## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(FuzzyPovertyR) library(kableExtra) ## ----------------------------------------------------------------------------- data(eusilc) ## ----------------------------------------------------------------------------- hcr = HCR(predicate = eusilc$eq_income, weight = eusilc$DB090, p = 0.5, q = 0.6)$HCR # add poverty threshold ## ----echo=FALSE, fig.height=6, fig.width=6------------------------------------ verma = fm_construct(predicate = eusilc$eq_income, weight = eusilc$DB090, ID = NULL, HCR = hcr, interval = c(1,20), alpha = NULL, fm = "verma", verbose = FALSE) verma$fm class(verma) summary(verma) plot(verma) ## ----------------------------------------------------------------------------- verma = fm_construct(predicate = eusilc$eq_income, fm = "verma", weight = eusilc$DB090, ID = NULL, interval = c(1,10), alpha = 2) ## ----------------------------------------------------------------------------- head(verma$results) ## ----------------------------------------------------------------------------- verma.break = fm_construct(predicate = eusilc$eq_income, weight = eusilc$DB090, ID = NULL, HCR = hcr, interval = c(1,10), alpha = NULL, breakdown = eusilc$db040, fm="verma") ## ----------------------------------------------------------------------------- summary(verma.break) verma.break$estimate ## ----------------------------------------------------------------------------- alpha = verma$parameters$alpha alpha ## ----echo=FALSE, fig.height=6, fig.width=6------------------------------------ verma1999 = fm_construct(predicate = eusilc$eq_income, weight = eusilc$DB090, ID = NULL, HCR = hcr, interval = c(1,20), alpha = NULL, fm = "verma1999", verbose = FALSE) verma1999$fm class(verma1999) summary(verma1999) plot(verma1999) ## ----echo=FALSE, fig.height=6, fig.width=6------------------------------------ TFR = fm_construct(predicate = eusilc$eq_income, weight = eusilc$DB090, ID = NULL, HCR = hcr, interval = c(1,20), alpha = NULL, fm = "TFR", verbose = FALSE) TFR$fm class(TFR) summary(TFR) plot(TFR) ## ----------------------------------------------------------------------------- z1 = 20000; z2 = 70000; b = 2 belhadj = fm_construct(predicate = eusilc$eq_income, weight = eusilc$DB090, fm = "belhadj2015", z1 = z1, z2 = z2, b = b) ## ----echo=FALSE, fig.height=6, fig.width=6------------------------------------ summary(belhadj) plot(belhadj) ## ----------------------------------------------------------------------------- z1 = 10000; z2 = 70000 cerioli = fm_construct(predicate = eusilc$eq_income, weight = eusilc$DB090, fm = "cerioli", z1 = z1, z2 = z2) ## ----echo=FALSE, fig.height=6, fig.width=6------------------------------------ summary(cerioli) plot(cerioli) ## ----------------------------------------------------------------------------- z = 60000 chakravarty = fm_construct(predicate = eusilc$eq_income, weight = eusilc$DB090, fm = "chakravarty", z = z) ## ----echo=FALSE, fig.height=6, fig.width=6------------------------------------ summary(chakravarty) plot(chakravarty) ## ----------------------------------------------------------------------------- chakravarty.break = fm_construct(predicate = eusilc$eq_income, eusilc$DB090, fm = "chakravarty", z = z, breakdown = eusilc$db040) ## ----------------------------------------------------------------------------- knitr::kable(data.frame(verma.break$estimate, chakravarty.break$estimate), col.names = c("Verma", "Chakravarty"), digits = 4) ## ----------------------------------------------------------------------------- zmin = 5000; zmax = 60000 belhadj2011 = fm_construct(predicate = eusilc$eq_income, weight = eusilc$DB090, fm = "belhadj2011", z_min = zmin, z_max = zmax) ## ----echo=FALSE, fig.height=6, fig.width=6------------------------------------ summary(belhadj2011) plot(belhadj2011) ## ----------------------------------------------------------------------------- ZBM = fm_construct(predicate = eusilc$eq_income, weight = eusilc$DB090, fm = "ZBM", hh.size = eusilc$ncomp) ## ----echo=FALSE, fig.height=6, fig.width=6------------------------------------ plot(ZBM) ## ----------------------------------------------------------------------------- # eusilc = na.omit(eusilc) step1 = eusilc[,4:23] ## ----------------------------------------------------------------------------- #Create a dataframe in which the variable X is not ordered in the right way: data=data.frame("X"=rep(c(1,2,3,4),20), "Y"=rep(c(7,8,9,1),20)) #Crete vec_order a vector of length n with TRUE or FALSE. True if the order of the variable is to be inverted, False otherwise vec_order=c(TRUE,FALSE) head(fs_order(data=data, vec_order)) ## ----------------------------------------------------------------------------- step2 = fs_transform(step1, weight = eusilc$DB090, ID = eusilc$ID); class(step2) summary(step2$step2) # step2.1 = fs_transform(step1, weight = eusilc$DB090, ID = eusilc$ID, depr.score = "d") ## ----------------------------------------------------------------------------- knitr::kable(head(step2$step2), digits = 3, align = "c", caption = "Transformed items") ## ----------------------------------------------------------------------------- dimensions = c(1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5) ## ----echo=FALSE, fig.height=6, fig.width=6------------------------------------ steps4_5 = fs_weight(dimensions, step2 = step2, rho = NULL); class(steps4_5) summary(steps4_5) plot(steps4_5) ## ----------------------------------------------------------------------------- knitr::kable(head(steps4_5$steps4_5), digits = 4, caption = "Results from Steps 4 and 5.") ## ----------------------------------------------------------------------------- alpha = fs_equate(steps4_5 = steps4_5, weight = eusilc$DB090, HCR = hcr, interval = c(1,10)) ## ----echo=FALSE, fig.height=6, fig.width=6------------------------------------ FS = fs_construct(steps4_5 = steps4_5, weight = eusilc$DB090, alpha = alpha, breakdown = NULL) # no breakdown summary(FS) FS = fs_construct(steps4_5 = steps4_5, weight = eusilc$DB090, alpha = alpha, breakdown = eusilc$db040) FS$estimate plot(FS) ## ----------------------------------------------------------------------------- FS$estimate ## ----echo=FALSE--------------------------------------------------------------- knitr::kable(fs_construct(steps4_5 = steps4_5, weight = eusilc$DB090, alpha = alpha, breakdown = eusilc$db040)$estimate, digits = 4 ) ## ----------------------------------------------------------------------------- alpha = fm_construct(predicate = eusilc$eq_income, weight = eusilc$DB090, ID = NULL, HCR = 0.12, interval = c(1,10), alpha = NULL)$alpha ## ----------------------------------------------------------------------------- boot.var = fm_var(predicate = eusilc$eq_income, weight = eusilc$DB090, fm = "verma", type = "bootstrap_naive", HCR = .12, alpha = alpha, verbose = F, R = 10) # plot(boot.var) fm_var(predicate = eusilc$eq_income, weight = eusilc$DB090, fm = "verma", type = "jackknife", HCR = .12, alpha = 9, stratum = eusilc$stratum, psu = eusilc$psu, verbose = F) ## ----echo=FALSE--------------------------------------------------------------- Bootstrap = fm_var(predicate = eusilc$eq_income, weight = eusilc$DB090, fm = "verma", breakdown = eusilc$db040, type = "bootstrap_naive", HCR = hcr, alpha = alpha, verbose = FALSE) %>% summary() Jackknife = fm_var(predicate = eusilc$eq_income, weight = eusilc$DB090, fm = "verma", breakdown = eusilc$db040, type = "jackknife", HCR = hcr, alpha = alpha, stratum = eusilc$stratum, psu = eusilc$psu, verbose = F)%>% summary() ## ----echo=FALSE, fig.height=6, fig.width=6------------------------------------ Bootstrap = fm_var(predicate = eusilc$eq_income, weight = eusilc$DB090, fm = "verma", breakdown = eusilc$db040, type = "bootstrap_naive", HCR = hcr, alpha = alpha, verbose = FALSE) plot(Bootstrap) Bootstrap = fm_var(predicate = eusilc$eq_income, weight = eusilc$DB090, fm = "verma", breakdown = eusilc$db040, type = "jackknife", HCR = hcr, alpha = alpha, stratum = eusilc$stratum, psu = eusilc$psu, verbose = F) ## ----eval=FALSE--------------------------------------------------------------- # variance = fs_var(data = eusilc[,4:23], weight = eusilc$DB090, ID = NULL, # dimensions = dimensions, breakdown = NULL, HCR = 0.12, # alpha = 2, rho = NULL, type = 'bootstrap_naive', # M = NULL, R = 50, verbose = F) # summary(variance) ## ----echo=FALSE, fig.height=6, fig.width=6------------------------------------ Bootstrap = fs_var(data = eusilc[,4:23], weight = eusilc$DB090, ID = NULL, dimensions = dimensions, breakdown = eusilc$db040, HCR = .12, alpha = 2, rho = NULL, type = 'bootstrap_naive', M = NULL, R = 10, verbose = F) plot(Bootstrap) ## ----eval=FALSE--------------------------------------------------------------- # fs_var(data = eusilc[,4:23], weight = eusilc$DB090, ID = NULL, dimensions = dimensions, # stratum = eusilc$stratum, psu = eusilc$psu, verbose = F, f = .01, # breakdown = NULL, alpha = 3, rho = NULL, type = "jackknife", fixed = T)%>%summary()