroup.	
I	Observed Fisher information. For stage_cur>0 (evaluation at stage 1 or k (k>1),), value representing the observed Fisher information for all (pooled) selected subgroup. For stage_cur=0 (selection at stage 1), vector representing the observed Fisher information for each subgroup.	
1	Vector containing the lower boundaries for stagewise decisions.	
u	Vector containing the upper boundaries for stagewise decisions.	
ordering	Boolean indicating if the subgroups (theta) are ordered.	
increasing_theta		
	Boolean indicating if greater values of theta parameters represent better treatment effects. The default value is set at FALSE.	

Value

An list is returned, consisting of:

Rejection Interger with value 1 if the decision is to reject the null hypothesis, 0 otherwise.

Acceptation Interger with value 1 if the decision is to accept the null hypothesis, 0 otherwise.

Keep Vector of indices of selected subgroups (between 1 and N_subsets).

max_FI 5

Author(s)

Marie-Karelle Riviere-Jourdan <eldamjh@gmail.com>

References

Baldur P. Magnusson and Bruce W. Turnbull. Group sequential enrichment design incorporating subgroup selection. Statistics in Medicine, 2013. <doi:10.1002/sim.5738>

Examples

```
magnusson_turnbull(stage_cur=0, keep=NA, N_subsets=3, Y=c(-10.71,12.84,19.06), I=c(480,144,176), I=c(0.7962,2.5204), u=c(2.7625,2.5204), ordering=FALSE)

magnusson_turnbull(stage_cur=2, keep=c(2,3), N_subsets=3, Y=135.57, I=1120, I=c(0.7962,2.5204), u=c(2.7625,2.5204), ordering=FALSE)
```

max_FI

Maximum Fisher information

Description

max_FI is used to estimate maximum Fisher information based on two power criteria. - The first criterion consider the maxmimum Fisher information such that there is a pre-defined power to declare efficacy in the entire population for a given vector of parameters representing treatment effects in each subgroup. - The second criterion consider the maxmimum Fisher information such that there is a pre-defined power to declare efficacy in at least one subgroup for a given vector of parameters representing treatment effects in each subgroup.

Usage

```
max_FI(K_stages, N_subsets, f, ratio_Delta_star_d1, l, u, type_outcome, param_theta, pow, ordering, increasing_theta=FALSE, seed=42, n_trials, rule, updateProgress=NULL)
```

Arguments

K_stages	Integer indicating the number of stages in the design.			
N_subsets	Integer representing the number of possible subgroups.			
f	Vector containing the prevalence rates of each subgroup. Must be of length $N_$ subsets.			
ratio_Delta_star_d1				
	Vector containing the ratio between the (observed Fisher) information increments at each stage >1 with the (observed Fisher) information at stage 1. Must be of length $K_stages-1$.			
1	Vector containing the lower boundaries for stagewise decisions. Must be of length K_stages .			

6 max FI

u Vector containing the upper boundaries for stagewise decisions. Must be of

length K_stages.

type_outcome A string containing the type of outcome, either "survival", "binary", or "contin-

uous".

param_theta Vector of parameters representing treatment effects in each subgroup. Must sat-

isfy the properties detailed in Magnusson and Turnbull's article (reparametriza-

tion can be needed).

pow Value representing the desired power.

ordering Boolean indicating if the subgroups (theta) are ordered.

increasing_theta

Boolean indicating if greater values of theta parameters represent better treat-

ment effects. The default value is set at FALSE.

seed Interger representing the seed. The default value is set at 42.

n_trials Integer indicating the number of trials to simulate.

rule Integer with value either 1 or 2 for power criteria detailed in description section

(1 for entire population, 2 for at least one subgroup).

updateProgress (for Rshiny application)

Value

A value representing the maximum Fisher information is returned.

Author(s)

Marie-Karelle Riviere-Jourdan <eldamjh@gmail.com>

References

Baldur P. Magnusson and Bruce W. Turnbull. Group sequential enrichment design incorporating subgroup selection. Statistics in Medicine, 2013. <doi:10.1002/sim.5738>

Examples

```
theta_assumption = list(matrix(c(0.4,0.6,0.4,0.6,0.4,0.6),nrow=2,ncol=3))

#For testing purpose only, larger number of simulations required (see in comments below)

max_FI(K_stages=2, N_subsets=3, f=c(0.6,0.2,0.2), ratio_Delta_star_d1=c(1), l=c(0.7962, 2.5204),

u=c(2.7625, 2.5204), type_outcome="binary", param_theta=theta_assumption, pow=0.9,

ordering=FALSE, increasing_theta=FALSE, seed=140691, n_trials=3, rule=1)

#max_FI(K_stages=2, N_subsets=3, f=c(0.6,0.2,0.2), ratio_Delta_star_d1=c(1), l=c(0.7962, 2.5204),

#u=c(2.7625, 2.5204), type_outcome="binary", param_theta=theta_assumption, pow=0.9,

#ordering=FALSE, increasing_theta=FALSE, seed=140691, n_trials=10000000, rule=1)

#max_FI(K_stages=2, N_subsets=3, f=c(0.6,0.2,0.2), ratio_Delta_star_d1=c(1), l=c(0.7962, 2.5204),

#u=c(2.7625, 2.5204), type_outcome="binary", param_theta=theta_assumption, pow=0.9,

#ordering=FALSE, increasing_theta=FALSE, seed=140691, n_trials=10000000, rule=2)
```

sim_magnusson_turnbull

Simulations of trials with GSED

Description

sim_magnusson_turnbull is used to simulate clincal trials with GSED for different type of outcome (survival, binary, continuous).

Usage

sim_magnusson_turnbull(K_stages, N_subsets, f, 1, u, ratio_Delta_star_d1, type_outcome,
param_outcome=NA, n_max=NA, incl_rate=NA, mean_cur_c=NA, HR=NA, nb_required=NA,
nmax_wait=+Inf, ordering, increasing_theta=FALSE, nsim=1000, seed=42,
nsim_tot=NA, num_sc=1, updateProgress=NULL)

Arguments

K_stages	Integer indicating the number of stages in the design.
N_subsets	Integer representing the number of possible subgroups.
f	Vector containing the prevalence rates of each subgroup. Must be of length $N_$ subsets.
1	Vector containing the lower boundaries for stagewise decisions. Must be of length K_stages.
u	Vector containing the upper boundaries for stagewise decisions. Must be of length K_stages.
ratio_Delta_st	ar_d1
	Vector containing the ratio between the (observed Fisher) information increments at each stage >1 with the (observed Fisher) information at stage 1. Must be of length K_stages-1.
type_outcome	A string containing the type of outcome, either "survival", "binary", or "continuous".
param_outcome	Must be supplied only if type_outcome is equal to "binary" or "continuous". The parameters supplied for the binary outcome must be a list of one element containing a matrix of size 2xN_subsets. The parameters supplied for the continuous outcome must be a list of two elements containing two matrices of size 2xN_subsets. The matrices should contain probabilities of response, or the means and variances respectively, for in row control or treatment, and in column the subgroup number.
n_max	Integer representing the maximum number of patients to enroll in a trial. Must be supplied only if type_outcome is equal to "binary" or "continuous", will be ignored otherwise.
incl_rate	Number representing the inclusion rate. Must be supplied only if type_outcome is equal to "survival", will be ignored otherwise.

mean_cur_c Number representing the median survival for the control group. Must be sup-

plied only if type_outcome is equal to "survival", will be ignored otherwise.

HR Vector containing the expected hazard ratios for each subgroup. Must be of

length N_subsets. Must be supplied only if type_outcome is equal to "sur-

vival", will be ignored otherwise.

nb_required Integer indicating the maximum number of events required. Must be supplied

only if type_outcome is equal to "survival", will be ignored otherwise.

nmax_wait For type_outcome equal to "survival" only, will be ignored otherwise. If spec-

ified, maximum number of patients to include in the trial, the inclusions will be stopped when this number is achieved and trial will pursue until the number of events required is achieved. Must be superior to nb_required. Default value is

+Inf.

ordering Boolean indicating if the subgroups (theta) are ordered.

increasing_theta

Boolean indicating if greater values of theta parameters represent better treat-

ment effects. The default value is set at FALSE.

nsim Integer indicating the number of trials to simulate. The default value is set at

1000.

seed Interger representing the seed. The default value is set at 42.

nsim_tot (for Rshiny application)
num_sc (for Rshiny application)
updateProgress (for Rshiny application)

Value

A list is returned composed of:

prob_rejec Percentage of simulated trials (estimated probability) to reject any subgroup.

prob_accep Percentage of simulated trials (estimated probability) to accept the null hypoth-

esis, that is there is no treatment effect in any subgroup.

list_keep A list of the different subgroups that were selected across all simulated trials.

pct_keep Percentage of selection of each subgroup of list_keep across all simulated

trials.

rejec_stage Vector of percentage of simulated trials (estimated probability) to reject any

subgroup at each stage.

accep_stage Vector of percentage of simulated trials (estimated probability) to accept the null

hypothesis (that is there is no treatment effect in any subgroup) at each stage.

mean_pat Mean number of patients included across all simulated trials.

mean_duration If type_outcome is equal to "survival", the trial mean duration across all simu-

lated trials is also returned.

Author(s)

Marie-Karelle Riviere-Jourdan <eldamjh@gmail.com>

stage_1_evaluation 9

References

Baldur P. Magnusson and Bruce W. Turnbull. Group sequential enrichment design incorporating subgroup selection. Statistics in Medicine, 2013. <doi:10.1002/sim.5738>

Examples

```
#For testing purpose only, larger number of simulations required (see in comments below) sim_magnusson_turnbull(K_stages=2, N_subsets=3, f=c(0.6,0.2,0.2), l=c(0.7962, 2.5204), u=c(2.7625, 2.5204), ratio_Delta_star_d1=c(1), type_outcome="binary", param_outcome=list(matrix(c(0.4,0.4,0.4,0.6,0.6,0.6),nrow=2,ncol=3,byrow=TRUE)), n_max=1496, ordering=FALSE, nsim=2, seed=42)
```

```
\label{eq:sim_magnusson_turnbull} $$ \#sim_magnusson_turnbull(K_stages=2, N_subsets=3, f=c(0.6,0.2,0.2), l=c(0.7962, 2.5204), $$ \#u=c(2.7625, 2.5204), ratio_Delta_star_dl=c(1), type_outcome="binary", param_outcome="filst(matrix(c(0.4,0.4,0.4,0.6,0.6,0.6),nrow=2,ncol=3,byrow=TRUE)), n_max=1496, $$ \#ordering=FALSE, nsim=1000, seed=42) $$
```

 $\label{eq:sim_magnusson_turnbull} $$\#sim_magnusson_turnbull(K_stages=2, N_subsets=4, f=c(0.25,0.25,0.25,0.25), l=c(0.98,2.35), $$\#u=c(2.59,2.35), ratio_Delta_star_dl=c(1), type_outcome="survival", incl_rate=1/28, $$\#mean_cur_c=7/log(2), $$HR=c(0.8,0.8,0.8,0.8), nb_required=1030, ordering=TRUE, $$\#increasing_theta=FALSE, nsim=1000, seed=42)$$

stage_1_evaluation

Stage 1-evaluation step of GSED

Description

stage_1_evaluation is used to evaluate the efficacy of the subgroup selected at the end of the first stage of GSED.

Usage

```
stage_1_evaluation(keep, Z_1j, f, u)
```

Arguments

keep	Vector containing the indices of the subgroups selected at stage 1.
Z_1j	Vector containing the Z-statistics (standard normal under H0) for each subgroup. Must be of length N_subsets.
f	Vector containing the prevalence rates of each subgroup.
u	Vector containing the upper boundaries for stagewise decisions.

stage_1_selection

Value

A list is returned, consisting of:

stage Integer containing the current step. Value is 1 by default, or -1 if the trial stops

earlier for efficacy after this evaluation step.

S Vector containing the indices of the subgroups selected at stage 1 (=keep).

Author(s)

Marie-Karelle Riviere-Jourdan <eldamjh@gmail.com>

References

Baldur P. Magnusson and Bruce W. Turnbull. Group sequential enrichment design incorporating subgroup selection. Statistics in Medicine, 2013. <doi:10.1002/sim.5738>

Examples

```
stage_1_evaluation(keep=c(2,3), Z_1j=c(-0.49,1.07,1.44), f=c(0.6,0.2,0.2), u=c(2.7625,2.5204))
```

stage_1_selection

Stage 1-selection step of GSED

Description

stage_1_selection is used to determine the subgroup selected at the end of the first stage of GSED.

Usage

```
stage_1_selection(N_subsets, Z_1j, 1, ordering, increasing_theta=FALSE)
```

Arguments

N_subsets Integer representing the number of possible subgroups.

Z_1j Vector containing the Z-statistics (standard normal under H0) for each subgroup.

Must be of length N_subsets.

1 Vector containing the lower boundaries for stagewise decisions.

ordering Boolean indicating if the subgroups (theta) are ordered.

increasing_theta

Boolean indicating if greater values of theta parameters represent better treatment effects. The default value is set at FALSE.

Value

A vector containing the indices of the subgroups selected is returned.

test_BC

Author(s)

Marie-Karelle Riviere-Jourdan <eldamjh@gmail.com>

References

Baldur P. Magnusson and Bruce W. Turnbull. Group sequential enrichment design incorporating subgroup selection. Statistics in Medicine, 2013. <doi:10.1002/sim.5738>

Examples

```
stage\_1\_selection(N\_subsets=3,\ Z\_1j=c(-0.49,1.07,1.44),\ l=c(0.7962,2.5204),\ ordering=FALSE)
```

 $test_BC$

For internal use

Description

For internal use

Index

```
boundaries_sim, 2

GSED (GSED-package), 2

GSED-package, 2

magnusson_turnbull, 4

max_FI, 5

sim_magnusson_turnbull, 7

stage_1_evaluation, 9

stage_1_selection, 10

test_BC, 11
```