Package 'GETdesigns'

January 20, 2025

tion by Bose and Nair (1939) https://www.jstor.org/stable/40383923, partially balanced incomplete block (PBIB) designs remain an important class of incomplete block de-

mamoto (1952) <doi:10.1080/01621459.1952.10501161> for the classification of these designs. The constraint of resources always motivates the experimenter to advance to-

Title Generalized Extended Triangular Designs ('GETdesigns')

Maintainer Ashutosh Dalal <ashutosh.dalal97@gmail.com>

signs. The concept of association scheme was used by Bose and Shi-

Type Package

Version 1.2.0

Description Since their introduc-

wards PBIB designs, more specifically to higher associate class PBIB designs from balanced in-
complete block designs. It is interesting to note that many times higher associate PBIB de-
signs perform better than their counterpart lower associate PBIB designs for the same set of pa-
rameters v, b, r, k and lambda_i (i=1,2m). This package contains func-
tions named GETD() for generating m-associate (m>=2) class PBIB designs along with parame-
ters $(v, b, r, k \text{ and } lambda_i, i = 1, 2,, m)$ based on Generalized Triangular (GT) Associa-
tion Scheme. It also calculates the Information matrix, Average variance factor and canonical ef-
ficiency factor of the generated design. These designs, besides having good efficiency, re-
quire smaller number of replications and smallest possible concurrence of treatment pairs.
Suggests MASS
License GPL (>= 2)
Encoding UTF-8
Repository CRAN
RoxygenNote 7.2.3
NeedsCompilation no
Author Mohd Harun [aut, ctb],
Cini Varghese [aut, ctb],
Ashutosh Dalal [aut, cre]
Date/Publication 2024-03-26 07:00:06 UTC
Contents
GETD
<u> </u>

2 GETD

Index 3

GETD

Generalized Extended Triangular Designs

Description

This package contains a function named GETD() for generating m-associate (m>=2) class PBIB designs along with parameters (v, b, r, k and lambda_i, i = 1, 2, ..., m) and the underlying Generalized Extended Triangular (GET) Association Scheme.

Usage

```
GETD(n, m, trt = 1)
```

Arguments

n	It is a natural	number such	that $n \ge 1$	2m ; m >= 2
---	-----------------	-------------	----------------	-------------

m It is a natural number such that $m \ge 2$

trt Provide any treatment number to know its all associates. By default it is 1.

Value

This package generates an m-associate (m>= 2) class PBIB designs under GET Association Scheme. It also calculates the Information matrix, Average variance factor, canonical efficiency factor and different treatment associates of the generated designs.

References

- 1) R.C. Bose, K.R. Nair (1939)< https://www.jstor.org/stable/40383923>" Partially balanced incomplete block designs ".
- 2) R.C. Bose, T. Shimamoto (1952)<doi:10.1080/01621459.1952.10501161> "Classification and analysis of partially balanced incomplete block designs with two associate classes".

Examples

```
library(GETdesigns)
GETD(6,2,1)
```

Index

GETD, 2