
Package ‘GMSE’
January 20, 2025

Type Package

Title Generalised Management Strategy Evaluation Simulator

Version 1.0.0.2

Imports grDevices (>= 4.0.0), graphics (>= 4.0.0), stats(>= 4.0.0),
shiny, shinydashboard, shinyjs, shinycssloaders

Maintainer A. Bradley Duthie <brad.duthie@gmail.com>

Description Integrates game theory and ecological theory to construct
social-ecological models that simulate the management of populations and
stakeholder actions. These models build off of a previously developed
management strategy evaluation (MSE) framework to simulate all aspects of
management: population dynamics, manager observation of populations, manager
decision making, and stakeholder responses to management decisions. The
newly developed generalised management strategy evaluation (GMSE)
framework uses genetic algorithms to mimic the decision-making process of
managers and stakeholders under conditions of change, uncertainty, and
conflict. Simulations can be run using gmse(), gmse_apply(), and
gmse_gui() functions.

URL https://confoobio.github.io/gmse/

BugReports https://github.com/confoobio/gmse/issues

Depends R (>= 4.0.0)

License GPL (>= 2)

LazyData TRUE

Encoding UTF-8

VignetteBuilder R.rsp

Suggests knitr, rmarkdown, testthat, R.rsp

RoxygenNote 7.1.2

NeedsCompilation yes

Author A. Bradley Duthie [aut, cre] (<https://orcid.org/0000-0001-8343-4995>),
Adrian Bach [aut],
Jeremy Cusack [ctb] (<https://orcid.org/0000-0003-3004-1586>),

1

https://confoobio.github.io/gmse/
https://github.com/confoobio/gmse/issues
https://orcid.org/0000-0001-8343-4995
https://orcid.org/0000-0003-3004-1586

2 Contents

Isabel Jones [ctb] (<https://orcid.org/0000-0002-8361-1370>),
Jeroen Minderman [aut] (<https://orcid.org/0000-0002-8451-5540>),
Erlend Nilsen [ctb] (<https://orcid.org/0000-0002-5119-8331>),
Ochoa Gabriela [aut] (<https://orcid.org/0000-0001-7649-5669>),
Rocio Pozo [ctb] (<https://orcid.org/0000-0002-7546-8076>),
Sarobidy Rakotonarivo [ctb] (<https://orcid.org/0000-0002-8032-1431>),
Bram Van Moorter [ctb] (<https://orcid.org/0000-0002-3196-1993>),
Nils Bunnefeld [aut, fnd] (<https://orcid.org/0000-0002-1349-4463>)

Repository CRAN

Date/Publication 2022-06-16 06:20:13 UTC

Contents
age_land . 3
anecdotal . 3
be_hunter . 5
case01plot . 6
case23plot . 7
chapman_est . 9
count_agent_cells . 9
dens_est . 10
gmse . 11
gmse_apply . 23
gmse_apply_summary . 26
gmse_gui . 27
gmse_replicates . 27
gmse_summary . 28
gmse_table . 29
ind_to_land . 30
make_agents . 30
make_costs . 34
make_interaction_array . 35
make_interaction_table . 35
make_landscape . 36
make_resource . 37
make_utilities . 39
manager . 39
manager_user_budgets . 40
observation . 41
owner_land_ssa . 43
plot_gmse_effort . 43
plot_gmse_results . 44
rec.n . 45
resource . 46
ssb.n . 46
user . 47
utility_layer . 48

https://orcid.org/0000-0002-8361-1370
https://orcid.org/0000-0002-8451-5540
https://orcid.org/0000-0002-5119-8331
https://orcid.org/0000-0001-7649-5669
https://orcid.org/0000-0002-7546-8076
https://orcid.org/0000-0002-8032-1431
https://orcid.org/0000-0002-3196-1993
https://orcid.org/0000-0002-1349-4463

age_land 3

Index 49

age_land Age landscape

Description

Determines how the landscape will change over the course of one time step. For now, simply
reverts a specified layer back to its original values In other words, e.g., crops are annual and regrow
undamaged each year.

Usage

age_land(LAND, landscape_ini, layer)

Arguments

LAND The name of the landscape being changed

landscape_ini The name of the original landscape replacing

layer The layer that is being affected on the landscape

Value

the_land with one layer reset to its original cell values

Examples

Not run:
LANDSCAPE_r <- age_land(LAND = LANDSCAPE_r, landscape_ini = LANDSCAPE_INI,
layer = 2);

End(Not run)

anecdotal Anecdotal model

Description

A simulation of how many resources of a particular type are in the vicinity of each agent – this
produces a kind of anecdotal evidence for each agent around their circle of view. It also potentially
moves the agents during a time step.

4 anecdotal

Usage

anecdotal(
RESOURCES = NULL,
LAND = NULL,
PARAS = NULL,
AGENTS = NULL,
res_type = 1,
samp_age = 1,
agent_type = 0,
type_cat = 1,
move_agents = FALSE,
model = "IBM"

)

Arguments

RESOURCES The resources array produced by the resource function within GMSE

LAND The landscape array on which interactions between resources and agents occur

PARAS The vector of parameters that hold global and dynamic parameter values used
by GMSE

AGENTS The array of agents produced in the main gmse() function

res_type The type of resources being observed (default = 1)

samp_age Minimum age of the resource being sampled (default = 1)

agent_type The type of agent doing the observing (default = 0)

type_cat The category of agent type (first 4 columns) doing observing; this will almost
always be 1, so type 0 agents (managers, of which there is always one by default)
will be affected

move_agents Whether or not agents are moved during the run of anecodtal

model The type of model being applied (Currently only individual-based – i.e., ’agent-
based’ – models are allowed)

Value

The anecdotal function outputs an R list that includes two separate arrays, including (1) a new
AGENTS array and (3) a new PARAS array, each of which might be affected by the anecdotal
function. The new arrays can then be read back into the broader GMSE function, thereby affecting
the input into the management, user, resource, and observation models.

Examples

Not run:
AGENTS_NEW <- anecdotal(RESOURCES = RESOURCES, LAND = LANDSCAPE_r,
PARAS = paras, AGENTS = AGENTS, res_type = 1, samp_age = rma, agent_type = -1,
type_cat = 1, move_agents = mva);

End(Not run)

be_hunter 5

be_hunter Become a hunter on the landscape

Description

This function allows the user of the GMSE software to insert themselves as a hunter in the simula-
tion, allowing them to cull some number of resources in a time step as observed by the agent whose
ID is 2.

Usage

be_hunter(OBSERVATION, AGENT, RESOURCES, LAND, PARAS, view, times)

Arguments

OBSERVATION The observation array produced by the observation function within GMSE

AGENT The array of agents produced in the main gmse() function

RESOURCES The resources array produced by the resource function within GMSE

LAND The landscape array on which interactions between resources and agents occur

PARAS The vector of parameters that hold global and dynamic parameter values used
by GMSE

view The distance within which agents are able to observe resources on the landscape

times The number of times that resources are observed in the observation model of
GMSE

Value

the_land A cols by rows landscape with randomly distributed cell types

Examples

Not run:
HUNT_OUTCOME <- be_hunter(OBSERVATION_r, AGENTS, RESOURCES, LANDSCAPE_r,
paras, agent_view, times_observe);

End(Not run)

6 case01plot

case01plot Plot results for density-based or mark-recapture sampling

Description

Produce six panels on a plot showing resource distribution, owned land, resource dynamics and
estimates, stake-holder yield, and action costs and actions made. This plot is run internally within
the gmse function, and should not be used to plot results stored after running the gmse function (for
this, use plot_gmse_results).

Usage

case01plot(
res,
obs,
land1,
land2,
land3,
agents,
paras,
ACTION,
COST,
view = NULL,
times = 1

)

Arguments

res The resources array produced by the resource function within GMSE
obs The array of resource observations from the observation model, used to estimate

abundance of resources
land1 The first layer of the 3D landscape array, which indicates values of terrain for

plotting (as of now, terrain values have no effect on the simulation and only exist
for display purposes)

land2 The full list showing all layers of the landscape in each time step of GMSE
land3 The third layer of the 3D landscape array, which indicates agent ownership of

the land
agents The array of agents produced in the main gmse() function
paras The vector of parameters that hold global and dynamic parameter values used

by GMSE
ACTION A three dimensional array of agent (manager and stakeholder) actions
COST A three dimensional array of cost values for agent (manager and stakeholder)

actions
view The distance that an agent can see on a landscape
times The number of times that resources are sampled per time step

case23plot 7

Value

This function plots the dynamics of GMSE resource, observation, managemer, and user models in
six separate sub-panels. (1) Upper left panel: Shows the locations of resources on the landscape
(black dots); landscape terrain is also shown in brown, but at the moment, this is only cosmetic and
does not reflect anything occurring in the model. (2) Upper right panel: Shows ownership of land by
agents; land is divided proportional based on parameters set in gmse() and colours correspond with
other subplots. If agent utilities and actions are restricted to land (‘land_ownership‘ in the gmse()
function), then this gives some idea of where actions are being performed and where resources are
affecting the landscape. (3) Middle left panel: Shows the actual population abundance (black solid
line) and the population abundance estimated by the manager (blue solid line; shading indicates 95
percent confidence intervals) over time. The dotted red line shows the resource carrying capacity
(death-based) and the dotted blue line shows the target for resource abundance as set in the gmse()
function; the orange line shows the total percent yield of the landscape (i.e., 100 percent means that
resources have not decreased yield at all, 0 percent means that resources have completely destroyed
all yield). (4) Middle right panel: Shows the raw landscape yield for each stakeholder (can be
ignored if ‘land_ownership‘ is FALSE) over time; colours correspond to land ownership shown
in the upper right panel. (5) Lower left panel: The cost of stakeholders performing actions over
time, as set by the manager. (6) Lower right panel: The total number of actions performed by all
stakeholders over time.

Examples

Not run:
case01plot(res = RESOURCE_REC, obs = OBSERVATION_REC,
land1 = LANDSCAPE_r[,,1], land2 = LANDSCAPE_REC, land3 = LANDSCAPE_r[,,3],
agents = AGENT_REC, paras = paras, ACTION = ACTION_REC, COST = COST_REC,
view = agent_view, times = times_observe);

End(Not run)

case23plot Plot results for transect-based sampling

Description

Produce six panels on a plot showing resource distribution, owned land, resource dynamics and
estimates, stake-holder yield, and action costs and actions made. This plot is run internally within
the gmse function, and should not be used to plot results stored after running the gmse function (for
this, use plot_gmse_results).

Usage

case23plot(res, obs, land1, land2, land3, agents, paras, COST, ACTION)

8 case23plot

Arguments

res The resources array produced by the resource function within GMSE

obs The array of resource observations from the observation model, used to estimate
abundance of resources

land1 The first layer of the 3D landscape array, which indicates values of terrain for
plotting (as of now, terrain values have no effect on the simulation and only exist
for display purposes)

land2 The full list showing all layers of the landscape in each time step of GMSE

land3 The third layer of the 3D landscape array, which indicates agent ownership of
the land

agents The array of agents produced in the main gmse() function

paras The vector of parameters that hold global and dynamic parameter values used
by GMSE

COST A three dimensional array of cost values for agent (manager and stakeholder)
actions

ACTION A three dimensional array of agent (manager and stakeholder) actions

Value

This function plots the dynamics of GMSE resource, observation, managemer, and user models in
six separate sub-panels. (1) Upper left panel: Shows the locations of resources on the landscape
(black dots); landscape terrain is also shown in brown, but at the moment, this is only cosmetic and
does not reflect anything occurring in the model. (2) Upper right panel: Shows ownership of land by
agents; land is divided proportional based on parameters set in gmse() and colours correspond with
other subplots. If agent utilities and actions are restricted to land (‘land_ownership‘ in the gmse()
function), then this gives some idea of where actions are being performed and where resources are
affecting the landscape. (3) Middle left panel: Shows the actual population abundance (black solid
line) and the population abundance estimated by the manager (blue solid line) over time. The dotted
red line shows the resource carrying capacity (death-based) and the dotted blue line shows the target
for resource abundance as set in the gmse() function; the orange line shows the total percent yield
of the landscape (i.e., 100 percent means that resources have not decreased yield at all, 0 percent
means that resources have completely destroyed all yield). (4) Middle right panel: Shows the raw
landscape yield for each stakeholder (can be ignored if ‘land_ownership‘ is FALSE) over time;
colours correspond to land ownership shown in the upper right panel. (5) Lower left panel: The
cost of stakeholders performing actions over time, as set by the manager. (6) Lower right panel:
The total number of actions performed by all stakeholders over time.

Examples

Not run:
case23plot(res = RESOURCE_REC, obs = OBSERVATION_REC,
land1 = LANDSCAPE_r[,,1], land2 = LANDSCAPE_REC, land3 = LANDSCAPE_r[,,3],
agents = AGENT_REC, COST = COST_REC, ACTION = ACTION_REC, paras = paras);

End(Not run)

chapman_est 9

chapman_est Chapman estimator of mark-recapture

Description

Estimates population size using simulated mark-recapture data produced by the observation model
of GMSE.

Usage

chapman_est(observation, paras)

Arguments

observation The array of resource observations from the observation model, used to estimate
abundance of resources

paras The vector of parameters that hold global and dynamic parameter values used
by GMSE

Value

The Chapman estimator (which is also performed GMSE in the manager function) returns a list that
includes resource population size estimates along with 95

Examples

Not run:
analysis <- chapman_est(observation=obs_t, paras = paras);

End(Not run)

count_agent_cells Count the number of owned cells of each agent

Description

Counts the total number of cells on a landscape owned by each agent and inserts that total number
into a column of the agents array.

Usage

count_agent_cells(AGENTS, LAND = NULL, tot = 14, own = 3, ID = 1)

10 dens_est

Arguments

AGENTS The agents array holding agents’ information

LAND The landscape on which some cells are owned

tot Column in which the total number of owned cells in AGENTS is added

own Layer of the landscape array where ownership information is held

ID Column in which the ID of an agent is held in the AGENTS array

Value

The AGENTS array with the column of total cell count filled in.

Examples

Not run:
agents <- make_agents(agent_number = 3, type_counts = c(1, 2))
land <- make_landscape(rows = 10, cols = 10, model = "IBM",
ownership = 2:3)
new_agents <- count_agent_cells(AGENTS = agents, LAND = land);

End(Not run)

dens_est Density estimator of resource abundance

Description

Estimates population size using simulated data produced by the observation model of GMSE – it
assumes that the density of resources observed on the subset of the landscape sampled equals the
density on the whole landscape.

Usage

dens_est(observation, paras, view = view, land = land)

Arguments

observation The array of resource observations from the observation model, used to estimate
abundance of resources

paras The vector of parameters that hold global and dynamic parameter values used
by GMSE

view This parameter determines the distance around an agent’s location within which
it can observe resources.

land The landscape array on which interactions between resources and agents occur

gmse 11

Value

The density estimator (which is also performed GMSE in the manager function) returns a list that
includes resource population size estimates along with 95

Examples

Not run:
analysis <- dens_est(observation = obs_t, paras = paras, view = view,
land = land1);

End(Not run)

gmse GMSE simulation

Description

The gmse function is the the primary function to call to run a simulation. It calls other functions that
run resource, observation, management, and user models in each time step. Hence while individual
models can be used on their own, gmse() is really all that is needed to run a simulation.

Usage

gmse(
time_max = 40,
land_dim_1 = 100,
land_dim_2 = 100,
res_movement = 20,
remove_pr = 0,
lambda = 0.3,
agent_view = 10,
agent_move = 50,
res_birth_K = 1e+05,
res_death_K = 2000,
edge_effect = 1,
res_move_type = 1,
res_birth_type = 2,
res_death_type = 2,
observe_type = 0,
fixed_mark = 100,
fixed_recapt = 500,
times_observe = 1,
obs_move_type = 1,
res_min_age = 0,
res_move_obs = FALSE,
Euclidean_dist = FALSE,
plotting = TRUE,

12 gmse

hunt = FALSE,
start_hunting = 95,
res_consume = 0.5,
ga_popsize = 100,
ga_mingen = 40,
ga_seedrep = 20,
ga_sampleK = 20,
ga_chooseK = 2,
ga_mutation = 0.1,
ga_crossover = 0.1,
move_agents = TRUE,
max_ages = 5,
minimum_cost = 10,
user_budget = 1000,
manager_budget = 1000,
manage_target = 1000,
RESOURCE_ini = 1000,
scaring = FALSE,
culling = TRUE,
castration = FALSE,
feeding = FALSE,
help_offspring = FALSE,
tend_crops = FALSE,
tend_crop_yld = 0.2,
kill_crops = FALSE,
stakeholders = 4,
manage_caution = 1,
land_ownership = FALSE,
manage_freq = 1,
converge_crit = 0.1,
manager_sense = 0.9,
public_land = 0,
group_think = FALSE,
age_repr = 1,
usr_budget_rng = 0,
action_thres = 0,
budget_bonus = 0,
consume_surv = 0,
consume_repr = 0,
times_feeding = 1,
ownership_var = 0,
perceive_scare = NA,
perceive_cull = NA,
perceive_cast = NA,
perceive_feed = NA,
perceive_help = NA,
perceive_tend = NA,
perceive_kill = NA,

gmse 13

usr_yld_budget = 0,
man_yld_budget = 0,
mem_prv_observ = FALSE,
bgt_bonus_reset = TRUE,
traj_pred = FALSE,
user_annealing = FALSE,
mana_annealing = FALSE,
kmax_annealing = 1000,
mu_magnitude = 10

)

Arguments

time_max This value sets the maximum number of time steps for a simulation. There are
no constraints for length of time that a simulation can run. The default is 40 time
steps.

land_dim_1 This value sets the number of cells on the x dimension of the landscape (i.e.,
the number of columns in the landscape array; this can also be thought of as
the x-axis when the landscape image is plotted). There is no maximum, but the
minimum dimension of a landscape is 2 cells. The default is 100 cells.

land_dim_2 This value sets the number of cells on the y dimension of the landscape (i.e.,
the number of columns in the landscape array; this can also be thought of as
the y-axis when the landscape image is plotted). There is no maximum, but the
minimum dimension of a landscape is 2 cells. The default is 100 cells.

res_movement This value determines how far resources move during a time step. Exact move-
ment is probabilistic and partly affected by ‘res_move_type‘ settings. Under de-
fault settings, during each time step, resources move from zero to res_movement
cells away from their starting cell in any direction. Hence res_movement is the
maximum distance away from a resources starting cell that it can move in a time
step; other types of resource movement, however, interpret res_movement dif-
ferently to get the raw distance moved (see res_move_type). The default value
is 20.

remove_pr This value is the density-independent and user-independent probability of a re-
source being removed (e.g., dying) during a time step in the resource model.
Under default settings, this value is set to zero, with resource removal being de-
termined entirely by carrying capacity on resource survival, and by user actions.

lambda This value is the baseline population growth rate of resources. Each resource
in the simulation produces Poisson(lambda) offspring in one time step within
the resource model. The value of lambda might be increased or decreased by
user actions, and juvenile survival can potentially be decreased by a carrying
capacity placed on birth. The default value is 0.3, meaning that the average
resource produces one offspring every three time steps.

agent_view This value determines how far agents (managers and stakeholders) can see on
the landscape. At the moment, this affects only the sampling ability of managers
in the observation model for density-based and transect-based estimates of re-
source abundance. In these types of estimates, when managers have a higher

14 gmse

agent_view, they are capable of observing a larger area of landscape and there-
fore of getting a larger (in the case of density-based estimation) or more efficient
(in the case of transect-based estimation) sample of resources from which to esti-
mate total resource abundance. The default value of agent_view is 10, so agents
can see 10 cells away from their current cell in any direction.

agent_move This value determines how far agents can move. At the moment, this does not
affect much in the simulation because agent movement does not affect agent
actions (interactions with resources can be limited to stakeholder’s owned land,
but do not currently depend on where an agent is on the landscape – effectively
assuming that agents are mobile enough to do what they want to do to resources).
The one exception is for density-based estimation, which can be biased by low
values of agent_move by causing the manager to sample the same (or nearby)
landscape cells to estimate total resource abundance; if resources are spatially
autocorrelated, then managers might over or under-estimate total abundance.
Therefore, as a default, this value is set to 50 so that managers can move to
any cell on a (torus) landscape in a time step, removing any bias for density
sampling.

res_birth_K This value is the carrying capacity on new resources added per time step (e.g.,
birth). If more offspring are born in a time step than res_birth_K, then off-
spring are randomly removed from the population until offspring born equals
res_birth_K. By default, carrying capacity is effectively applied to death instead
of birth, so the default value of res_birth_K is set to 100000 (and hence not
enacted because the number of births is never this high).

res_death_K This value is the carrying capacity on resources in the population. Carrying
capacity is realised by an increase in mortality probability as resource abun-
dance approaches res_death_K. In each time step, realised mortality probability
equals the number of resources over carrying capacity divided by the number of
resources (i.e., [resource count - carrying capacity] / resource count). Hence, as
the resource abundance increases above carrying capcity, mortality probability
also increases in proportion, generating some stochasticity in resource survival.
Note that carrying capacity is independent of user actions; if a user culls a re-
source this culling is applied after mortality probability due to carrying capacity
has already been calculated. The default value for res_death_K is 2000.

edge_effect This determines what happens at the edge of the landscape. Currently there
is only one option (value 1), which causes the landscape to wrap around as a
torus (effectively removing the edge); resources that leave off of one side of the
landscape will reappear on the other side of the landscape.

res_move_type This determines the type of movement that resources do. There are four dif-
ferent movement options: (0) No movement – resources are sessile, (1) Uni-
form movement in any direction up to ‘res_movement‘ cells away during a
time step. Movement direction is random and the cell distance moved is ran-
domly selected from zero to ‘res_movement‘. (2) Poisson selected movement
in the x and y dimensions where distance in each direction is determined by
Poisson(res_movement) and direction (e.g., left versus right) is randomly se-
lected for each dimension. This type of movement tends to look a bit odd
with low ‘res_movement‘ values because it results in very little diagonal move-
ment. It also is not especially biologically realistic, so should probably not

gmse 15

be used without a good reason. (3) Uniform movement in any direction up to
‘res_movement‘ cells away during a a time step ‘res_movement‘ times. In other
words, the ‘res_movement‘ variable of each resource is acting to determine the
times that a resource moves in a time step and the maximum distance it travels
each time it moves. This type of movement has been simulated in ecological
models, particularly plant-pollinator systems. The default movement type is (1).

res_birth_type The type of resource addition (birth) that occurs. Currently, the only value al-
lowed is 2, which causes all resources to produce Poisson(lambda) offspring
each time step, where ‘lambda‘ is the population growth rate also set as an argu-
ment in gmse simulations.

res_death_type The type of resource removal (death) that occurs. A value of (1) causes death to
be entirely density-independent and with a probability of ‘removal_pr‘ for each
resource (which may be further affected by agent actions or interactions with
landscape cells). A value of (2) causes death to be entirely density-dependent
(though potentially independently affected by agents and landscape), with mor-
tality probability calculated based on the carrying capacity ‘res_death_K‘ set
in as an argument in gmse simulations. A value of (3) allows for both density-
dependent (affected by ‘res_death_K‘) and density-independent (affected by ‘re-
moval_pr‘) effects on resource removal. The default ‘res_death_type‘ is (2);
values of (1) must be used carefully because it can result in exponential growth
that leads to massive population sizes that slow down simulations.

observe_type The type of observation sampling of resources being done by managers in the
observation model. There are currently four options for sampling. (0) Density-
based sampling, in which managers sample all resources within some subset of
the landscape; the size of this subset is all of the resources within a distance of
‘agent_view‘ from the cell of the manager. Managers sample ‘times_observe‘
subsets, where ‘times_observe‘ is a parameter value set in the gmse simulation.
Managers then extrapolate the density of resources in the subset to estimate the
total number of resources on a landscape. (1) Mark-recapture estimate of the
popluation, in which managers randomly sample ‘fixed_mark‘ resources (with-
out replacement) in the population without any spatial bias (if there are fewer
than ‘fixed_mark‘ resources, managers sample all resources). The manager then
randomly samples ‘fixed_recapt‘ resources (without replacement), again with-
out any spatial bias. A Chapman estimate is then used in the manager model
to estimate population size from these mark-recapture data. (2) Transect-based
sampling (linear), in which a manager samples an entire row of the landscape
and counts the resources on the row, then moves onto the next row of the land-
scape until the entire landscape has been covered. The number of cells in each
row (i.e., the height) equals ‘agent_view‘, so fewer transects are needed if agents
can see farther. If ‘res_move_obs == TRUE‘, then resources can move on the
landscape between each transect sampling, potentially causing observation error
if some resources are double counted or not counted at all due to movement. If
‘res_move_obs == FALSE‘, then this type of observation should produce no er-
ror, and resource estimation will be exact. (3) Transect-based sampling (block),
in which a manager samples a block of the landscape and counts the resources
in the block, then moves on to the next (equally sized) block until the entire
landscape has been covered. Blocks are square, with the length of each side
equaling ‘agent_view‘, so fewer blocks are needed if agents can see farther. If

16 gmse

‘res_move_obs == TRUE‘, then resources can move on the landscape between
each block sampling, potentially causing observation error if some resources
are double counted or not counted at all due to movement. If ‘res_move_obs
== FALSE‘, then this type of observation should produce no error, and resource
estimation will be exact. The default observation type is 0 for density-based
sampling.

fixed_mark This parameter affects mark-recapture observation (i.e., applies only when ob-
serve_type == 1). Its value defines how many resources will be marked in each
time step as part of a mark-recapture population size estimate.

fixed_recapt This parameter affects mark-recapture observation (i.e., applies only when ob-
serve_type == 1). Its value defines how many resources will be (re)captured in
each time step as part of a mark-recapture population size estimate.

times_observe This parameter defines how many times a manager will make observations within
the observation model; it applies only to density-based sampling (‘observe_type
= 0‘) and mark-recapture sampling (‘observe_type = 1‘). In the former case,
the value determines how many times the manager goes out to sample resources
from a subset of the landscape. In the latter case, the value determines how
many times the manager goes out to attempt to find new resources to mark or
recapture (hence its value must be greater than ‘fixed_observe‘).

obs_move_type This determines the type of movement that agents do. The four different move-
ment types of agents are identical to those of resources: : (0) No movement –
agents are sessile, (1) Uniform movement in any direction up to ‘agent_move‘
cells away during a time step. Movement direction is random and the cell dis-
tance moved is randomly selected from zero to ‘agent_move‘. (2) Poisson se-
lected movement in the x and y dimensions where distance in each direction is
determined by Poisson(agent_move) and direction (e.g., left versus right) is ran-
domly selected for each dimension. This type of movement tends to look a bit
odd with low ‘agent_move‘ values because it results in very little diagonal move-
ment. It also is not especially realistic, so should probably not be used without a
good reason. (3) Uniform movement in any direction up to ‘agent_move‘ cells
away during a a time step ‘agent_move‘ times. In other words, the ‘agent_move‘
variable of each agent is acting to determine the times that an agent moves in a
time step and the maximum distance it travels each time it moves. This type of
movement has been simulated in ecological models, particularly plant-pollinator
systems. The default movement type is (1).

res_min_age This value defines the minimum age at which resources are recorded and acted
upon by agents; below this age, resources are ignored. The default value of this
parameter is 0. Note that the population might appear to go over carrying ca-
pacity regularly because carrying capacity is not realised until the next resource
model if it applies to the death of resource (this is not a problem for the simula-
tion itself, it just needs to be noted). If the value is set to 1, then offspring just
produced during a time step (age = 0) are not observed or acted upon by agents.

res_move_obs This is a TRUE or FALSE value that defines whether or not resources are to
move between ‘times_observe‘ times being observed. The default value is TRUE,
but if the option is set to FALSE then it shuts down all resource movement dur-
ing sampling (making ‘observe_type = 2‘ and ‘observe_type = 3‘ error free).

gmse 17

Euclidean_dist This is a TRUE or FALSE value that defines whether distance in the simulation
should be judged as number of cells away or the actual Euclidean distance be-
tween points (e.g., if the landscape were interpreted as a map). The default is
set to FALSE, and until GMSE is capable of reading in real-world maps, I don’t
think there is any good reason to set it to TRUE.

plotting This is a TRUE or FALSE value that determines whether or not the simula-
tion results will be plotted. The default is TRUE. If plotted, then a function is
called to show the dynamics of resources and agent actinos over time. The plot-
ted function plots the dynamics of GMSE resource, observation, managemer,
and user models in six separate sub-panels. (1) Upper left panel: Shows the
locations of resources on the landscape (black dots); landscape terrain is also
shown in brown, but at the moment, this is only cosmetic and does not reflect
anything occurring in the model. (2) Upper right panel: Shows ownership of
land by agents; land is divided proportional based on parameters set in gmse()
and colours correspond with other subplots. If agent utilities and actions are re-
stricted to land (‘land_ownership‘ in the gmse() function), then this gives some
idea of where actions are being performed and where resources are affecting
the landscape. (3) Middle left panel: Shows the actual population abundance
(black solid line) and the population abundance estimated by the manager (blue
solid line) over time. The dotted red line shows the resource carrying capacity
(death-based) and the dotted blue line shows the target for resource abundance
as set in the gmse() function; the orange line shows the total percent yield of the
landscape (i.e., 100 percent means that resources have not decreased yield at all,
0 percent means that resources have completely destroyed all yield). (4) Middle
right panel: Shows the raw landscape yield for each stakeholder (can be ignored
if ‘land_ownership‘ is FALSE) over time; colours correspond to land ownership
shown in the upper right panel. (5) Lower left panel: The cost of stakeholders
performing actions over time, as set by the manager. (6) Lower right panel: The
total number of actions performed by all stakeholders over time.

hunt This is a TRUE or FALSE value that determines whether the simulation will be
halted each time step after ‘start_hunting‘ time steps to ask the user how many
resources they want to hunt (some management information is given to help
make this choice). This feature will be expanded upon in later versions. Right
now, the human is playing the role of agent number 2, the first stake-holder in
the simulation. By default, this value is set to FALSE.

start_hunting The time step in which the human (*not* the simulated agent) is allowed to start
hunting if ‘hunt = TRUE‘. The default value is 95.

res_consume The fraction of remaining biomass (e.g. crop production) that a resource con-
sumes while occupying a landscape cell. The default value is 0.5, so if one
resource occupies the cell, then landscape production is halved, if two resources
occupy the cell, then landscape production drops to 0.25; if three, then produc-
tion drops to 0.125, etc.

ga_popsize The size of populations of agents in the genetic algorithm (not resources in
the simulation). The actions of each agent in the simulation are duplicated
‘ga_popsize‘ times, and this population of individual agent actions undergoes
a process of natural selection to find an adaptive strategy. Selection is naturally
stronger in larger populations, but a default population size of 100 is more than
sufficient to find adaptive strategies.

18 gmse

ga_mingen The minimum number of generations in the genetic algorithms of the simula-
tion (*not* the number of time steps in the simulation itself). The actions of
each agent in the simulation are duplicated ‘ga_popsize‘ times, and this pop-
ulation of individual agent actions undergoes a process of natural selection at
least ‘ga_mingen‘ times to find an adaptive strategy. If convergence criteria
‘converge_crit‘ is set to a default value of 100, then the genetic algorithm will
almost always continue for exactly ‘ga_mingen‘ generations. The default value
is 40, which is usually plenty for finding adaptive agent strategies – the objective
is not to find optimal strategies, but strategies that are strongly in line with agent
interests.

ga_seedrep At the start of each genetic algorithm, ‘ga_popsize‘ replicate agents are pro-
duced; ‘ga_seedrep‘ of these replicates are *exact* replicates, while the rest
have random actions to introduce variation into the population. Because adap-
tive agent strategies are not likely to change wildly from one generation to the
next, it is highly recommended to use some value of ‘ga_seedrep‘ greater than
zero; the default value is 20, which does a good job of finding adaptive strate-
gies.

ga_sampleK In the genetic algorithm, fitnesses are assigned to different agent strategies and
compete in a tournament to be selected into the next generation. The tournament
samples ‘ga_sampleK‘ strategies at random and with replacement from the pop-
ulation of ‘ga_popsize‘ to be included in the tournament. The default value is
20.

ga_chooseK In the genetic algorithm, fitnesses are assigned to different agent strategies and
compete in a tournament to be selected into the next generation. The tourna-
ment samples ‘ga_sampleK‘ strategies at random and with replacement from
the population of ‘ga_popsize‘ to be included in the tournament, and from these
randomly selected strategies, the top ‘ga_chooseK‘ strategies are selected. The
default value is 2, so the top 10 percent of the random sample in a tournament
makes it into the next generation (note that multiple tournaments are run until
‘ga_popsize‘ strategies are selected for the next generation).

ga_mutation In the genetic algorithm, this is the mutation rate of any action within an agent’s
strategy. When a mutation occurs, the action is either increased or decreased
by a value of 1. If the action drops below zero, then the value after mutation is
multiplied by -1.

ga_crossover In the genetic algorithm, this is the crossover rate of any action within an agent’s
strategy with a randomly selected different strategy in the population of size
‘ga_popsize‘.

move_agents This is a TRUE or FALSE value that defines whether or not agents should move
at the end of each time step. The default value is TRUE.

max_ages This is the maximum age of resources. If resources reach this age, then they are
removed in the resource model with a probability of 1. The default ‘max_ages‘
is 5.

minimum_cost This is the mimimum cost of any action in the manager and user models. Higher
values allow managers to have greater precision when setting policy. For exam-
ple, managers believe (typically correctly) that they will double culling number
by setting the cost of culling at 1 instead of 2. If actions always cost at least

gmse 19

some minium value, then some increment just above that value is always avail-
able to more precisely affect user actions. Hence it is generally better to simply
give everyone a bigger budget and set a minimum cost, giving more precision
to managers to fine tune policy. The default value of minimum_cost is therefore
set to 10.

user_budget This is the total budget of each stakeholder for performing actions. The cost
of performing an action is determined by the ‘miminimum_cost‘ of actions, and
the policy set by the manager. The default ‘user_budget‘ is 1000. The maximum
budget is 100000.

manager_budget This is the total budget for the manager when setting policy. Higher budgets
make it easier to restrict the actions of stakeholders; lower budgets make it more
difficult for managers to limit the actions of stakeholders by setting policy. The
default ‘manager_budget‘ is 1000. The maximum budget is 10000.

manage_target This is the target resource abundance that the manager attempts to keep the
population at; the default value is 1000.

RESOURCE_ini This is the initial abundance of resources at the start of the simulation; the default
is 1000.

scaring This is a TRUE or FALSE value determining whether or not scaring is an op-
tion for managers and stakeholders. If so, then stakeholders that scare cause
resources to be moved from their current landscape cell to a random cell on the
landscape (note, it is possible that the resource could be scared back onto the
stakeholder’s own land again). The default value of this is FALSE.

culling This is a TRUE or FALSE value determining whether or not culling is an op-
tion for managers and stakeholders. If so, then stakeholders that cull cause the
resource to be removed from the simulation permanently (i.e., killing the re-
source). The default value of this is TRUE.

castration This is a TRUE or FALSE value determining whether or not castration is an
option for managers and stakeholders. If so, then stakeholders that castrate do
not remove the resource from the simulation, but prohibit the resource from
reproducing by setting its ‘lambda‘ value to zero. The default value of this is
FALSE.

feeding This is a TRUE or FALSE value determining whether or not feeding is an option
for managers and stakeholders. If so, then stakeholders that feed increase a
resource’s growth rate (lambda) for one time step by 100 percent. The default
value of this is FALSE.

help_offspring This is a TRUE or FALSE value determining whether or not feeding is an option
for managers and stakeholders. If so, then stakeholders that help_offspring in-
crease a resource’s offspring production for one time step by one (i.e., one more
offspring is produced). The default value of this is FALSE.

tend_crops This is a TRUE or FALSE value determining whether or not tending crops on
the landscape is allowed for stakeholders. If so, then stakeholders can increase
one cells yield by 50 percent for each action to ‘tend_crops‘. Actions on the
landscape cannot be regulated by managers, so the cost of this action is always
‘minimum_cost‘. The default value of this is FALSE.

20 gmse

tend_crop_yld The per landscape cell proportional increase in crop yield when stakeholders
take one action to increase yield on their landscape. The default value is set to
0.5 (i.e., a 50 percent increase in yield on a cell).

kill_crops This is a TRUE or FALSE value determining whether or not killing crops on the
landscape is allowed for stakeholders. If so, then stakeholders can remove the
crop yield on a cell completely for each action to ‘kill_crops‘. Actions on the
landscape cannot be regulated by managers, so the cost of this action is always
‘minimum_cost‘.

stakeholders This is the number of stakeholders in a simulation; there is always one manager,
plus any natural number of stakeholders.

manage_caution This value moderates the caution a manager has when changing policy by as-
suming that at least ‘manage_caution‘ of each possible action will always be
performed by stakeholders. I manager will therefore not ignore policy for one
action because no stakeholder is engaging in it; the default value of ‘man-
age_caution‘ is 1.

land_ownership This value defines whether stakeholders own land and their actions are restricted
to land that they own. If FALSE, then stakeholders can act on any landscape cell;
if TRUE, then agents can only act on their own cells. The default of this value
is FALSE.

manage_freq This is the frequency with which policy is set by managers; a value of 1 means
that policy is set in the manager model every time step; a value of 2 means that
poilcy is set in the manager model every other time step, etc. The default value
is 1.

converge_crit This is the convergence criteria for terminating a genetic algorithm. After con-
tinuing for the minimum number of generations, ‘ga_mingen‘, the genetic al-
gorithm will terminate if the convergence criteria is met. Usually making this
criteria low doesn’t do much to improve adaptive strategies; the default value
is 1, which means that the genetic algorithm will continue as long as there is
greater than a 1 percent increase in strategy fitness.

manager_sense This adjusts the sensitivity that a manager assumes their actions have with re-
spect to changes in costs (their policy). For example, given a default ‘man-
age_sense‘ value of 0.9, if the cost of culling resources doubles, then instead of
a manager assuming the the number of culled resources per user will be cut in
half, the manager will instead assume that the number of resources culled will be
cut by one half times eight tenths. As a general rule, a value of ca 0.8 allows the
manager to predict stake-holder responses to policy accurately; future versions
of GMSE could allow managers to adjust this dynamically based on simulation
history.

public_land The proportion of the landscape that will be public, and not owned by stakehold-
ers. The remaining proportion of the landscape will be evenly divided among
stakeholders. Note that this option is only available when land_ownership ==
TRUE. The default value is 0.

group_think If TRUE, all users will have identical actions; the genetic algorithm will find
actions for one user and copy them for all users. This is a useful option if a lot
of users are required but variation among user decisions can be ignored. The
default value is FALSE.

gmse 21

age_repr The age below which resources are incapable of reproducing. The default value
is 1.

usr_budget_rng This specifies a range around the value of ‘user_budget‘, such that the expected
value of each user’s budget will be ‘user_budget‘, with a uniform distribution
plus or minus ‘usr_budget_rng‘. Note that the minimum ‘usr_budget_rng‘ al-
lowed is 1 regardless of the range set, and the maximum is always 100000. The
default value for this argument is 0.

action_thres A value for the deviation of the estimated population from the manager target,
below which manager will not update the policy. Recommended values are
between 0 and 1, with the default value being 0.

budget_bonus A percentage of the initial budget manager will receive if policy was not updated
last time step. Corresponds to the time, energy and money saved by waiting for
a better time to update the policy. Budget bonuses are cumulative, so many time
steps of not updating policy can cause a compounding increase in the budget
bonus. The default value is 0.

consume_surv This value defines the amount of yield on a landscape that an individual resource
need to consume in a timestep to survive. The default value is 0 (i.e., no con-
sumption is required for survival).

consume_repr This value defines the amount of yield on a landscape that an individual resource
need to produce one offspring. Resources will produce as many offspring as is
possible given their yield in take; e.g., if a resource consumes between three
and four times the amount of yield required for reproduction, then they will
produce three offspring. The default value is 0 (i.e., no consumption is required
for reproduction).

times_feeding Number of searches that resources are allowed per time step for feeding on
the landscape. Resources will move between times feeding based on whatever
‘res_movement‘ and ‘res_move_type‘ parameters are specified.

ownership_var Defines the extent to which the amount of land ownership allocated among users
varies when ‘land_ownership = TRUE‘. A default value of 0 places roughly
equal landscape ownership, while increasing values (must be < 1) cause an ex-
ponential distribution of land ownership cell allocation.

perceive_scare For a focal user, the perceived effect of scaring one resource on the total number
of resources affecting the user (e.g., if -1, then the user perceives scaring as
removing the equivalent of one resource from their land; NA by default, and
calculated from other argument inputs).

perceive_cull For a focal user, the perceived effect of culling one resource on the total number
of resources affecting the user (e.g., if -1, then the user perceives culling as
removing the equivalent of one resource; NA by default, and calculated from
other argument inputs).

perceive_cast For a focal user, the perceived effect of castrating one resource on the total num-
ber of resources affecting the user (e.g., if -1, then the user perceives castration
as removing the equivalent of one resource; NA by default, and calculated from
other argument inputs).

perceive_feed For a focal user, the perceived effect of feeding one resource on the total number
of resources affecting the user (e.g., if 1, then the user perceives feeding as

22 gmse

adding the equivalent of one resource; NA by default, and calculated from other
argument inputs).

perceive_help For a focal user, the perceived effect of helping the offspring of one resource on
the total number of resources affecting the user (e.g., if 1, then the user perceives
helping offspring as adding the equivalent of one resource; NA by default, and
calculated from other argument inputs).

perceive_tend For a focal user, the perceived effect of tending to crops on one cell of owned
landscape the user’s total crop yield (e.g., if 1, then the user perceives tending
crop to increase crop yield on one of their landscape cells by 1; NA by default,
and calculated from other argument inputs).

perceive_kill For a focal user, the perceived effect of destroying the crops on one cell of
owned landscape on the user’s total crop yield (e.g., if -1, then the user perceives
killing crop to reduce their total crop yield on a landscape cell by 1; unlike other
perceived actions, this is not additive. The value defines that absolute effect on
crop yield predicted at a single cell, so -1 assumes a 100 per cent loss of yield.
This is NA by default).

usr_yld_budget An increase in user budget caused by yield on their owned cells. The value
of this parameter is multiplied by the user’s total yield to get the user’s budget
increment (default 0). This argument can take any real value, but user budgets
are always restricted to being between 1 and 100000. Where yield adjustments
result in budgets < 1, the actual budget is set to 1. And where yield adjustments
result in budgets > 100000, the actual budget is set to 100000.

man_yld_budget An increase in manager budget caused by mean yield on user owned cells. The
value of this parameter is multiplied by the users’ mean total yield to get the
manager’s budget increment (default 0). This argument can take any real value,
but manager budgets are always restricted to being between 1 and 100000.
Where yield adjustments result in budgets < 1, the actual budget is set to 1.
And where yield adjustments result in budgets > 100000, the actual budget is
set to 100000.

mem_prv_observ A boolean parameter triggering the memorization of last time step’s population
size observation

bgt_bonus_reset

A boolean parameter. Default TRUE: bonus is reset to zero after a time step
of policy update. FALSE: reset to zero only when the costs decreased last time
step.

traj_pred A boolean parameter. Determines if the manager feeds the evolutionary algo-
rithm with a prediction of population trajectory (TRUE) or the regular latest
observation (FALSE). Default FALSE.

user_annealing Determines whether simulated annealing should be used in place of the genetic
algorithm for agent decision-making. If TRUE, then simulated annealing is used
for users. If FALSE, then the genetic algorithm is used.

mana_annealing Determines whether simulated annealing should be used in place of the genetic
algorithm for agent decision-making. If TRUE, then simulated annealing is used
for managers If FALSE, then the genetic algorithm is used.

kmax_annealing Sets the maximum value of iterations for the simulated annealing algorithm

gmse_apply 23

mu_magnitude Sets the magnitude of the maximum mutation in the genetic algorithm in terms
of how many actions that an agent tries increases or decreases (e.g., mutation
causes 1 to mu_magnitude more or fewer culling actions)

Value

A large list is returned that includes detailed simulation histories for the resource, observation, man-
agement, and user models. This list includes eight elements, most of which are themselves complex
lists of arrays: (1) A list of length ‘time_max‘ in which each element is an array of resources as
they exist at the end of each time step. Resource arrays include all resources and their attributes
(e.g., locations, growth rates, offspring, how they are affected by stakeholders, etc.). (2) A list of
length ‘time_max‘ in which each element is an array of resource observations from the observa-
tion model. Observation arrays are similar to resource arrays, except that they can have a smaller
number of rows if not all resources are observed, and they have additional columns that show the
history of each resource being observed over the course of ‘times_observe‘ observations in the ob-
servation model. (3) A 2D array showing parameter values at each time step (unique rows); most of
these values are static but some (e.g., resource number) change over time steps. (4) A list of length
‘time_max‘ in which each element is an array of the landscape that identifies proportion of crop
production per cell. This allows for looking at where crop production is increased or decreased over
time steps as a consequence of resource and stakeholder actions. (5) The total time the simulation
took to run (not counting plotting time). (6) A 2D array of agents and their traits. (7) A list of
length ‘time_max‘ in which each element is a 3D array of the costs of performing each action for
managers and stakeholders (each agent gets its own array layer with an identical number of rows
and columns); the change in costs of particular actions can therefore be be examined over time.
(8) A list of length ‘time_max‘ in which each element is a 3D array of the actions performed by
managers and stakeholders (each agent gets its own array layer with an identical number of rows
and columns); the change in actions of agents can therefore be examined over time. Because the
above lists cannot possibly be interpreted by eye all at once in the simulation output, it is highly
recommended that the contents of a simulation be stored and interprted individually if need be;
alternativley, simulations can more easily be interpreted through plots when ‘plotting = TRUE‘.

Examples

Not run:
sim <- gmse(lambda = 0.4, time_max = 5, plotting = FALSE);

End(Not run)

gmse_apply GMSE apply function

Description

The gmse_apply function is a flexible function that allows for user-defined sub-functions calling
resource, observation, manager, and user models. Where such models are not specified, GMSE sub-
models ’resource’, ’observation’, ’manager’, and ’user’ are run by default. Any type of sub-model
(e.g., numerical, individual-based) is permitted as long as the input and output are appropriately
specified. Only one time step is simulated per call to gmse_apply, so the function must be looped

24 gmse_apply

for simulation over time. Where model parameters are needed but not specified, defaults from gmse
are used.

Usage

gmse_apply(
res_mod = resource,
obs_mod = observation,
man_mod = manager,
use_mod = user,
get_res = "basic",
old_list = NULL,
...

)

Arguments

res_mod The function specifying the resource model. By default, the individual-based
resource model from gmse is called with default parameter values. User-defined
functions must either return an unnamed matrix or vector, or return a named list
in which one list element is named either ’resource_array’ or ’resource_vector’,
and arrays must follow the format of GMSE in terms of column number and
type (if there is only one resource type, then the model can also just return a
scalar value).

obs_mod The function specifying the observation model. By default, the individual-based
observation model from gmse is called with default parameter values. User-
defined functions must either return an unnamed matrix or vector, or return a
named list in which one list element is named either ’observation_array’ or ’ob-
servation_vector’, and arrays must follow the format of GMSE in terms of col-
umn number and type (if there is only one resource type, then the model can
also just return a scalar value).

man_mod The function specifying the manager model. By default, the individual-based
manager model that calls the genetic algorithm from gmse is used with default
parameter values. User-defined functions must either return an unnamed matrix
or vector, or return a named list in which one list element is named either ’man-
ager_array’ or ’manager_vector’, and arrays must follow the (3 dimensional)
format of the ’COST’ array in GMSE in terms of column numbers and types,
with appropriate rows for interactions and layers for agents (see documentation
of GMSE for constructing these, if desired). User defined manager outputs will
be recognised as costs by the default user model in gmse, but can be interpreted
differently (e.g., total allowable catch) if specifying a custom user model.

use_mod The function specifying the user model. By default, the individual-based user
model that calls the genetic algorithm from gmse is used with default parameter
values. User-defined functions must either return an unnamed matrix or vector,
or return a named list in which one list element is named either ’user_array’ or
’user_vector’, and arrays must follow the (3 dimensional) format of the ’AC-
TION’ array in GMSE in terms of column numbers and types, with appropriate

gmse_apply 25

rows for interactions and layers for agents (see documentation of GMSE for
constructing these, if desired).

get_res How the output should be organised. The default ’basic’ attempts to distill re-
sults down to their key values from submodel outputs, including resource abun-
dances and estimates, and manager policy and actions. An option ’custom’ sim-
ply returns a large list that includes the output of every submodel. Any other
option (e.g. ’none’) will return a large list with all of the input, output, and pa-
rameters used to run gmse_apply. This list will also include a list element named
’basic_output’, which will display the default results.

old_list A an existing list of results from gmse_apply, produced by setting ‘get_res =
TRUE‘ to be included in the function. The parameter and data structures from
the previous run will be applied to the new run of gmse_apply, thereby mak-
ing it easy to loop multiple generations. Additional arguments passed to ‘...‘
will over-ride those stored in the old list, allowing global parameter values to be
updated (e.g., sub-models used, management options, genetic algorithm param-
eters). Note that if these arguments are passed, the function will attempt to work
with them even if it means removing previous list elements (e.g., if a new num-
ber of stakeholders is passed through stakeholder = new_value, then an entirely
new AGENT array and user and manager arrays will need to be built).

... Arguments passed to user-defined functions, and passed to modify default pa-
rameter values that would otherwise be called for gmse default models. Any
argument that can be passed to gmse can be specified explicitly, just as if it were
an argument to gmse. Similarly, any argument taken by a user-defined function
should be specified, though the function will work if the user-defined function
has a default that is not specified explicitly.

Details

To integrate across different types of submodels, gmse_apply translates between vectors and arrays
between each submodel. For example, because the default GMSE observation model requires a re-
source array with particular requirements for column identites, when a resource model subfunction
returns a vector, or a list with a named element ’resource_vector’, this vector is translated into an
array that can be used by the observation model. Specifically, each element of the vector identifies
the abundance of a resource type (and hence will usually be just a single value denoting abundance
of the only focal population). If this is all the information provided, then a resource_array will be
made with default GMSE parameter values with an identical number of rows to the abundance value
(floored if the value is a non-integer; non-default values can also be put into this transformation from
vector to array if they are specified in gmse_apply, e.g., through an argument such as lambda = 0.8).
Similarly, a ’resource_array’ is also translated into a vector after the default individual-based re-
source model is run, should the observation model require simple abundances instead of an array.
The same is true of ’observation_vector’ and ’observation_array’ objects returned by observation
models, of ’manager_vector’ and ’manager_array’ (i.e., COST) objects returned by manager mod-
els, and of ’user_vector’ and ’user_array’ (i.e., ACTION) objects returned by user models. At each
step, a translation between the two is made, with necessary adjustments that can be tweaked through
arguments to gmse_apply when needed.

Parameter changes are accommodated by rebuilding data structures whenever necessary. For ex-
ample, if the number of stakeholders is changed (and by including an argument ’stakeholders’ to
gmse_apply, it is assumed that stakeholders are changing even the value is identical to what is in

26 gmse_apply_summary

the old_list), then a new array of agents will be built. If landscape dimensions are changed (i.e., if
the argument ’land_dim_1’ or ’land_dim_2’ is included), then a new landscape willl be built. For
custom defined GMSE sub-functions, arguments passed to ’...’ will not be found or updated, so
changes to arguments of custom functions should be made directly to the ’old_list’, or the use of
old_list should be avoided.

Examples

Not run:
sim <- gmse_apply();
sim <- gmse_apply(stakeholders = 2);
sim <- gmse_apply(obs_mod = function(resource_vector) rnorm(1, resource_vector, 10));

End(Not run)

gmse_apply_summary gmse_apply results summary

Description

Summarise gmse_apply() output

Usage

gmse_apply_summary(data, output = NULL, include = NULL)

Arguments

data The full list as returned by the gmse function.

output An existing gmse_apply_summary output structure to append to. This should
be a matrix with number of columns equal to the length of ‘include‘. If NULL,
a matrix with a single row with just the summary of given ‘data‘ gmse_apply()
output is returned.

include A character vector listing which gmse_apply values should be reported/summarised.
Currently allowable values are "res","obs","culls","scares","castrations","feeds","helps","tend_crops",
"kill_crops","cull_cost","scare_cost", and "yield". Note that for all actions and
yield, the statistic returned is the sum across users; for cull_cost and scare_cost
the returned values are the mean costs across users. Can be NULL; if so, if ‘out-
put‘ is also NULL, all possible values are returned. If ‘output‘ is not NULL, only
the values already present in ‘ouput‘ are returned, in the same column order.

Value

A matrix of gmse_apply values, summarised.

gmse_gui 27

Examples

Not run:
sim_old <- gmse_apply(get_res = "Full", scaring = FALSE,
land_ownership = TRUE);
gmse_apply_summary(data = sim_old, include = c("res","obs","culls","yield"))

End(Not run)

gmse_gui GMSE GUI function

Description

The gmse_gui function will call a browser-based graphical user interface (GUI) for the gmse func-
tion. The GUI will run simulations for a limited range of parameter values and present results as
plots.

Usage

gmse_gui()

Value

A browser should immediately open with the gmse graphical user interface

Examples

Not run:
sim <- gmse_gui();

End(Not run)

gmse_replicates gmse replicate simulations

Description

Replicates the same simulation for a set of parameter values

Usage

gmse_replicates(replicates, all_time = FALSE, hide_unused_options = TRUE, ...)

28 gmse_summary

Arguments

replicates The number of replicate simulations to be run

all_time Passes to gmse_table. If TRUE, then results from all time steps of the simulation
are returned; if FALSE (default), then only results from the last time step of each
simulation is returned.

hide_unused_options

Passes to gmse_table. If TRUE (default), then action options (e.g., scaring,
culling, etc.) that are not available are not included in the results summary. If
FALSE, then they are included as ‘NA‘

... Parameter values to be passed to the gmse function

Value

A simplified list that includes four elements, each of which is a table of data: 1. resources, a table
showing time step in the first column, followed by resource abundance in the second column. 2.
observations, a table showing time step in the first column, followed by the estimate of population
size (produced by the manager) in the second column. 3. costs, a table showing time step in the
first column, manager number in the second column (should always be zero), followed by the costs
of each action set by the manager (policy); the far-right column indicates budget that is unused
and therefore not allocated to any policy. 4. actions, a table showing time step in the first column,
user number in the second column, followed by the actions of each user in the time step; additional
columns indicate unused actions, crop yield on the user’s land (if applicable), and the number of
resources that a user successfully harvests (i.e., ’culls’).

Examples

Not run:
sim_replicates <- gmse_replicates(replicates = 2, time_max = 5);

End(Not run)

gmse_summary gmse results summary

Description

Summarise gmse output in a more user-friendly format

Usage

gmse_summary(gmse_results)

Arguments

gmse_results The full list as returned by the gmse function

gmse_table 29

Value

A simplified list that includes four elements, each of which is a table of data: 1. resources, a table
showing time step in the first column, followed by resource abundance in the second column. 2.
observations, a table showing time step in the first column, followed by the estimate of population
size (produced by the manager) in the second column. 3. costs, a table showing time step in the
first column, manager number in the second column (should always be zero), followed by the costs
of each action set by the manager (policy); the far-right column indicates budget that is unused
and therefore not allocated to any policy. 4. actions, a table showing time step in the first column,
user number in the second column, followed by the actions of each user in the time step; additional
columns indicate unused actions, crop yield on the user’s land (if applicable), and the number of
resources that a user successfully harvests (i.e., ’culls’).

Examples

Not run:
sim_summary <- gmse_summary(gmse_results = sim);

End(Not run)

gmse_table GMSE table results

Description

The gmse_table function takes results created from simulations of the gmse and concatenates key
results from a large list into a more manageable data table.

Usage

gmse_table(gmse_sim, hide_unused_options = TRUE, all_time = TRUE)

Arguments

gmse_sim The output of a ‘gmse‘ simulation.
hide_unused_options

Whether or not to hide results from policy options when creating the resulting
table. If ‘TRUE‘ (default), then policy and user actions that are not allowed in a
simulation will not be placed as columns. If ‘FALSE‘, then these columns will
be placed with values of ‘NA‘.

all_time Whether or not results from each time step from the simulation should be indi-
vidually placed as a row in the resulting table (‘TRUE‘ by default). If ‘FALSE‘,
then only the last row will be placed.

Value

A table with one or more rows of results, each of which indicates a unique ‘gmse‘ simulation
for a given time step. Columns represent key simulation including resource densities, observation
estimates, policy, and user actions.

30 make_agents

Examples

Not run:
sim <- gmse(time_max = 10);
sim_table <- gmse_table(gmse_sim = sim);

End(Not run)

ind_to_land Plot resource position on a landscape image output

Description

Places individuals (simulated resources) on the landscape for plotting.

Usage

ind_to_land(inds, land)

Arguments

inds A single time step of resources from GMSE

land The landscape array on which interactions between resources and agents occur

Value

Returns a landscape in which resources are embedded for a timestep for plotting purposes

Examples

Not run:
indis <- ind_to_land(inds=res_t, land=land1);

End(Not run)

make_agents Agent initialisation

Description

Initialise the agents of the GMSE model.

make_agents 31

Usage

make_agents(
model = "IBM",
agent_number = 2,
type_counts = c(1, 1),
move = 0,
vision = 20,
rows = 100,
cols = 100,
scaring = FALSE,
culling = TRUE,
castration = FALSE,
feeding = FALSE,
help_offspring = FALSE,
tend_crops = FALSE,
kill_crops = FALSE,
perceive_scare = NA,
perceive_cull = NA,
perceive_cast = NA,
perceive_feed = NA,
perceive_help = NA,
perceive_tend = NA,
perceive_kill = NA,
manager_sense = 1,
lambda = 0.3,
res_consume = 0,
consume_repr = 0,
tend_crop_yld = 0.2,
times_feeding = 1,
landscape = NA

)

Arguments

model The type of model being applied (Currently only individual-based – i.e., ’agent-
based’ – models are allowed)

agent_number This is the number of agents that are set in the model; agent number does not
change during the simulation, and each agent has a unique ID

type_counts A vector of how many agents there are of each type (element). The sum of
this vector needs to equal the agent_number so that each agent can correctly
be assigned a type. Currently, GMSE assumes that there are only two types
of agents: managers (type 0) and stakeholders (type 1), and only one manager
exists. Future versions of GMSE will allow for different options as requested.

move This parameter affects the movement of agents each time step. There are mul-
tiple types of movement (see obs_move_type in the gmse function), but this
parameter determines the distance in cells that an agent will move. Agent move-
ment is generally less important than resource movement, and typically does not
affect how agents interact with resources

32 make_agents

vision This parameter determines the distance around an agent’s location within which
it can observe resources. This is relevant for some (but not not all) types of
observation in the observation model, particularly for density-based estimation
(observe_type = 0 in the gmse() function).

rows The number of rows (y-axis) on the simulated landscape; agents are randomly
placed somewhere on the landscape array

cols The number of columns (x-axis) on the simulated landscape; agents are ran-
domly placed somewhere on the landscape array

scaring This is a TRUE or FALSE value determining whether or not scaring is an op-
tion for managers and stakeholders. If so, then stakeholders that scare cause
resources to be moved from their current landscape cell to a random cell on the
landscape (note, it is possible that the resource could be scared back onto the
stakeholder’s own land again). The default value of this is FALSE.

culling This is a TRUE or FALSE value determining whether or not culling is an op-
tion for managers and stakeholders. If so, then stakeholders that cull cause the
resource to be removed from the simulation permanently (i.e., killing the re-
source). The default value of this is TRUE.

castration This is a TRUE or FALSE value determining whether or not castration is an
option for managers and stakeholders. If so, then stakeholders that castrate do
not remove the resource from the simulation, but prohibit the resource from
reproducing by setting its ‘lambda‘ value to zero. The default value of this is
FALSE.

feeding This is a TRUE or FALSE value determining whether or not feeding is an option
for managers and stakeholders. If so, then stakeholders that feed increase a
resource’s growth rate (lambda) for one time step by 100 percent. The default
value of this is FALSE.

help_offspring This is a TRUE or FALSE value determining whether or not feeding is an option
for managers and stakeholders. If so, then stakeholders that help_offspring in-
crease a resource’s offspring production for one time step by one (i.e., one more
offspring is produced). The default value of this is FALSE.

tend_crops This is a TRUE or FALSE value determining whether or not tending crops on
the landscape is allowed for stakeholders. If so, then stakeholders can increase
one cells yield by 50 percent for each action to ‘tend_crops‘. Actions on the
landscape cannot be regulated by managers, so the cost of this action is always
‘minimum_cost‘. The default value of this is FALSE.

kill_crops This is a TRUE or FALSE value determining whether or not killing crops on the
landscape is allowed for stakeholders. If so, then stakeholders can remove the
crop yield on a cell completely for each action to ‘kill_crops‘. Actions on the
landscape cannot be regulated by managers, so the cost of this action is always
‘minimum_cost‘.

perceive_scare For a focal user, the perceived effect of scaring one resource on the total number
of resources affecting the user

perceive_cull For a focal user, the perceived effect of culling one resource on the total number
of resources affecting the user

perceive_cast For a focal user, the perceived effect of castrating one resource on the total
number of resources affecting the user

make_agents 33

perceive_feed For a focal user, the perceived effect of feeding one resource on the total number
of resources affecting the user

perceive_help For a focal user, the perceived effect of helping the offspring of one resource on
the total number of resources affecting the user

perceive_tend For a focal user, the perceived effect of tending to crops on one cell of owned
landscape the user’s total crop yield

perceive_kill For a focal user, the perceived effect of destroying the crops on one cell of owned
landscape on the user’s total crop yield

manager_sense This adjusts the sensitivity that a manager assumes their actions have with re-
spect to changes in costs (their policy). For example, given a ‘manage_sense‘
value of 0.9, if the cost of culling resources doubles, then instead of a manager
assuming the the number of culled resources per user will be cut in half, the
manager will instead assume that the number of resources culled will be cut
by one half times eight tenths. As a general rule, a value of ca 0.8 allows the
manager to predict stake-holder responses to policy accurately; future versions
of GMSE could allow managers to adjust this dynamically based on simulation
history.

lambda This value is the baseline population growth rate of resources. Each resource
in the simulation produces Poisson(lambda) offspring in one time step within
the resource model. The value of lambda might be increased or decreased by
user actions, and juvenile survival can potentially be decreased by a carrying
capacity placed on birth. The default value is 0.3, meaning that the average
resource produces one offspring every three time steps.

res_consume The fraction of remaining biomass (e.g. crop production) that a resource con-
sumes while occupying a landscape cell. The default value is 0.5, so if one
resource occupies the cell, then landscape production is halved, if two resources
occupy the cell, then landscape production drops to 0.25; if three, then produc-
tion drops to 0.125, etc.

consume_repr How much from a landscape does an individual resource need to produce one
offspring (default 0)?

tend_crop_yld The per landscape cell proportional increase in crop yield when stakeholders
take one action to increase yield on their landscape. The default value is set to
0.5 (i.e., a 50 percent increase in yield on a cell).

times_feeding Number of searches that resources are allowed per time step for feeding on
the landscape. Resources will move between times feeding based on whatever
‘res_movement‘ and ‘res_move_type‘ parameters are specified.

landscape The landscape on which some cells are owned. This needs to have been created
with the make_landscape, or be a three dimensional array in which the third
layer of the array corresponds to owned cells

Value

An initialised data frame of agents being modelled

34 make_costs

Examples

agents <- make_agents(model = "IBM", agent_number = 2, type_counts = c(1, 1),
move = 0, vision = 20, rows = 100, cols = 100);

make_costs COST initialisation

Description

Initialise the cost array of the G-MSE model.

Usage

make_costs(AGENTS, RESOURCES, res_opts, lnd_opts, min_cost)

Arguments

AGENTS The array of agents produced in the main gmse() function

RESOURCES The resources array produced by the resource function within GMSE

res_opts A binary vector produced by the GMSE function defining what types of stake-
holder interactions with resources (scaring, culling, castration, feeding, help_offspring)
are permitted

lnd_opts A binary vector produced by the GMSE function defining what types of stake-
holder interactions with the landscape (tend_crops, kill_crops) are permitted

min_cost The minimum cost that any agent (stakeholder or manager) incurrs for perform-
ing one action. This value is also set as an option in the main gmse() func-
tion (minimum_cost). This cost is recommended to be set to a value of 10,
which gives managers increased precision when adjusting costs. For example,
if the mimimum cost for a stakeholder performing an action is low, then a small
change in the mimimum cost could halve or double the number of actions per-
formed from the manager’s perspective, with no options in between; hence the
benefit of having a high mimimum cost combined with a higher agent budget
(see the main gmse() function)

Value

A three dimensional array of initialised cost values for agent (manager and stakeholder) actions of
the same dimensions as the ACTION array in GMSE

Examples

Not run:
COST <- make_costs(AGENTS = AGENTS, RESOURCES = starting_resources,
res_opts = user_res_opts, lnd_opts = user_lnd_opts, min_cost = minimum_cost);

End(Not run)

make_interaction_array 35

make_interaction_array

Initialise array of resource and landscape-level interactions.

Description

Initialise array of resource and landscape-level interactions.

Usage

make_interaction_array(
RESOURCES,
LAND,
res_consume = 0.5,
consume_surv = 0,
consume_repr = 0,
times_feeding = 1

)

Arguments

RESOURCES The resources array produced by the resource function within GMSE

LAND The landscape array on which interactions between resources and agents occur

res_consume The proportion of a landscape cell that a resource consumes

consume_surv The amount that a resource needs to consume to survive a time step

consume_repr The amount that a resource needs to consume to produce one offspring

times_feeding The number of times a resource moves to feed on a cell in a time step

Examples

Not run:
Jacobian <- make_interaction_array(RESOURCES = starting_resources,
LAND = LANDSCAPE_r);

End(Not run)

make_interaction_table

Initialise array of resource and landscape-level interactions.

Description

Initialise array of resource and landscape-level interactions.

36 make_landscape

Usage

make_interaction_table(RESOURCES, LAND)

Arguments

RESOURCES The resources array produced by the resource function within GMSE

LAND The landscape array on which interactions between resources and agents occur

Examples

Not run:
interaction_tabl <- make_interaction_table(starting_resources, LANDSCAPE_r);

End(Not run)

make_landscape Landscape initialisation

Description

Initialise the landscape of the G-MSE model.

Usage

make_landscape(
model,
rows,
cols,
cell_types = 1,
cell_val_mn = 1,
cell_val_sd = 0,
cell_val_max = 1,
cell_val_min = 0,
layers = 3,
ownership = FALSE,
owners = 4,
public_land = 0,
ownership_var = 0

)

Arguments

model The type of model being applied (Currently only individual-based – i.e., ’agent-
based’ – models are allowed)

rows The dimension of the other side of the landscape (e.g., Longitude)

cols The dimension of one side of the landscape (e.g., Latitude)

make_resource 37

cell_types Scalar or vector of all possible types of landscape cells

cell_val_mn Mean cell value (e.g., defining crop output on a cell)

cell_val_sd Standard devation of cell values on a landscape

cell_val_max The maximum value of a cell

cell_val_min The minimum value of a cell

layers The number of layers in the 3D landscape (should usually be 3)

ownership A TRUE or FALSE whether land should be owned by stakeholders

owners The number of stakeholders in the model that own land

public_land The proportion of landscape cells that are not owned

ownership_var Does distribution of land vary among users? >=0, <1

Value

the_land A cols by rows landscape with randomly distributed cell types

Examples

land <- make_landscape(model = "IBM", rows = 10, cols = 10, cell_types = 1,
cell_val_mn = 1, cell_val_sd = 0)

make_resource Resource initialisation

Description

Initialise the resources of the G-MSE model.

Usage

make_resource(
model = "IBM",
resource_quantity = 100,
resource_types = 1,
rows = 100,
cols = 100,
move = 1,
rm_pr = 0,
lambda = 0,
consumption_rate = 0.1,
max_age = 5,
times_feeding = 1

)

38 make_resource

Arguments

model The type of model being applied (Currently only individual-based – i.e., ’agent-
based’ – models are allowed)

resource_quantity

The total number of resources being initialised (e.g., the population size of the
resource at the first time step)

resource_types The number of resource types that exist. Currently, only one resource type is
recommended, but future versions of GMSE will include multiple resource types
if requested

rows The number of rows (y-axis) on the simulated landscape; resources are randomly
placed somewhere on the landscape array

cols The number of columns (x-axis) on the simulated landscape; resources are ran-
domly placed somewhere on the landscape array

move This parameter affects the movement of resources each time step. There are
multiple types of movement (see res_move_type in the gmse function), but this
parameter determines the distance in cells that a resource will move

rm_pr This parameter sets the baseline probability of resource removal (death) per time
step; this probability can be affected by user actions or carrying capacity, so a
probability of zero does not ensure that resources will necessarily persist until
the end of the simulation

lambda This is the parameter for Poisson random sampling affecting birthrate; each re-
source gives birth to Poisson(lambda) offspring in the resource model

consumption_rate

Rate at which resource consumes crops on landscape; consumption affects the
landscape by decreasing values on the landscape array (which may, e.g., be in-
terpreted as crop production being decreased), and might also affect resource
demographic parameters depending on other global options set in GMSE

max_age Maximum age allowed for a resource to be (in time steps)

times_feeding Number of times a resource moves on a landscape during a single time step in
search of food

Value

the_resources Initialised data frame of resources being modelled

Examples

resource <- make_resource(model = "IBM", resource_quantity = 100,
resource_types = 1, rows = 100, cols = 100, move = 1, rm_pr = 0, lambda = 0,
consumption_rate = 0.5, max_age = 5);

make_utilities 39

make_utilities Utility initialisation

Description

Initialise the utilities of the G-MSE model.

Usage

make_utilities(AGENTS, RESOURCES)

Arguments

AGENTS The array of agents produced in the main gmse() function

RESOURCES The resources array produced by the resource function within GMSE

Value

A three dimensional ACTION array of initialised agent (manager and stakeholder) actions of the
same dimensions as the COST array in GMSE

Examples

Not run:
ACTION <- make_utilities(AGENTS = AGENTS, RESOURCES = starting_resources);

End(Not run)

manager Manager model

Description

A model of manager decisions for a single time step. Managers set costs for user actions.

Usage

manager(
RESOURCES = NULL,
AGENTS = NULL,
LAND = NULL,
PARAS = NULL,
COST = NULL,
ACTION = NULL,
INTERACT = NULL,
inter_tabl = NULL,

40 manager_user_budgets

OBSERVATION = NULL,
model = "IBM"

)

Arguments

RESOURCES The resources array produced by the resource function within GMSE

AGENTS The array of agents produced in the main gmse() function

LAND The landscape array on which interactions between resources and agents occur

PARAS The vector of parameters that hold global and dynamic parameter values used
by GMSE

COST A three dimensional array of cost values for agent (manager and stakeholder)
actions

ACTION A three dimensional array of agent (manager and stakeholder) actions

INTERACT An interaction (Jacobian) matrix of resources & landscape layer effects

inter_tabl Interaction table indexing types with the INTERACT matrix

OBSERVATION The array of resource observations from the observation model, used to estimate
abundance of resources

model The type of model being applied (Currently only individual-based – i.e., ’agent-
based’ – models are allowed)

Value

The manager function outputs an R list that includes five separate arrays, including (1) an new
RESOURCES array, (2) a new AGENTS array, (3) a new LAND array, (4) a new ACTIONS array,
and a new (5) COST array, each of which might be affected by the user function. The new arrays
can then be read back into the broader GMSE function, thereby affecting the input into the user,
resource, and observation models.

Examples

Not run:
MANAGER_OUT <- run_manage(RESOURCE_c = RESOURCES, LANDSCAPE_c = LAND,
PARAMETERS_c = PARAS, AGENT_c = AGENTS, COST_c = COST, ACTION_c = ACTION,
JACOBIAN_c = INTERACT, INTERACT_c = inter_tabl, OBSERVATION_c = OBSERVATION);

End(Not run)

manager_user_budgets Manager and user budgets

Description

Initialise manager and user budgets

observation 41

Usage

manager_user_budgets(
agents,
manager_budget = 1000,
user_budget = 1000,
usr_budget_rng = 0,
budget_col = 17

)

Arguments

agents The agents array

manager_budget The budget of a manager

user_budget What is the budget of a user

usr_budget_rng Uniform range of users budgets

budget_col Column where the budget is located

Value

An updated agents data frame with correct budgets

observation Observation model

Description

A simulation of techniques (e.g., capture-mark-recapture) for estimating population size and pop-
erties.

Usage

observation(
RESOURCES = NULL,
LAND = NULL,
PARAS = NULL,
AGENTS = NULL,
inter_tabl = NULL,
fixed_mark = 100,
times_observe = 1,
res_min_age = 0,
agent_type = 0,
type_cat = 1,
observe_type = 0,
res_move_obs = FALSE,
model = "IBM"

)

42 observation

Arguments

RESOURCES The resources array produced by the resource function within GMSE

LAND The landscape array on which interactions between resources and agents occur

PARAS The vector of parameters that hold global and dynamic parameter values used
by GMSE

AGENTS The array of agents produced in the main gmse() function

inter_tabl Interaction table indexing types with the INTERACT matrix

fixed_mark Fixed number of individuals marked? (A number, or FALSE)

times_observe Number of times that the observations are made (e.g., managers go out sampling
n times in an area of the landscape)

res_min_age Minimum age of the resource being sampled (default = 1)

agent_type The type of agent doing the observing (default = 0)

type_cat The category of agent type (first 4 columns) doing observing; this will almost
always be 1, so type 0 agents (managers, of which there is always one by default)
will perform the observations

observe_type The type of method used to do the observing. For types of observation exist: (1)
Density based observation, where observers count all of the resources within a
subset of the landscape (the manager function can then later estimate total re-
source number from this estimate). (2) Mark-recapture based observation, where
observers tag a fixed number of randomly sampled resources on the landscape
some number of ‘times‘; some of these resources marks are later interpreted as
marks (’fixed_mark’) while the rest are interpreted as recaptures. (3) Transect
based observation, where observers sample a linear transect, observing all re-
sources on the transect one row of landscape cells at a time, until all landscape
cells are sampled; between samples, resources might move generating observa-
tion error. (4) Block based sampling, which is very similar to Transect based
sampling; here observers instead sample square blocks of a landscape, counting
resources one block at a time, until the whole landscape is sampled; between
samples resources might move generating observation error.

res_move_obs Defines whether or not resources move during observation (default = FALSE).
Note that if this is FALSE, then observation methods (observe_type) 3 and 4
produce no observation error

model The type of model being applied (Currently only individual-based – i.e., ’agent-
based’ – models are allowed)

Value

The observation function outputs an R list that includes three separate arrays, including (1) an new
OBSERVATION array that holds observed resources and their traits with additional columns indi-
cating when the resources were observed (relevant, e.g., for mark-recapture), (2) a new AGENTS
array, and (3) a new PARAS array, each of which might be affected by the user function. The new
arrays can then be read back into the broader GMSE function, thereby affecting the input into the
management, user, and resource models.

owner_land_ssa 43

Examples

Not run:
OBSERVATION_NEW <- observation(RESOURCES = RESOURCES, LAND = LANDSCAPE_r,
PARAS = paras, AGENTS = AGENTS, inter_tabl = interaction_tabl, fixed_mark = fxo,
times_observe = tmo, res_min_age = rma, agent_type = 0, type_cat = 1, observe_type = obt,
res_move_obs = rmo);

End(Not run)

owner_land_ssa Owner land SSA

Description

Builds a layer of the landscape with a shortest-splitline algorithm to assign landscape cells among
owners

Usage

owner_land_ssa(dim_x, dim_y, owners, public_land, land_var)

Arguments

dim_x The number of cells on the X dimension of the landscape

dim_y The number of cells on the Y dimension of the landscape

owners Number of owners among which landscape cells will be divided

public_land The amount of land that will not be owned

land_var Does distribution of land vary among users? >=0, <1

Value

A two dimensional array of cells with ownership values

plot_gmse_effort Plot the effort made by each user for each action

Description

Produce a five panel plot in which each panel compares the permissiveness of each action (scaring,
culling, etc.) from the manager with the effort put into each action by individual users.

Usage

plot_gmse_effort(sim_results)

44 plot_gmse_results

Arguments

sim_results Output from gmse to be plotted.

Value

This function plots the permissiveness that each manager exhibits for each user action (scaring,
culling, etc.) and the effort that each individual user puts into each action over time. On the left axis,
permissiveness is calculated as 100 minus the percent of the manager’s budget put into increasing
the cost of a particular action, so, e.g., if a manager puts all of their effort into increasing the cost
of culling, then permissiveness of culling is 0; if they put none of their effort into increasing the
cost of culling, then permissiveness of culling is 100. On the right axis, percentage of user action
expended is the percent of a user’s budget put into a particular action (note, these might not add up
to 100 because users are not forced to use their entire budget). Coloured lines that are above black
lines could potentially (cautiously) be interpreted as conflict between managers and users.

Examples

Not run:
plot_gmse_effort(sim_results = sim);

End(Not run)

plot_gmse_results Plot the results of a gmse simulation

Description

Produce six panels on a plot showing resource distribution, owned land, resource dynamics and
estimates, stake-holder yield, and action costs and actions made.

Usage

plot_gmse_results(sim_results)

Arguments

sim_results Output from gmse to be plotted.

Value

This function plots the dynamics of GMSE resource, observation, managemer, and user models in
six separate sub-panels. (1) Upper left panel: Shows the locations of resources on the landscape
(black dots); landscape terrain is also shown in brown, but at the moment, this is only cosmetic and
does not reflect anything occurring in the model. (2) Upper right panel: Shows ownership of land by
agents; land is divided proportional based on parameters set in gmse() and colours correspond with
other subplots. If agent utilities and actions are restricted to land (‘land_ownership‘ in the gmse()
function), then this gives some idea of where actions are being performed and where resources are
affecting the landscape. (3) Middle left panel: Shows the actual population abundance (black solid

rec.n 45

line) and the population abundance estimated by the manager (blue solid line; shading indicates 95
percent confidence intervals) over time. The dotted red line shows the resource carrying capacity
(death-based) and the dotted blue line shows the target for resource abundance as set in the gmse()
function; the orange line shows the total percent yield of the landscape (i.e., 100 percent means that
resources have not decreased yield at all, 0 percent means that resources have completely destroyed
all yield). (4) Middle right panel: Shows the raw landscape yield for each stakeholder (can be
ignored if ‘land_ownership‘ is FALSE) over time; colours correspond to land ownership shown
in the upper right panel. (5) Lower left panel: The cost of stakeholders performing actions over
time, as set by the manager. (6) Lower right panel: The total number of actions performed by all
stakeholders over time.

Examples

Not run:
plot_gmse_results(sim_results = sim);

End(Not run)

rec.n R data for recruitment used in SI4 vignette

Description

This object contains SI4 vignette simulation output

Usage

rec.n

Format

a set of gmse_apply output examples

Author(s)

Brad Duthie

46 ssb.n

resource Resource model

Description

A population model of resource (including population) dynamics for a single time step.

Usage

resource(RESOURCES = NULL, LAND = NULL, PARAS = NULL, model = "IBM")

Arguments

RESOURCES The resources array produced by the resource function within GMSE

LAND The landscape array on which interactions between resources and agents occur

PARAS The vector of parameters that hold global and dynamic parameter values used
by GMSE

model The type of model being applied (Currently only individual-based – i.e., ’agent-
based’ – models are allowed)

Value

The resource function outputs an R list that includes three separate arrays, including (1) an new
RESOURCES array, (2) a new LAND array, (3) a new PARAS array, each of which might be
affected by the user function. The new arrays can then be read back into the broader GMSE function,
thereby affecting the input into the observation, management, and user models.

Examples

Not run:
RESOURCE_NEW <- resource(RESOURCES = RESOURCES, LAND = LANDSCAPE_r,
PARAS = paras, model = "IBM");

End(Not run)

ssb.n R data for spawning stock biomass used in SI4 vignette

Description

This object contains SI4 vignette simulation output

Usage

ssb.n

user 47

Format

a set of gmse_apply output examples

Author(s)

Brad Duthie

user User model

Description

A model of user decisions for a single time step. These decisions result in stakeholder actions that
can potentially affect resources and the landscape in a GMSE simulation.

Usage

user(
RESOURCES = NULL,
AGENTS = NULL,
LAND = NULL,
PARAS = NULL,
COST = NULL,
ACTION = NULL,
INTERACT = NULL,
inter_tabl = NULL,
model = "IBM"

)

Arguments

RESOURCES The resources array produced by the resource function within GMSE

AGENTS The array of agents produced in the main gmse() function

LAND The landscape array on which interactions between resources and agents occur

PARAS The vector of parameters that hold global and dynamic parameter values used
by GMSE

COST A three dimensional array of cost values for agent (manager and stakeholder)
actions

ACTION ACTION A three dimensional array of agent (manager and stakeholder) actions

INTERACT An interaction (Jacobian) matrix of resources & landscape layer effects

inter_tabl Interaction table indexing types with the INTERACT matrix

model The type of model being applied (Currently only individual-based – i.e., ’agent-
based’ – models are allowed)

48 utility_layer

Value

The user function outputs an R list that includes five separate arrays, including (1) an new RE-
SOURCES array, (2) a new AGENTS array, (3) a new LAND array, (4) a new ACTIONS array, and
a new (5) COST array, each of which might be affected by the user function. The new arrays can
then be read back into the broader GMSE function, thereby affecting the input into the resource,
observation, and management models.

Examples

Not run:
USERS <- user(RESOURCES = RESOURCES, AGENTS = AGENTS, LAND = LANDSCAPE_r,
PARAS = paras, COST = COST, ACTION = ACTION, INTERACT = Jacobian,
inter_tabl = interaction_tabl, model = "IBM");

End(Not run)

utility_layer Utility layer for initialisation.

Description

Function to initialise a layer of the UTILITY array of the G-MSE model.

Usage

utility_layer(agent_IDs, agent_number, res_types)

Arguments

agent_IDs Vector of agent IDs to use (including -1 and -2, which indicate direct actions to
the landscape and resources, respectively)

agent_number The number of agents to use (length of agent_IDs)

res_types The number of unique resource types (cols 2-4 of RESOURCES); for now, this
should always be 1

Value

A layer of the COST or ACTION array, as called in building either make_costs or make_utilities,
respectively. This layer corresponds to the costs or actions of a single agent, with the larger array in
in which it is placed including all agents

Examples

Not run:
UTIL_LIST <- utility_layer(agent_IDs, agent_number, res_types);

End(Not run)

Index

age_land, 3
anecdotal, 3

be_hunter, 5

case01plot, 6
case23plot, 7
chapman_est, 9
count_agent_cells, 9

dens_est, 10

gmse, 11
gmse_apply, 23
gmse_apply_summary, 26
gmse_gui, 27
gmse_replicates, 27
gmse_summary, 28
gmse_table, 29

ind_to_land, 30

make_agents, 30
make_costs, 34
make_interaction_array, 35
make_interaction_table, 35
make_landscape, 36
make_resource, 37
make_utilities, 39
manager, 39
manager_user_budgets, 40

observation, 41
owner_land_ssa, 43

plot_gmse_effort, 43
plot_gmse_results, 44

rec.n, 45
resource, 46

ssb.n, 46

user, 47
utility_layer, 48

49

	age_land
	anecdotal
	be_hunter
	case01plot
	case23plot
	chapman_est
	count_agent_cells
	dens_est
	gmse
	gmse_apply
	gmse_apply_summary
	gmse_gui
	gmse_replicates
	gmse_summary
	gmse_table
	ind_to_land
	make_agents
	make_costs
	make_interaction_array
	make_interaction_table
	make_landscape
	make_resource
	make_utilities
	manager
	manager_user_budgets
	observation
	owner_land_ssa
	plot_gmse_effort
	plot_gmse_results
	rec.n
	resource
	ssb.n
	user
	utility_layer
	Index

