
Package ‘FRESA.CAD’
January 20, 2025

Type Package

Title Feature Selection Algorithms for Computer Aided Diagnosis

Version 3.4.8

Date 2024-06-25

Author Jose Gerardo Tamez-Pena, Antonio Martinez-Torteya, Israel Alanis and Jorge Orozco

Maintainer Jose Gerardo Tamez-Pena <jose.tamezpena@tec.mx>

Description Contains a set of utilities for building and testing statistical models (linear, logis-
tic,ordinal or COX) for Computer Aided Diagnosis/Prognosis applications. Utilities in-
clude data adjustment, univariate analysis, model building, model-validation, longitudinal analy-
sis, reporting and visualization.

License LGPL (>= 2)

Depends Rcpp (>= 0.10.0),stringr,miscTools,Hmisc,pROC

LinkingTo Rcpp, RcppArmadillo

Suggests nlme,rpart,gplots,RColorBrewer,class,cvTools,glmnet,randomForest,survival,
e1071,MASS,naivebayes,mRMRe,epiR,DescTools,
irr,survminer,BeSS,ggplot2,robustbase,mda,twosamples,Rfast,whitening,corrplot

NeedsCompilation yes

Repository CRAN

Date/Publication 2024-06-25 21:40:02 UTC

Contents
FRESA.CAD-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
backVarElimination_Bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
backVarElimination_Res . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
baggedModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
barPlotCiError . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
BESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
bootstrapValidation_Bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
bootstrapValidation_Res . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1



2 Contents

bootstrapVarElimination_Bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
bootstrapVarElimination_Res . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
BSWiMS.model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
calBinProb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
CalibrationProbPoissonRisk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
cancerVarNames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
ClustClass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
clusterISODATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
crossValidationFeatureSelection_Bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
crossValidationFeatureSelection_Res . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
CVsignature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
EmpiricalSurvDiff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
ensemblePredict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
featureAdjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
filteredFit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
FilterUnivariate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
ForwardSelection.Model.Bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
ForwardSelection.Model.Res . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
FRESA.Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
FRESAScale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
getKNNpredictionFromFormula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
getLatentCoefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
getMedianSurvCalibratedPrediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
getSignature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
getVar.Bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
getVar.Res . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
GLMNET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
GMVEBSWiMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
GMVECluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
heatMaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
HLCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
IDeA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
improvedResiduals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
jaccardMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
KNN_method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
listTopCorrelatedVariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
LM_RIDGE_MIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
metric95ci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
modelFitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
mRMR.classic_FRESA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
multivariate_BinEnsemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
NAIVE_BAYES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
nearestCentroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
nearestNeighborImpute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
plot.bootstrapValidation_Bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
plot.bootstrapValidation_Res . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
plot.FRESA_benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
plotModels.ROC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



FRESA.CAD-package 3

ppoisGzero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
predict.BAGGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
predict.CLUSTER_CLASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
predict.fitFRESA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
predict.FRESAKNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
predict.FRESAsignature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
predict.FRESA_BESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
predict.FRESA_FILTERFIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
predict.FRESA_GLMNET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
predict.FRESA_HLCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
predict.FRESA_NAIVEBAYES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
predict.FRESA_RIDGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
predict.FRESA_SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
predict.GMVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
predict.GMVE_BSWiMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
predict.LogitCalPred . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
predictionStats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
randomCV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
rankInverseNormalDataFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
reportEquivalentVariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
residualForFRESA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
RRPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
signatureDistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
summary.bootstrapValidation_Bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
summary.fitFRESA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
summaryReport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
timeSerieAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
trajectoriesPolyFeatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
TUNED_SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
uniRankVar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
univariateRankVariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
update.uniRankVar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
updateModel.Bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
updateModel.Res . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Index 140

FRESA.CAD-package FeatuRE Selection Algorithms for Computer-Aided Diagnosis
(FRESA.CAD)

Description

Contains a set of utilities for building and testing formula-based models for Computer Aided Di-
agnosis/prognosis applications via feature selection. Bootstrapped Stage Wise Model Selection
(B:SWiMS) controls the false selection (FS) for linear, logistic, or Cox proportional hazards regres-
sion models. Utilities include functions for: univariate/longitudinal analysis, data conditioning (i.e.
covariate adjustment and normalization), model validation and visualization.



4 FRESA.CAD-package

Details

Package: FRESA.CAD
Type: Package
Version: 3.4.8
Date: 2024-06-25
License: LGPL (>= 2)

Purpose: The design of diagnostic or prognostic multivariate models via the selection of signifi-
cantly discriminant features. The models are selected via the bootstrapped step-wise selection of
model features that offer a significant improvement in subject classification/error. The false selec-
tion control is achieved by train-test partitions, where train sets are used to select variables and test
sets used to evaluate model performance. Variables that do not improve subject classification/error
on the blind test are not included in the models. The main function of this package is the selection
and cross-validation of diagnostic/prognostic linear, logistic, or Cox proportional hazards regres-
sion model constructed from a large set of candidate features. The variable selection may start by
conditioning all variables via a covariate-adjustment and a z-inverse-rank-transformation. In order
to integrate features with partial discriminant power, the package can be used to categorize the con-
tinuous variables and rank their discriminant power. Once ranked, each feature is bootstrap-tested in
a multivariate model, and its blind performance is evaluated. Variables with a statistical significant
improvement in classification/error are stored and finally inserted into the final model according to
their relative store frequency. A cross-validation procedure may be used to diagnose the amount of
model shrinkage produced by the selection scheme.

Author(s)

Jose Gerardo Tamez-Pena, Antonio Martinez-Torteya, Israel Alanis and Jorge Orozco Maintainer:
<jose.tamezpena@tec.mx>

References

Pencina, M. J., D’Agostino, R. B., & Vasan, R. S. (2008). Evaluating the added predictive ability of
a new marker: from area under the ROC curve to reclassification and beyond. Statistics in medicine
27(2), 157-172.

Examples

## Not run:
### Fresa Package Examples ####
library("epiR")
library("FRESA.CAD")
library(network)
library(GGally)
library("e1071")

# Start the graphics device driver to save all plots in a pdf format
pdf(file = "Fresa.Package.Example.pdf",width = 8, height = 6)



FRESA.CAD-package 5

# Get the stage C prostate cancer data from the rpart package

data(stagec,package = "rpart")
options(na.action = 'na.pass')
dataCancer <- cbind(pgstat = stagec$pgstat,

pgtime = stagec$pgtime,
as.data.frame(model.matrix(Surv(pgtime,pgstat) ~ .,stagec))[-1])

#Impute missing values
dataCancerImputed <- nearestNeighborImpute(dataCancer)

# Remove the incomplete cases
dataCancer <- dataCancer[complete.cases(dataCancer),]

# Load a pre-stablished data frame with the names and descriptions of all variables
data(cancerVarNames)
# the Heat Map
hm <- heatMaps(cancerVarNames,varRank=NULL,Outcome="pgstat",

data=dataCancer,title="Heat Map",hCluster=FALSE
,prediction=NULL,Scale=TRUE,
theFiveColors=c("blue","cyan","black","yellow","red"),
outcomeColors =

c("blue","lightgreen","yellow","orangered","red"),
transpose=FALSE,cexRow=0.50,cexCol=0.80,srtCol=35)

# The univariate analysis
UniRankFeaturesRaw <- univariateRankVariables(variableList = cancerVarNames,

formula = "pgstat ~ 1+pgtime",
Outcome = "pgstat",
data = dataCancer,
categorizationType = "Raw",
type = "LOGIT",
rankingTest = "zIDI",
description = "Description",
uniType="Binary")

print(UniRankFeaturesRaw)

# A simple BSIWMS Model

BSWiMSModel <- BSWiMS.model(formula = Surv(pgtime, pgstat) ~ 1, dataCancerImputed)

# The Log-Rank Analysis using survdiff

lrsurvdiff <- survdiff(Surv(pgtime,pgstat)~
BSWiMSModel$BSWiMS.model$back.model$linear.predictors > 0,
data=dataCancerImputed)

# The Log-Rank Analysis EmpiricalSurvDiff and permutations of the null Chi distribution
lrp <- EmpiricalSurvDiff(dataCancerImputed$pgtime,dataCancerImputed$pgstat,

BSWiMSModel$BSWiMS.model$back.model$linear.predictors > 0,



6 FRESA.CAD-package

type="Chi",plots=TRUE,samples=10000)

# The Log-Rank Analysis EmpiricalSurvDiff and permutations of the null SLR distribution
lrp <- EmpiricalSurvDiff(dataCancerImputed$pgtime,dataCancerImputed$pgstat,

BSWiMSModel$BSWiMS.model$back.model$linear.predictors > 0,
type="SLR",plots=TRUE,samples=10000)

# The Log-Rank Analysis EmpiricalSurvDiff and bootstrapping the SLR distribution
lrp <- EmpiricalSurvDiff(dataCancerImputed$pgtime,dataCancerImputed$pgstat,

BSWiMSModel$BSWiMS.model$back.model$linear.predictors > 0,
computeDist=TRUE,plots=TRUE)

#The performance of the final model using the summary function
sm <- summary(BSWiMSModel$BSWiMS.model$back.model)
print(sm$coefficients)
pv <- plot(sm$bootstrap)

# The equivalent model
eq <- reportEquivalentVariables(BSWiMSModel$BSWiMS.model$back.model,data=dataCancer,

variableList=cancerVarNames,Outcome = "pgstat",
timeOutcome="pgtime",
type = "COX");

print(eq$equivalentMatrix)

#The list of all models of the bootstrap forward selection
print(BSWiMSModel$forward.selection.list)

#With FRESA.CAD we can do a leave-one-out using the list of models
pm <- ensemblePredict(BSWiMSModel$forward.selection.list,

dataCancer,predictType = "linear",type="LOGIT",Outcome="pgstat")

#Ploting the ROC with 95
pm <- plotModels.ROC(cbind(dataCancer$pgstat,

pm$ensemblePredict),main=("LOO Forward Selection Median Predict"))

#The plotModels.ROC provides the diagnosis confusion matrix.
summary(epi.tests(pm$predictionTable))

#FRESA.CAD can be used to create a bagged model using the forward selection formulas
bagging <- baggedModel(BSWiMSModel$forward.selection.list,dataCancer,useFreq=32)
pm <- predict(bagging$bagged.model)
pm <- plotModels.ROC(cbind(dataCancer$pgstat,pm),main=("Bagged"))

#Let's check the performance of the model
sm <- summary(bagging$bagged.model)
print(sm$coefficients)

#Using bootstrapping object I can check the Jaccard Index
print(bagging$Jaccard.SM)



FRESA.CAD-package 7

#Ploting the evolution of the coefficient value
plot(bagging$coefEvolution$grade,main="Evolution of grade")

gplots::heatmap.2(bagging$formulaNetwork,trace="none",
mar=c(10,10),main="eB:SWIMS Formula Network")

barplot(bagging$frequencyTable,las = 2,cex.axis=1.0,
cex.names=0.75,main="Feature Frequency")

n <- network::network(bagging$formulaNetwork, directed = FALSE,
ignore.eval = FALSE,names.eval = "weights")

ggnet2(n, label = TRUE, size = "degree",size.cut = 3,size.min = 1,
mode = "circle",edge.label = "weights",edge.label.size=4)

# Get a Cox proportional hazards model using:
# - The default parameters

mdCOXs <- FRESA.Model(formula = Surv(pgtime, pgstat) ~ 1,data = dataCancer)
sm <- summary(mdCOXs$BSWiMS.model)
print(sm$coefficients)

# The model with singificant improvement in the residual error
mdCOXs <- FRESA.Model(formula = Surv(pgtime, pgstat) ~ 1,

data = dataCancer,OptType = "Residual" )
sm <- summary(mdCOXs$BSWiMS.model)
print(sm$coefficients)

# Get a Cox proportional hazards model using second order models:
mdCOX <- FRESA.Model(formula = Surv(pgtime, pgstat) ~ 1,

data = dataCancer,categorizationType="RawRaw")
sm <- summary(mdCOX$BSWiMS.model)
print(sm$coefficients)

namesc <- names(mdCOX$BSWiMS.model$coefficients)[-1]
hm <- heatMaps(mdCOX$univariateAnalysis[namesc,],varRank=NULL,

Outcome="pgstat",data=dataCancer,
title="Heat Map",hCluster=FALSE,prediction=NULL,Scale=TRUE,
theFiveColors=c("blue","cyan","black","yellow","red"),
outcomeColors = c("blue","lightgreen","yellow","orangered","red"),
transpose=FALSE,cexRow=0.50,cexCol=0.80,srtCol=35)

# The LOO estimation
pm <- ensemblePredict(mdCOX$BSWiMS.models$formula.list,dataCancer,

predictType = "linear",type="LOGIT",Outcome="pgstat")
pm <- plotModels.ROC(cbind(dataCancer$pgstat,pm$ensemblePredict),main=("LOO Median Predict"))
#Let us check the diagnosis performance
summary(epi.tests(pm$predictionTable))

# Get a Logistic model using FRESA.Model
# - The default parameters
dataCancer2 <-dataCancer
dataCancer2$pgtime <-NULL
mdLOGIT <- FRESA.Model(formula = pgstat ~ 1,data = dataCancer2)



8 FRESA.CAD-package

if (!is.null(mdLOGIT$bootstrappedModel)) pv <- plot(mdLOGIT$bootstrappedModel)
sm <- summary(mdLOGIT$BSWiMS.model)
print(sm$coefficients)

## FRESA.Model with Cross Validation and Recursive Partitioning and Regression Trees

md <- FRESA.Model(formula = Surv(pgtime, pgstat) ~ 1,data = dataCancer,
CVfolds = 10,repeats = 5,equivalent = TRUE,usrFitFun=rpart::rpart)

colnames(md$cvObject$Models.testPrediction)

pm <- plotModels.ROC(md$cvObject$LASSO.testPredictions,theCVfolds=10,main="CV LASSO",cex=0.90)
pm <- plotModels.ROC(md$cvObject$KNN.testPrediction,theCVfolds=10,main="KNN",cex=0.90)
pm <- plotModels.ROC(md$cvObject$Models.testPrediction,theCVfolds=10,

predictor="Prediction",main="B:SWiMS Bagging",cex=0.90)
pm <- plotModels.ROC(md$cvObject$Models.testPrediction,theCVfolds=10,

predictor="Ensemble.B.SWiMS"
,main="Forward Selection Median Ensemble",cex=0.90)

pm <- plotModels.ROC(md$cvObject$Models.testPrediction,theCVfolds=10,
predictor="Ensemble.Forward",main="Forward Selection Bagging",cex=0.90)

pm <- plotModels.ROC(md$cvObject$Models.testPrediction,theCVfolds=10,
predictor="eB.SWiMS",main="Equivalent Model",cex=0.90)

pm <- plotModels.ROC(md$cvObject$Models.testPrediction,theCVfolds=10,
predictor="Forward.Selection.Bagged",main="The Forward Bagging",cex=0.90)

pm <- plotModels.ROC(md$cvObject$Models.testPrediction,theCVfolds=20,
predictor="usrFitFunction",
main="Recursive Partitioning and Regression Trees",cex=0.90)

pm <- plotModels.ROC(md$cvObject$Models.testPrediction,theCVfolds=20,
predictor="usrFitFunction_Sel",

main="Recursive Partitioning and Regression Trees with FS",cex=0.90)

## FRESA.Model with Cross Validation, LOGISTIC and Support Vector Machine

md <- FRESA.Model(formula = pgstat ~ 1,data = dataCancer2,
CVfolds = 10,repeats = 5,equivalent = TRUE,usrFitFun=svm)

pm <- plotModels.ROC(md$cvObject$LASSO.testPredictions,theCVfolds=10,main="CV LASSO",cex=0.90)
pm <- plotModels.ROC(md$cvObject$KNN.testPrediction,theCVfolds=10,main="KNN",cex=0.90)
pm <- plotModels.ROC(md$cvObject$Models.testPrediction,theCVfolds=10,

predictor="Prediction",main="B:SWiMS Bagging",cex=0.90)

md$cvObject$Models.testPrediction[,"usrFitFunction"] <-
md$cvObject$Models.testPrediction[,"usrFitFunction"] - 0.5

md$cvObject$Models.testPrediction[,"usrFitFunction_Sel"] <-
md$cvObject$Models.testPrediction[,"usrFitFunction_Sel"] - 0.5

pm <- plotModels.ROC(md$cvObject$Models.testPrediction,theCVfolds=10,
predictor="usrFitFunction",
main="SVM",cex = 0.90)



backVarElimination_Bin 9

pm <- plotModels.ROC(md$cvObject$Models.testPrediction,theCVfolds=10,
predictor="usrFitFunction_Sel",
main="SVM with FS",cex = 0.90)

# Shut down the graphics device driver
dev.off()

## End(Not run)

backVarElimination_Bin

IDI/NRI-based backwards variable elimination

Description

This function removes model terms that do not significantly affect the integrated discrimination
improvement (IDI) or the net reclassification improvement (NRI) of the model.

Usage

backVarElimination_Bin(object,
pvalue = 0.05,
Outcome = "Class",
data,
startOffset = 0,
type = c("LOGIT", "LM", "COX"),
selectionType = c("zIDI", "zNRI")

)

Arguments

object An object of class lm, glm, or coxph containing the model to be analyzed

pvalue The maximum p-value, associated to either IDI or NRI, allowed for a term in
the model

Outcome The name of the column in data that stores the variable to be predicted by the
model

data A data frame where all variables are stored in different columns

startOffset Only terms whose position in the model is larger than the startOffset are
candidates to be removed

type Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")

selectionType The type of index to be evaluated by the improveProb function (Hmisc pack-
age): z-score of IDI or of NRI



10 backVarElimination_Res

Details

For each model term xi, the IDI or NRI is computed for the Full model and the reduced model(
where the term xi removed). The term whose removal results in the smallest drop in improvement
is selected. The hypothesis: the term adds classification improvement is tested by checking the
pvalue of improvement. If p(IDIorNRI) > pvalue, then the term is removed. In other words,
only model terms that significantly aid in subject classification are kept. The procedure is repeated
until no term fulfils the removal criterion.

Value

back.model An object of the same class as object containing the reduced model

loops The number of loops it took for the model to stabilize

reclas.info A list with the NRI and IDI statistics of the reduced model, as given by the
getVar.Bin function

back.formula An object of class formula with the formula used to fit the reduced model

lastRemoved The name of the last term that was removed (-1 if all terms were removed)

at.opt.model the model before the BH procedure

beforeFSC.formula

the string formula of the model before the BH procedure

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

References

Pencina, M. J., D’Agostino, R. B., & Vasan, R. S. (2008). Evaluating the added predictive ability of
a new marker: from area under the ROC curve to reclassification and beyond. Statistics in medicine
27(2), 157-172.

See Also

backVarElimination_Res, bootstrapVarElimination_Bin, bootstrapVarElimination_Res

backVarElimination_Res

NeRI-based backwards variable elimination

Description

This function removes model terms that do not significantly improve the "net residual" (NeRI)



backVarElimination_Res 11

Usage

backVarElimination_Res(object,
pvalue = 0.05,
Outcome = "Class",
data,
startOffset = 0,
type = c("LOGIT", "LM", "COX"),
testType = c("Binomial", "Wilcox", "tStudent", "Ftest"),
setIntersect = 1

)

Arguments

object An object of class lm, glm, or coxph containing the model to be analyzed

pvalue The maximum p-value, associated to the NeRI, allowed for a term in the model

Outcome The name of the column in data that stores the variable to be predicted by the
model

data A data frame where all variables are stored in different columns

startOffset Only terms whose position in the model is larger than the startOffset are
candidates to be removed

type Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")

testType Type of non-parametric test to be evaluated by the improvedResiduals func-
tion: Binomial test ("Binomial"), Wilcoxon rank-sum test ("Wilcox"), Student’s
t-test ("tStudent"), or F-test ("Ftest")

setIntersect The intersect of the model (To force a zero intersect, set this value to 0)

Details

For each model term xi, the residuals are computed for the Full model and the reduced model(
where the term xi removed). The term whose removal results in the smallest drop in residuals
improvement is selected. The hypothesis: the term improves residuals is tested by checking the
pvalue of improvement. If p(residualsbetterthanreducedresiduals) > pvalue, then the term is
removed. In other words, only model terms that significantly aid in improving residuals are kept.
The procedure is repeated until no term fulfils the removal criterion. The p-values of improvement
can be computed via a sign-test (Binomial) a paired Wilcoxon test, paired t-test or f-test. The first
three tests compare the absolute values of the residuals, while the f-test test if the variance of the
residuals is improved significantly.

Value

back.model An object of the same class as object containing the reduced model

loops The number of loops it took for the model to stabilize

reclas.info A list with the NeRI statistics of the reduced model, as given by the getVar.Res
function

back.formula An object of class formula with the formula used to fit the reduced model



12 baggedModel

lastRemoved The name of the last term that was removed (-1 if all terms were removed)

at.opt.model the model with before the FSR procedure.
beforeFSC.formula

the string formula of the the FSR procedure

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

backVarElimination_Bin, bootstrapVarElimination_Bin bootstrapVarElimination_Res

baggedModel Get the bagged model from a list of models

Description

This function will take the frequency-ranked of variables and the list of models to create a single
bagged model

Usage

baggedModel(modelFormulas,
data,
type=c("LM","LOGIT","COX"),
Outcome=NULL,
timeOutcome=NULL,
frequencyThreshold=0.025,
univariate=NULL,

useFreq=TRUE,
n_bootstrap=1,
equifreqCorrection=0

)
baggedModelS(modelFormulas,

data,
type=c("LM","LOGIT","COX"),
Outcome=NULL,
timeOutcome=NULL)

Arguments

modelFormulas The name of the column in data that stores the variable to be predicted by the
model

data A data frame with two columns. The first one must have the names of the can-
didate variables and the other one the description of such variables



baggedModel 13

type Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")

Outcome The name of the column in data that stores the time to outcome

timeOutcome The name of the column in data that stores the time to event (needed only for a
Cox proportional hazards regression model fitting)

frequencyThreshold

set the frequency the threshold of the frequency of features to be included in the
model)

univariate The FFRESA.CAD univariate analysis matrix

useFreq Use the feature frequency to order the formula terms. If set to a positive value is
the number of estimation loops

n_bootstrap if greater than 1, defines the number of bootstraps samples to be used

equifreqCorrection

Indicates the average size of repeated features in an equivalent model

Value

bagged.model the bagged model

formula the formula of the model

frequencyTable the table of variables ranked by their model frequency

faverageSize the average size of the models

formulaNetwork The matrix of interaction between formulas

Jaccard.SM The Jaccard Stability Measure of the formulas

coefEvolution The evolution of the coefficients

avgZvalues The average Z value of each coefficient

featureLocation

The average location of the feature in the formulas

Author(s)

Jose G. Tamez-Pena

See Also

ensemblePredict



14 barPlotCiError

barPlotCiError Bar plot with error bars

Description

Ranked Plot a set of measurements with error bars or confidence intervals (CI)

Usage

barPlotCiError(ciTable,
metricname,

thesets,
themethod,
main,
angle = 0,
offsets = c(0.1,0.1),

scoreDirection = ">",
ho=NULL,

...)

Arguments

ciTable A matrix with three columns: the value, the low CI value and the high CI value

metricname The name of the plotted values

thesets A character vector with the names of the sets

themethod A character vector with the names of the methods

main The plot title

angle The angle of the x labels

offsets The offset of the x-labels

scoreDirection Indicates how to aggregate the supMethod score and the ingMethod score.

ho the null hypothesis

... Extra parametrs pased to the barplot function

Value

barplot the x-location of the bars

ciTable the ordered matrix with the 95 CI

barMatrix the mean values of the bars

supMethod A superiority score equal to the numbers of methods that were inferior

infMethod A inferiority score equal to the number of methods that were superior
interMethodScore

the sum of supMethod and infMethod defined by the score direction.



benchmarking 15

Author(s)

Jose G. Tamez-Pena

benchmarking Compare performance of different model fitting/filtering algorithms

Description

Evaluates a data set with a set of fitting/filtering methods and returns the observed cross-validation
performance

Usage

BinaryBenchmark(theData = NULL, theOutcome = "Class", reps = 100, trainFraction = 0.5,
referenceCV = NULL,referenceName = "Reference"
,referenceFilterName="Reference")

RegresionBenchmark(theData = NULL, theOutcome = "Class", reps = 100, trainFraction = 0.5,
referenceCV = NULL,referenceName = "Reference"
,referenceFilterName="Reference")

OrdinalBenchmark(theData = NULL, theOutcome = "Class", reps = 100, trainFraction = 0.5,
referenceCV = NULL,referenceName = "Reference"
,referenceFilterName="Reference")

CoxBenchmark(theData = NULL, theOutcome = "Class", reps = 100, trainFraction = 0.5,
referenceCV = NULL,referenceName = "Reference"
,referenceFilterName="COX.BSWiMS")

Arguments

theData The data frame

theOutcome The outcome feature

reps The number of times that the random cross-validation will be performed

trainFraction The fraction of the data used for training.

referenceCV A single random cross-validation object to be benchmarked or a list of CVOb-
jects to be compared

referenceName The name of the reference classifier to be used in the reporting tables
referenceFilterName

The name of the reference filter to be used in the reporting tables

Details

The benchmark functions provide the performance of different classification algorithms (Binary-
Benchmark), registration algorithms (RegresionBenchmark) or ordinal regression algorithms (Or-
dinalBenchmark) The evaluation method is based on applying the random cross-validation method



16 benchmarking

(randomCV) that randomly splits the data into train and test sets. The user can provide a Cross
validated object that will define the train-test partitions.

The BinaryBenchmark compares: BSWiMS,Random Forest ,RPART,LASSO,SVM/mRMR,KNN
and the ensemble of them in their ability to correctly classify the test data. Furthermore, it evalu-
ates the ability of the following feature selection algorithms: BSWiMS or ReferenceCV, LASSO,
RPART, RF/BSWiMS, IDI, NRI, t-test, Wilcoxon, Kendall, and mRMR in their ability to select the
best set of features for the following classification methods: SVM, KNN, Naive Bayes, Random
Forest Nearest Centroid (NC) with root sum square (RSS) , and NC with Spearman correlation

The RegresionBenchmark compares: BSWiMS,Random Forest ,RPART,LASSO,SVM/mRMR and
the ensemble of them in their ability to correctly predict the test data. Furthermore, it evaluates the
ability of the following feature selection algorithms: BSWiMS or referenceCV, LASSO, RPART,
RF/BSWiMS, F-Test, W-Test, Pearson Kendall, and mRMR in their ability to select the best set
of features for the following regression methods: Linear Regression, Robust Regression, Ridge
Regression, LASSO, SVM, and Random Forest.

The OrdinalBenchmark compares: BSWiMS,Random Forest ,RPART,LASSO,KNN ,SVM and the
ensemble of them in their ability to correctly predict the test data. Furthermore, it evaluates the
ability of the following feature selection algorithms: BSWiMS or referenceCV, LASSO, RPART,
RF/BSWiMS, F-Test, Kendall, and mRMR in their ability to select the best set of features for the
following regression methods: Ordinal, KNN, SVM, Random Forest, and Naive Bayes.

The CoxBenchmark compares: BSWiMS, LASSO, BeSS and Univariate Cox analysis in their abil-
ity to correctly predict the risk of event happening. It uses cox regression with the four alternatives,
but BSWiMS, LASSO are also compared as Wrapper methods.

Value

errorciTable the matrix of the balanced error with the 95 CI

accciTable the matrix of the classification accuracy with the 95 CI

aucTable the matrix of the ROC AUC with the 95 CI

senTable the matrix of the sensitivity with the 95 CI

speTable the matrix of the specificity with the 95 CI
errorciTable_filter

the matrix of the balanced error with the 95 CI for filter methods
accciTable_filter

the matrix of the classification accuracy with the 95 CI for filter methods
senciTable_filter

the matrix of the classification sensitivity with the 95 CI for filter methods
speciTable_filter

the matrix of the classification specificity with the 95 CI for filter methods
aucTable_filter

the matrix of the ROC AUC with the 95 CI for filter methods

CorTable the matrix of the Pearson correlation with the 95 CI

RMSETable the matrix of the root mean square error (RMSE) with the 95 CI

BiasTable the matrix of the prediction bias with the 95 CI
CorTable_filter

the matrix of the Pearson correlation with the 95 CI for filter methods



benchmarking 17

RMSETable_filter

the matrix of the root mean square error (RMSE) with the 95 CI for filter meth-
ods

BiasTable_filter

the matrix of the prediction bias with the 95 CI for filter methods

BMAETable the matrix of the balanced mean absolute error (MEA) with the 95 CI for filter
methods

KappaTable the matrix of the Kappa value with the 95 CI

BiasTable the matrix of the prediction Bias with the 95 CI

KendallTable the matrix of the Kendall correlation with the 95 CI
MAETable_filter

the matrix of the mean absolute error (MEA) with the 95 CI for filter methods
KappaTable_filter

the matrix of the Kappa value with the 95 CI for filter methods
BiasTable_filter

the matrix of the prediction Bias with the 95 CI for filter methods
KendallTable_filter

the matrix of the Kendall correlation with the 95 CI for filter methods

CIRiskTable the matrix of the concordance index on Risk with the 95 CI

LogRankTable the matrix of the LogRank Test with the 95 CI
CIRisksTable_filter

the matrix of the concordance index on Risk with the 95 CI for the filter methods
LogRankTable_filter

the matrix of the LogRank Test with the 95 CI for the filter methods

times The average CPU time used by the method

jaccard_filter The average Jaccard Index of the feature selection methods
TheCVEvaluations

The output of the randomCV (randomCV) evaluations of the different methods
testPredictions

A matrix with all the test predictions
featureSelectionFrequency

The frequency of feature selection
cpuElapsedTimes

The mean elapsed times

cpuElapsedTimes

Author(s)

Jose G. Tamez-Pena

See Also

randomCV



18 benchmarking

Examples

## Not run:

### Binary Classification Example ####
# Start the graphics device driver to save all plots in a pdf format
pdf(file = "BinaryClassificationExample.pdf",width = 8, height = 6)
# Get the stage C prostate cancer data from the rpart package

data(stagec,package = "rpart")

# Prepare the data. Create a model matrix without the event time
stagec$pgtime <- NULL
stagec$eet <- as.factor(stagec$eet)
options(na.action = 'na.pass')
stagec_mat <- cbind(pgstat = stagec$pgstat,
as.data.frame(model.matrix(pgstat ~ .,stagec))[-1])

# Impute the missing data
dataCancerImputed <- nearestNeighborImpute(stagec_mat)

dataCancerImputed[,1:ncol(dataCancerImputed)] <- sapply(dataCancerImputed,as.numeric)

# Cross validating a LDA classifier.
# 80
cv <- randomCV(dataCancerImputed,"pgstat",MASS::lda,trainFraction = 0.8,
repetitions = 10,featureSelectionFunction = univariate_tstudent,
featureSelection.control = list(limit = 0.5,thr = 0.975));

# Compare the LDA classifier with other methods
cp <- BinaryBenchmark(referenceCV = cv,referenceName = "LDA",

referenceFilterName="t.Student")
pl <- plot(cp,prefix = "StageC: ")

# Default Benchmark classifiers method (BSWiMS) and filter methods.
# 80
cp <- BinaryBenchmark(theData = dataCancerImputed,
theOutcome = "pgstat", reps = 10, fraction = 0.8)

# plot the Cross Validation Metrics
pl <- plot(cp,prefix = "Stagec:");

# Shut down the graphics device driver
dev.off()

#### Regression Example ######
# Start the graphics device driver to save all plots in a pdf format
pdf(file = "RegressionExample.pdf",width=8, height=6)

# Get the body fat data from the TH package

data("bodyfat", package = "TH.data")



BESS 19

# Benchmark regression methods and filter methods.
#80
cp <- RegresionBenchmark(theData = bodyfat,
theOutcome = "DEXfat", reps = 10, fraction = 0.8)

# plot the Cross Validation Metrics
pl <- plot(cp,prefix = "Body Fat:");
# Shut down the graphics device driver
dev.off()

#### Ordinal Regression Example #####
# Start the graphics device driver to save all plots in a pdf format
pdf(file = "OrdinalRegressionExample.pdf",width=8, height=6)

# Get the GBSG2 data
data("GBSG2", package = "TH.data")

# Prepare the model frame for benchmarking
GBSG2$time <- NULL;
GBSG2$cens <- NULL;
GBSG2_mat <- cbind(tgrade = as.numeric(GBSG2$tgrade),
as.data.frame(model.matrix(tgrade~.,GBSG2))[-1])

# Benchmark regression methods and filter methods.
#30
cp <- OrdinalBenchmark(theData = GBSG2_mat,
theOutcome = "tgrade", reps = 10, fraction = 0.3)

# plot the Cross Validation Metrics
pl <- plot(cp,prefix = "GBSG:");

# Shut down the graphics device driver
dev.off()

## End(Not run)

BESS CV BeSS fit

Description

Fits a BeSS::bess object to the data, and return the selected features

Usage

BESS(formula = formula, data=NULL, method="sequential", ic.type="BIC",...)
BESS_GSECTION(formula = formula, data=NULL, method="gsection", ic.type="NULL",...)
BESS_EBIC(formula = formula, data=NULL, ic.type="EBIC",...)



20 bootstrapValidation_Bin

Arguments

formula The base formula to extract the outcome

data The data to be used for training the bess model

method BeSS: Methods to be used to select the optimal model size

ic.type BeSS: Types of best model returned.

... Parameters to be passed to the BeSS::bess function

Value

fit The BsSS::bess fitted object

formula The formula

usedFeatures The list of features used by fit
selectedfeatures

The character vector of the model features according to BeSS type

Author(s)

Jorge Orozco

See Also

BeSS::bess

bootstrapValidation_Bin

Bootstrap validation of binary classification models

Description

This function bootstraps the model n times to estimate for each variable the empirical distribution
of model coefficients, area under ROC curve (AUC), integrated discrimination improvement (IDI)
and net reclassification improvement (NRI). At each bootstrap the non-observed data is predicted
by the trained model, and statistics of the test prediction are stored and reported. The method keeps
track of predictions and plots the bootstrap-validated ROC. It may plots the blind test accuracy,
sensitivity, and specificity, contrasted with the bootstrapped trained distributions.

Usage

bootstrapValidation_Bin(fraction = 1,
loops = 200,
model.formula,
Outcome,
data,
type = c("LM", "LOGIT", "COX"),
plots = FALSE,

best.model.formula=NULL)



bootstrapValidation_Bin 21

Arguments

fraction The fraction of data (sampled with replacement) to be used as train

loops The number of bootstrap loops

model.formula An object of class formula with the formula to be used

Outcome The name of the column in data that stores the variable to be predicted by the
model

data A data frame where all variables are stored in different columns

type Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")

plots Logical. If TRUE, density distribution plots are displayed
best.model.formula

An object of class formula with the formula to be used for the best model

Details

The bootstrap validation will estimate the confidence interval of the model coefficients and the
NRI and IDI. The non-sampled values will be used to estimate the blind accuracy, sensitivity, and
specificity. A plot to monitor the evolution of the bootstrap procedure will be displayed if plots
is set to TRUE. The plot shows the train and blind test ROC. The density distribution of the train
accuracy, sensitivity, and specificity are also shown, with the blind test results drawn along the
y-axis.

Value

data The data frame used to bootstrap and validate the model

outcome A vector with the predictions made by the model

blind.accuracy The accuracy of the model in the blind test set
blind.sensitivity

The sensitivity of the model in the blind test set
blind.specificity

The specificity of the model in the blind test set

train.ROCAUC A vector with the AUC in the bootstrap train sets

blind.ROCAUC An object of class roc containing the AUC in the bootstrap blind test set

boot.ROCAUC An object of class roc containing the AUC using the mean of the bootstrapped
coefficients

fraction The fraction of data that was sampled with replacement

loops The number of loops it took for the model to stabilize

base.Accuracy The accuracy of the original model
base.sensitivity

The sensitivity of the original model
base.specificity

The specificity of the original model

accuracy A vector with the accuracies in the bootstrap test sets



22 bootstrapValidation_Bin

sensitivities A vector with the sensitivities in the bootstrap test sets

specificities A vector with the specificities in the bootstrap test sets

train.accuracy A vector with the accuracies in the bootstrap train sets

train.sensitivity

A vector with the sensitivities in the bootstrap train sets

train.specificity

A vector with the specificities in the bootstrap train sets

s.coef A matrix with the coefficients in the bootstrap train sets

boot.model An object of class lm, glm, or coxph containing a model whose coefficients are
the median of the coefficients of the bootstrapped models

boot.accuracy The accuracy of the mboot.model model

boot.sensitivity

The sensitivity of the mboot.model model

boot.specificity

The specificity of the mboot.model model

z.NRIs A matrix with the z-score of the NRI for each model term, estimated using the
bootstrap train sets

z.IDIs A matrix with the z-score of the IDI for each model term, estimated using the
bootstrap train sets

test.z.NRIs A matrix with the z-score of the NRI for each model term, estimated using the
bootstrap test sets

test.z.IDIs A matrix with the z-score of the IDI for each model term, estimated using the
bootstrap test sets

NRIs A matrix with the NRI for each model term, estimated using the bootstrap test
sets

IDIs A matrix with the IDI for each model term, estimated using the bootstrap test
sets

testOutcome A vector that contains all the individual outcomes used to validate the model in
the bootstrap test sets

testPrediction A vector that contains all the individual predictions used to validate the model
in the bootstrap test sets

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

bootstrapValidation_Res, plot.bootstrapValidation_Bin, summary.bootstrapValidation_Bin



bootstrapValidation_Res 23

bootstrapValidation_Res

Bootstrap validation of regression models

Description

This function bootstraps the model n times to estimate for each variable the empirical bootstrapped
distribution of model coefficients, and net residual improvement (NeRI). At each bootstrap the non-
observed data is predicted by the trained model, and statistics of the test prediction are stores and
reported.

Usage

bootstrapValidation_Res(fraction = 1,
loops = 200,
model.formula,
Outcome,
data,
type = c("LM", "LOGIT", "COX"),
plots = FALSE,

bestmodel.formula=NULL)

Arguments

fraction The fraction of data (sampled with replacement) to be used as train

loops The number of bootstrap loops

model.formula An object of class formula with the formula to be used

Outcome The name of the column in data that stores the variable to be predicted by the
model

data A data frame where all variables are stored in different columns

type Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")

plots Logical. If TRUE, density distribution plots are displayed

bestmodel.formula

An object of class formula with the best formula to be compared

Details

The bootstrap validation will estimate the confidence interval of the model coefficients and the
NeRI. It will also compute the train and blind test root-mean-square error (RMSE), as well as the
distribution of the NeRI p-values.



24 bootstrapValidation_Res

Value

data The data frame used to bootstrap and validate the model

outcome A vector with the predictions made by the model

boot.model An object of class lm, glm, or coxph containing a model whose coefficients are
the median of the coefficients of the bootstrapped models

NeRIs A matrix with the NeRI for each model term, estimated using the bootstrap test
sets

tStudent.pvalues

A matrix with the t-test p-value of the NeRI for each model term, estimated
using the bootstrap train sets

wilcox.pvalues A matrix with the Wilcoxon rank-sum test p-value of the NeRI for each model
term, estimated using the bootstrap train sets

bin.pvalues A matrix with the binomial test p-value of the NeRI for each model term, esti-
mated using the bootstrap train sets

F.pvalues A matrix with the F-test p-value of the NeRI for each model term, estimated
using the bootstrap train sets

test.tStudent.pvalues

A matrix with the t-test p-value of the NeRI for each model term, estimated
using the bootstrap test sets

test.wilcox.pvalues

A matrix with the Wilcoxon rank-sum test p-value of the NeRI for each model
term, estimated using the bootstrap test sets

test.bin.pvalues

A matrix with the binomial test p-value of the NeRI for each model term, esti-
mated using the bootstrap test sets

test.F.pvalues A matrix with the F-test p-value of the NeRI for each model term, estimated
using the bootstrap test sets

testPrediction A vector that contains all the individual predictions used to validate the model
in the bootstrap test sets

testOutcome A vector that contains all the individual outcomes used to validate the model in
the bootstrap test sets

testResiduals A vector that contains all the residuals used to validate the model in the bootstrap
test sets

trainPrediction

A vector that contains all the individual predictions used to validate the model
in the bootstrap train sets

trainOutcome A vector that contains all the individual outcomes used to validate the model in
the bootstrap train sets

trainResiduals A vector that contains all the residuals used to validate the model in the bootstrap
train sets

testRMSE The global RMSE, estimated using the bootstrap test sets

trainRMSE The global RMSE, estimated using the bootstrap train sets



bootstrapVarElimination_Bin 25

trainSampleRMSE

A vector with the RMSEs in the bootstrap train sets
testSampledRMSE

A vector with the RMSEs in the bootstrap test sets

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

bootstrapValidation_Bin, plot.bootstrapValidation_Res

bootstrapVarElimination_Bin

IDI/NRI-based backwards variable elimination with bootstrapping

Description

This function removes model terms that do not improve the bootstrapped integrated discrimination
improvement (IDI) or net reclassification improvement (NRI) significantly.

Usage

bootstrapVarElimination_Bin(object,
pvalue = 0.05,
Outcome = "Class",
data,
startOffset = 0,
type = c("LOGIT", "LM", "COX"),
selectionType = c("zIDI", "zNRI"),
loops = 64,
print=TRUE,
plots=TRUE
)

Arguments

object An object of class lm, glm, or coxph containing the model to be analyzed

pvalue The maximum p-value, associated to either IDI or NRI, allowed for a term in
the model

Outcome The name of the column in data that stores the variable to be predicted by the
model

data A data frame where all variables are stored in different columns

startOffset Only terms whose position in the model is larger than the startOffset are
candidates to be removed



26 bootstrapVarElimination_Bin

type Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")

selectionType The type of index to be evaluated by the improveProb function (Hmisc pack-
age): z-score of IDI or of NRI

loops The number of bootstrap loops

print Logical. If TRUE, information will be displayed

plots Logical. If TRUE, plots are displayed

Details

For each model term xi, the IDI or NRI is computed for the Full model and the reduced model(
where the term xi removed). The term whose removal results in the smallest drop in bootstrapped
improvement is selected. The hypothesis: the term adds classification improvement is tested by
checking the p value of average improvement. If p(IDIorNRI) > pvalue, then the term is
removed. In other words, only model terms that significantly aid in subject classification are kept.
The procedure is repeated until no term fulfils the removal criterion.

Value

back.model An object of the same class as object containing the reduced model

loops The number of loops it took for the model to stabilize

reclas.info A list with the NRI and IDI statistics of the reduced model, as given by the
getVar.Bin function

bootCV An object of class bootstrapValidation_Bin containing the results of the
bootstrap validation in the reduced model

back.formula An object of class formula with the formula used to fit the reduced model

lastRemoved The name of the last term that was removed (-1 if all terms were removed)

at.opt.model The model will have the fitted model that had close to maximum bootstrapped
test accuracy

beforeFSC.formula

The formula of the model before False Selection Correction
at.Accuracy.formula

the string formula of the model that had the best or close to tbe best test accuracy

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

References

Pencina, M. J., D’Agostino, R. B., & Vasan, R. S. (2008). Evaluating the added predictive ability of
a new marker: from area under the ROC curve to reclassification and beyond. Statistics in medicine
27(2), 157-172.

See Also

bootstrapVarElimination_Res, backVarElimination_Bin, backVarElimination_Res



bootstrapVarElimination_Res 27

bootstrapVarElimination_Res

NeRI-based backwards variable elimination with bootstrapping

Description

This function removes model terms that do not improve the bootstrapped net residual improvement
(NeRI) significantly.

Usage

bootstrapVarElimination_Res(object,
pvalue = 0.05,
Outcome = "Class",
data,
startOffset = 0,
type = c("LOGIT", "LM", "COX"),
testType = c("Binomial",

"Wilcox",
"tStudent",
"Ftest"),

loops = 64,
setIntersect = 1,
print=TRUE,
plots=TRUE

)

Arguments

object An object of class lm, glm, or coxph containing the model to be analysed
pvalue The maximum p-value, associated to the NeRI, allowed for a term in the model
Outcome The name of the column in data that stores the variable to be predicted by the

model
data A data frame where all variables are stored in different columns
startOffset Only terms whose position in the model is larger than the startOffset are

candidates to be removed
type Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")
testType Type of non-parametric test to be evaluated by the improvedResiduals func-

tion: Binomial test ("Binomial"), Wilcoxon rank-sum test ("Wilcox"), Student’s
t-test ("tStudent"), or F-test ("Ftest")

loops The number of bootstrap loops
setIntersect The intersect of the model (To force a zero intersect, set this value to 0)
print Logical. If TRUE, information will be displayed
plots Logical. If TRUE, plots are displayed



28 BSWiMS.model

Details

For each model term xi, the residuals are computed for the Full model and the reduced model( where
the term xi removed). The term whose removal results in the smallest drop in bootstrapped test
residuals improvement is selected. The hypothesis: the term improves residuals is tested by check-
ing the p-value of average improvement. If p(residualsbetterthanreducedresiduals) > pvalue,
then the term is removed. In other words, only model terms that significantly aid in improving resid-
uals are kept. The procedure is repeated until no term fulfils the removal criterion. The p-values
of improvement can be computed via a sign-test (Binomial) a paired Wilcoxon test, paired t-test or
f-test. The first three tests compare the absolute values of the residuals, while the f-test test if the
variance of the residuals is improved significantly.

Value

back.model An object of the same class as object containing the reduced model

loops The number of loops it took for the model to stabilize

reclas.info A list with the NeRI statistics of the reduced model, as given by the getVar.Res
function

bootCV An object of class bootstrapValidation_Res containing the results of the
bootstrap validation in the reduced model

back.formula An object of class formula with the formula used to fit the reduced model

lastRemoved The name of the last term that was removed (-1 if all terms were removed)

at.opt.model The model with close to minimum bootstrapped RMSE
beforeFSC.formula

The formula of the model before the FSC stage
at.RMSE.formula

the string formula of the model that had the minimum or close to minimum
RMSE

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

bootstrapVarElimination_Bin, backVarElimination_Res, bootstrapValidation_Res

BSWiMS.model BSWiMS model selection

Description

This function returns a set of models that best predict the outcome. Based on a Bootstrap Stage
Wise Model Selection algorithm.



BSWiMS.model 29

Usage

BSWiMS.model(formula,
data,
type = c("Auto","LM","LOGIT","COX"),
testType = c("Auto","zIDI",

"zNRI",
"Binomial",
"Wilcox",
"tStudent",
"Ftest"),

pvalue=0.05,
variableList=NULL,
size=0,
loops=20,
elimination.bootstrap.steps = 200,
fraction=1.0,
maxTrainModelSize=20,
maxCycles=20,
print=FALSE,
plots=FALSE,
featureSize=0,
NumberofRepeats=1,
bagPredictType=c("Bag","wNN","Ens")
)

Arguments

formula An object of class formula with the formula to be fitted

data A data frame where all variables are stored in different columns

type The fit type. Auto will determine the fitting based on the formula

testType For an Binary-based optimization, the type of index to be evaluated by the
improveProb function (Hmisc package): z-value of Binary or of NRI. For a
NeRI-based optimization, the type of non-parametric test to be evaluated by the
improvedResiduals function: Binomial test ("Binomial"), Wilcoxon rank-sum
test ("Wilcox"), Student’s t-test ("tStudent"), or F-test ("Ftest")

pvalue The maximum p-value, associated to the testType, allowed for a term in the
model (it will control the false selection rate)

variableList A data frame with two columns. The first one must have the names of the can-
didate variables and the other one the description of such variables

size The number of candidate variables to be tested (the first size variables from
variableList)

loops The number of bootstrap loops for the forward selection procedure
elimination.bootstrap.steps

The number of bootstrap loops for the backwards elimination procedure

fraction The fraction of data (sampled with replacement) to be used as train



30 BSWiMS.model

maxTrainModelSize

Maximum number of terms that can be included in the each forward selection
model

maxCycles The maximum number of model generation cycles

print Logical. If TRUE, information will be displayed

plots Logical. If TRUE, plots are displayed

featureSize The original number of features to be explored in the data frame.

NumberofRepeats

How many times the BSWiMS search will be repeated

bagPredictType Type of prediction of the bagged formulas

Details

This is a core function of FRESA.CAD. The function will generate a set of B:SWiMS models from
the data based on the provided baseline formula. The function will loop extracting a models whose
all terms are statistical significant. After each loop it will remove the significant terms, and it will
repeat the model generation until no mode significant models are found or the maximum number of
cycles is reached.

Value

BSWiMS.model the output of the bootstrap backwards elimination step

forward.model The output of the forward selection step

update.model The output of the forward selection step

univariate The univariate ranking of variables if no list of features was provided

bagging The model after bagging the set of models

formula.list The formulas extracted at each cycle

forward.selection.list

All formulas generated by the forward selection procedure

oridinalModels A list of scores, the data and a formulas vector required for ordinal scores pre-
dictions

Author(s)

Jose G. Tamez-Pena

References

Pencina, M. J., D’Agostino, R. B., & Vasan, R. S. (2008). Evaluating the added predictive ability of
a new marker: from area under the ROC curve to reclassification and beyond. Statistics in medicine
27(2), 157-172.



BSWiMS.model 31

Examples

## Not run:

# Start the graphics device driver to save all plots in a pdf format
pdf(file = "BSWiMS.model.Example.pdf",width = 8, height = 6)

# Get the stage C prostate cancer data from the rpart package
data(stagec,package = "rpart")
options(na.action = 'na.pass')
stagec_mat <- cbind(pgstat = stagec$pgstat,

pgtime = stagec$pgtime,
as.data.frame(model.matrix(Surv(pgtime,pgstat) ~ .*.,stagec))[-1])

fnames <- colnames(stagec_mat)
fnames <- str_replace_all(fnames,":","__")
colnames(stagec_mat) <- fnames

dataCancerImputed <- nearestNeighborImpute(stagec_mat)

# Get a Cox proportional hazards model using:
# - The default parameters
md <- BSWiMS.model(formula = Surv(pgtime, pgstat) ~ 1,

data = dataCancerImputed)

#Plot the bootstrap validation
pt <- plot(md$BSWiMS.model$bootCV)

#Get the coefficients summary
sm <- summary(md)
print(sm$coefficients)

#Plot the bagged model
pl <- plotModels.ROC(cbind(dataCancerImputed$pgstat,

predict(md,dataCancerImputed)),
main = "Bagging Predictions")

# Get a Cox proportional hazards model using:
# - The default parameters but repeated 10 times
md <- BSWiMS.model(formula = Surv(pgtime, pgstat) ~ 1,

data = dataCancerImputed,
NumberofRepeats = 10)

#Get the coefficients summary
sm <- summary(md)
print(sm$coefficients)

#Check all the formulas
print(md$formula.list)

#Plot the bagged model
pl <- plotModels.ROC(cbind(dataCancerImputed$pgstat,

predict(md,dataCancerImputed)),



32 BSWiMS.model

main = "Bagging Predictions")

# Get a regression of the survival time

timeSubjects <- dataCancerImputed
timeSubjects$pgtime <- log(timeSubjects$pgtime)

md <- BSWiMS.model(formula = pgtime ~ 1,
data = timeSubjects,
)

pt <- plot(md$BSWiMS.model$bootCV)
sm <- summary(md)
print(sm$coefficients)

# Get a logistic regression model using
# - The default parameters and removing time as possible predictor
data(stagec,package = "rpart")
stagec$pgtime <- NULL
stagec_mat <- cbind(pgstat = stagec$pgstat,

as.data.frame(model.matrix(pgstat ~ .*.,stagec))[-1])
fnames <- colnames(stagec_mat)
fnames <- str_replace_all(fnames,":","__")
colnames(stagec_mat) <- fnames
dataCancerImputed <- nearestNeighborImpute(stagec_mat)

md <- BSWiMS.model(formula = pgstat ~ 1,
data = dataCancerImputed)

pt <- plot(md$BSWiMS.model$bootCV)
sm <- summary(md)
print(sm$coefficients)

# Get a ordinal regression of grade model using GBSG2 data
# - The default parameters and removing the
# time and status as possible predictor

data("GBSG2", package = "TH.data")

# Prepare the model frame for prediction
GBSG2$time <- NULL;
GBSG2$cens <- NULL;
GBSG2_mat <- cbind(tgrade = as.numeric(GBSG2$tgrade),

as.data.frame(model.matrix(tgrade~.*.,GBSG2))[-1])

fnames <- colnames(GBSG2_mat)
fnames <- str_replace_all(fnames,":","__")
colnames(GBSG2_mat) <- fnames

md <- BSWiMS.model(formula = tgrade ~ 1,
data = GBSG2_mat)



calBinProb 33

sm <- summary(md$oridinalModels$theBaggedModels[[1]]$bagged.model)
print(sm$coefficients)
sm <- summary(md$oridinalModels$theBaggedModels[[2]]$bagged.model)
print(sm$coefficients)

print(table(GBSG2_mat$tgrade,predict(md,GBSG2_mat)))

# Shut down the graphics device driver
dev.off()

## End(Not run)

calBinProb Calibrates Predicted Binary Probabilities

Description

The predicted binary probabilities are calibrated to match the observed event rate. A logistic model
is used to calibrate the predicted probability to the actual event rate.

Usage

calBinProb(BinaryOutcome=NULL,
OutcomeProbability=NULL

)

Arguments

BinaryOutcome The observed binary outcome

OutcomeProbability

The predicted probability

Value

The logistic model calibrated to the observed outcome rate

Author(s)

Jose G. Tamez-Pena



34 CalibrationProbPoissonRisk

CalibrationProbPoissonRisk

Baseline hazard and interval time Estimations

Description

It will estimate the baseline hazard (ho) and the time interval that best describes a estimations of the
probabilities of time-to-event Poisson events

Usage

CalibrationProbPoissonRisk(Riskdata,trim=0.10)
CoxRiskCalibration(ml,data,outcome,time,trim=0.10,timeInterval=NULL)

Arguments

Riskdata The data frame with thre columns: Event, Probability of event, time to event

trim The percentge of tails of data not to be used to estimate the time interval

timeInterval The time interval for event rate estimation

ml A Cox model of the events

data the new dataframe to predict the model

outcome The name of the columnt that has the event: 1 uncensored, 0; Censored

time The time to event, or time to last observation.

Details

The function will estimate the baseline hazard of Poisson events and its corresponding time interval
from a list of predicted probability that the event will occur for censored (Outome=0) of the actual
event happened (Outcome=1). If the timeInterval is not provided, the funtion will estimete the
initial time interval to be used to get the best time interval that models the rate of events.

Value

index A vector with the prognistic index based on the provided probabilities

probGZero The vector with the calibrated probabilites of the event happening

hazard The predicted hazard of each event

h0 The estimated bsaeline hazard

hazardGain The calibration gain

timeInterval The time interval of the Poisson event

meaninterval The mean observed interval of events

Ahazard The cumulated hazzard after calibration

delta The relative difference between observed and estimated number of events.



cancerVarNames 35

Author(s)

Jose G. Tamez-Pena

See Also

RRPlot

Examples

#TBD

cancerVarNames Data frame used in several examples of this package

Description

This data frame contains two columns, one with names of variables, and the other with descriptions
of such variables. It is used in several examples of this package. Specifically, it is used in examples
working with the stage C prostate cancer data from the rpart package

Usage

data(cancerVarNames)

Format

A data frame with names and descriptions of the variables used in several examples

Var A column with the names of the variables

Description A column with a short description of the variables

Examples

data(cancerVarNames)



36 ClustClass

ClustClass Hybrid Hierarchical Modeling

Description

This function returns the outcome associated features and the supervised-classifier present at each
one of the unsupervised data clusters

Usage

ClustClass(formula = formula,
data=NULL,
filtermethod=univariate_KS,
clustermethod=GMVECluster,
classmethod=LASSO_1SE,
filtermethod.control=list(pvalue=0.1,limit=21),
clustermethod.control= list(p.threshold = 0.95,

p.samplingthreshold = 0.5),
classmethod.control=list(family = "binomial"),
pca=TRUE,
normalize=TRUE
)

Arguments

formula An object of class formula with the formula to be fitted

data A data frame where all variables are stored in different columns

filtermethod The function name that will return the relevant features

clustermethod The function name that will cluster the data points

classmethod The function name of the binary classification method

filtermethod.control

A list with the parameters to be passed to the filter function

clustermethod.control

A list with the parameters to be passed to the clustering function

classmethod.control

A list with the parameters to be passed to the classification function

pca if TRUE it will compute the PCA transform

normalize if pca=TRUE and normalize=TRUE it will normalize all the data.



clusterISODATA 37

Details

This function will first call the filter function that should return the relevant a named vector with
the p-value of the features associated with the outcome. Then it will call user-supplied clustering
algorithm that must return a relevant data partition based on the discovered features. The returned
object of the clustering function must contain a $classification object indicates the class label of
each data point. Finally, the function will call the classification function on each cluster returned by
the clustering function.

Value

features The named vector of FDR adjusted p-values returned by the filtering function.

cluster The clustering function output

models The list of classification objects per data cluster

Author(s)

Jose G. Tamez-Pena

Examples

## Not run:
library(mlbench) # Location of the Sonar data set

library(mclust) # The cluster library
data(Sonar)
Sonar$Class <- 1*(Sonar$Class == "M")

#Train hierachical classifier
mc <- ClustClass(Class~.,Sonar,clustermethod=Mclust,clustermethod.control=list(G = 1:4))

#report the classification
pb <- predict(mc,Sonar)
print(table(1*(pb>0.0),Sonar$Class))

## End(Not run)

clusterISODATA Cluster Clustering using the Isodata Approach

Description

Returns the set of Gaussian Ellipsoids that best model the data

Usage

clusterISODATA(dataset,
clusteringMethod=GMVECluster,
trainFraction=0.99,
randomTests=10,
jaccardThreshold=0.45,



38 clusterISODATA

isoDataThreshold=0.75,
plot=TRUE,
...)

Arguments

dataset The data set to be clustered
clusteringMethod

The clustering method.

trainFraction The fraction of the data used to train the clusters

randomTests The number of clustering sets that will be generated
jaccardThreshold

The minimum Jaccard index to be considered for data clustering
isoDataThreshold

The minimum distance (as p.value) between gaussian clusters

plot If true it will plot the clustered points

... Parameter list to be passed to the clustering method

Details

The data will be clustered N times as defined by a number of randomTests. After clustering, the
Jaccard Index map will be generated and ordered from high to low. The mean clusters parameters
(Covariance sets) associated with the point with the highest Jaccard index will define the first clus-
ter. A cluster will be added if the Mahalanobis distance between clusters is greater than the given
acceptance p.value (isoDataThreshold) Only clusters associated with points with a Jaccard index
greater than jaccardThreshold will be considered.

Value

cluster The numeric vector with the cluster label of each point

classification The numeric vector with the cluster label of each point
robustCovariance

The list of robust covariances per cluster

pointjaccard The mean of jaccard index per data point

centers The list of cluster centers

covariances The list of cluster covariance

features The characer vector with the names of the features used

Author(s)

Jose G. Tamez-Pena



crossValidationFeatureSelection_Bin 39

crossValidationFeatureSelection_Bin

IDI/NRI-based selection of a linear, logistic, or Cox proportional haz-
ards regression model from a set of candidate variables

Description

This function performs a cross-validation analysis of a feature selection algorithm based on the
integrated discrimination improvement (IDI) or the net reclassification improvement (NRI) to return
a predictive model. It is composed of an IDI/NRI-based feature selection followed by an update
procedure, ending with a bootstrapping backwards feature elimination. The user can control how
many train and blind test sets will be evaluated.

Usage

crossValidationFeatureSelection_Bin(size = 10,
fraction = 1.0,
pvalue = 0.05,
loops = 100,
covariates = "1",
Outcome,
timeOutcome = "Time",
variableList,
data,
maxTrainModelSize = 20,
type = c("LM", "LOGIT", "COX"),
selectionType = c("zIDI", "zNRI"),
startOffset = 0,
elimination.bootstrap.steps = 100,
trainFraction = 0.67,
trainRepetition = 9,
bootstrap.steps = 100,
nk = 0,
unirank = NULL,
print=TRUE,
plots=TRUE,
lambda="lambda.1se",
equivalent=FALSE,
bswimsCycles=10,
usrFitFun=NULL,
featureSize=0)

Arguments

size The number of candidate variables to be tested (the first size variables from
variableList)

fraction The fraction of data (sampled with replacement) to be used as train



40 crossValidationFeatureSelection_Bin

pvalue The maximum p-value, associated to either IDI or NRI, allowed for a term in
the model

loops The number of bootstrap loops

covariates A string of the type "1 + var1 + var2" that defines which variables will always
be included in the models (as covariates)

Outcome The name of the column in data that stores the variable to be predicted by the
model

timeOutcome The name of the column in data that stores the time to event (needed only for a
Cox proportional hazards regression model fitting)

variableList A data frame with two columns. The first one must have the names of the can-
didate variables and the other one the description of such variables

data A data frame where all variables are stored in different columns
maxTrainModelSize

Maximum number of terms that can be included in the model

type Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")

selectionType The type of index to be evaluated by the improveProb function (Hmisc pack-
age): z-score of IDI or of NRI

startOffset Only terms whose position in the model is larger than the startOffset are
candidates to be removed

elimination.bootstrap.steps

The number of bootstrap loops for the backwards elimination procedure

trainFraction The fraction of data (sampled with replacement) to be used as train for the cross-
validation procedure

trainRepetition

The number of cross-validation folds (it should be at least equal to 1/trainFraction
for a complete cross-validation)

bootstrap.steps

The number of bootstrap loops for the confidence intervals estimation

nk The number of neighbours used to generate a k-nearest neighbours (KNN) clas-
sification. If zero, k is set to the square root of the number of cases. If less than
zero, it will not perform the KNN classification

unirank A list with the results yielded by the uniRankVar function, required only if the
rank needs to be updated during the cross-validation procedure

print Logical. If TRUE, information will be displayed

plots Logical. If TRUE, plots are displayed

lambda The passed value to the s parameter of the glmnet cross validation coefficient

equivalent Is set to TRUE CV will compute the equivalent model

bswimsCycles The maximum number of models to be returned by BSWiMS.model

usrFitFun A user fitting function to be evaluated by the cross validation procedure

featureSize The original number of features to be explored in the data frame.



crossValidationFeatureSelection_Bin 41

Details

This function produces a set of data and plots that can be used to inspect the degree of over-fitting or
shrinkage of a model. It uses bootstrapped data, cross-validation data, and, if possible, retrain data.
During each cycle, a train and a test ROC will be generated using bootstrapped data. At the end of
the cross-validation feature selection procedure, a set of three plots may be produced depending on
the specifications of the analysis. The first plot shows the ROC for each cross-validation blind test.
The second plot, if enough samples are given, shows the ROC of each model trained and tested in
the blind test partition. The final plot shows ROC curves generated with the train, the bootstrapped
blind test, and the cross-validation test data. Additionally, this plot will also contain the ROC of
the cross-validation mean test data, and of the cross-validation coherence. These set of plots may
be used to get an overall perspective of the expected model shrinkage. Along with the plots, the
function provides the overall performance of the system (accuracy, sensitivity, and specificity). The
function also produces a report of the expected performance of a KNN algorithm trained with the
selected features of the model, and an elastic net algorithm. The test predictions obtained with
these algorithms can then be compared to the predictions generated by the logistic, linear, or Cox
proportional hazards regression model.

Value

formula.list A list containing objects of class formula with the formulas used to fit the mod-
els found at each cycle

Models.testPrediction

A data frame with the blind test set predictions (Full B:SWiMS,Median,Bagged,Forward,Backwards
Eliminations) made at each fold of the cross validation, where the models used
to generate such predictions (formula.list) were generated via a feature se-
lection process which included only the train set. It also includes a column with
the Outcome of each prediction, and a column with the number of the fold at
which the prediction was made.

FullBSWiMS.testPrediction

A data frame similar to Models.testPrediction, but where the model used to
generate the predictions was the Full model, generated via a feature selection
process which included all data.

TestRetrained.blindPredictions

A data frame similar to Models.testPrediction, but where the models were
retrained on an independent set of data (only if enough samples are given at each
fold)

LastTrainBSWiMS.bootstrapped

An object of class bootstrapValidation_Bin containing the results of the
bootstrap validation in the last trained model

Test.accuracy The global blind test accuracy of the cross-validation procedure
Test.sensitivity

The global blind test sensitivity of the cross-validation procedure
Test.specificity

The global blind test specificity of the cross-validation procedure
Train.correlationsToFull

The Spearman ρ rank correlation coefficient between the predictions made with
each model from formula.list and the Full model in the train set



42 crossValidationFeatureSelection_Bin

Blind.correlationsToFull

The Spearman ρ rank correlation coefficient between the predictions made with
each model from formula.list and the Full model in the test set

FullModelAtFoldAccuracies

The blind test accuracy for the Full model at each cross-validation fold
FullModelAtFoldSpecificties

The blind test specificity for the Full model at each cross-validation fold
FullModelAtFoldSensitivities

The blind test sensitivity for the Full model at each cross-validation fold
FullModelAtFoldAUC

The blind test ROC AUC for the Full model at each cross-validation fold
AtCVFoldModelBlindAccuracies

The blind test accuracy for the Full model at each final cross-validation fold
AtCVFoldModelBlindSpecificities

The blind test specificity for the Full model at each final cross-validation fold
AtCVFoldModelBlindSensitivities

The blind test sensitivity for the Full model at each final cross-validation fold
CVTrain.Accuracies

The train accuracies at each fold
CVTrain.Sensitivity

The train sensitivity at each fold
CVTrain.Specificity

The train specificity at each fold

CVTrain.AUCs The train ROC AUC for each fold
forwardSelection

A list containing the values returned by ForwardSelection.Model.Bin using
all data

updateforwardSelection

A list containing the values returned by updateModel.Bin using all data and
the model from forwardSelection

BSWiMS A list containing the values returned by bootstrapVarElimination_Bin using
all data and the model from updateforwardSelection

FullBSWiMS.bootstrapped

An object of class bootstrapValidation_Bin containing the results of the
bootstrap validation in the Full model

Models.testSensitivities

A matrix with the mean ROC sensitivities at certain specificities for each train
and all test cross-validation folds using the cross-validation models (i.e. 0.95,
0.90, 0.80, 0.70, 0.60, 0.50, 0.40, 0.30, 0.20, 0.10, and 0.05)

FullKNN.testPrediction

A data frame similar to Models.testPrediction, but where a KNN classifier
with the same features as the Full model was used to generate the predictions

KNN.testPrediction

A data frame similar to Models.testPrediction, but where KNN classifiers
with the same features as the cross-validation models were used to generate the
predictions at each cross-validation fold



crossValidationFeatureSelection_Bin 43

Fullenet An object of class cv.glmnet containing the results of an elastic net cross-
validation fit

LASSO.testPredictions

A data frame similar to Models.testPrediction, but where the predictions
were made by the elastic net model

LASSOVariables A list with the elastic net Full model and the models found at each cross-
validation fold

uniTrain.Accuracies

The list of accuracies of an univariate analysis on each one of the model vari-
ables in the train sets

uniTest.Accuracies

The list of accuracies of an univariate analysis on each one of the model vari-
ables in the test sets

uniTest.TopCoherence

The accuracy coherence of the top ranked variable on the test set
uniTrain.TopCoherence

The accuracy coherence of the top ranked variable on the train set
Models.trainPrediction

A data frame with the outcome and the train prediction of every model
FullBSWiMS.trainPrediction

A data frame with the outcome and the train prediction at each CV fold for the
main model

LASSO.trainPredictions

A data frame with the outcome and the prediction of each enet lasso model
BSWiMS.ensemble.prediction

The ensemble prediction by all models on the test data
AtOptFormulas.list

The list of formulas with "optimal" performance
ForwardFormulas.list

The list of formulas produced by the forward procedure
baggFormulas.list

The list of the bagged models
LassoFilterVarList

The list of variables used by LASSO fitting

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

References

Pencina, M. J., D’Agostino, R. B., & Vasan, R. S. (2008). Evaluating the added predictive ability of
a new marker: from area under the ROC curve to reclassification and beyond. Statistics in medicine
27(2), 157-172.

See Also

crossValidationFeatureSelection_Res, ForwardSelection.Model.Bin, ForwardSelection.Model.Res



44 crossValidationFeatureSelection_Res

crossValidationFeatureSelection_Res

NeRI-based selection of a linear, logistic, or Cox proportional hazards
regression model from a set of candidate variables

Description

This function performs a cross-validation analysis of a feature selection algorithm based on net
residual improvement (NeRI) to return a predictive model. It is composed of a NeRI-based feature
selection followed by an update procedure, ending with a bootstrapping backwards feature elimina-
tion. The user can control how many train and blind test sets will be evaluated.

Usage

crossValidationFeatureSelection_Res(size = 10,
fraction = 1.0,
pvalue = 0.05,
loops = 100,
covariates = "1",
Outcome,
timeOutcome = "Time",
variableList,
data,
maxTrainModelSize = 20,
type = c("LM", "LOGIT", "COX"),
testType = c("Binomial",

"Wilcox",
"tStudent",
"Ftest"),

startOffset = 0,
elimination.bootstrap.steps = 100,
trainFraction = 0.67,
trainRepetition = 9,
setIntersect = 1,
unirank = NULL,
print=TRUE,
plots=TRUE,
lambda="lambda.1se",
equivalent=FALSE,
bswimsCycles=10,
usrFitFun=NULL,
featureSize=0)

Arguments

size The number of candidate variables to be tested (the first size variables from
variableList)



crossValidationFeatureSelection_Res 45

fraction The fraction of data (sampled with replacement) to be used as train

pvalue The maximum p-value, associated to the NeRI, allowed for a term in the model

loops The number of bootstrap loops

covariates A string of the type "1 + var1 + var2" that defines which variables will always
be included in the models (as covariates)

Outcome The name of the column in data that stores the variable to be predicted by the
model

timeOutcome The name of the column in data that stores the time to event (needed only for a
Cox proportional hazards regression model fitting)

variableList A data frame with two columns. The first one must have the names of the can-
didate variables and the other one the description of such variables

data A data frame where all variables are stored in different columns
maxTrainModelSize

Maximum number of terms that can be included in the model

type Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")

testType Type of non-parametric test to be evaluated by the improvedResiduals func-
tion: Binomial test ("Binomial"), Wilcoxon rank-sum test ("Wilcox"), Student’s
t-test ("tStudent"), or F-test ("Ftest")

startOffset Only terms whose position in the model is larger than the startOffset are
candidates to be removed

elimination.bootstrap.steps

The number of bootstrap loops for the backwards elimination procedure

trainFraction The fraction of data (sampled with replacement) to be used as train for the cross-
validation procedure

setIntersect The intersect of the model (To force a zero intersect, set this value to 0)
trainRepetition

The number of cross-validation folds (it should be at least equal to 1/trainFraction
for a complete cross-validation)

unirank A list with the results yielded by the uniRankVar function, required only if the
rank needs to be updated during the cross-validation procedure

print Logical. If TRUE, information will be displayed

plots Logical. If TRUE, plots are displayed

lambda The passed value to the s parameter of the glmnet cross validation coefficient

equivalent Is set to TRUE CV will compute the equivalent model

bswimsCycles The maximum number of models to be returned by BSWiMS.model

usrFitFun A user fitting function to be evaluated by the cross validation procedure

featureSize The original number of features to be explored in the data frame.

Details

This function produces a set of data and plots that can be used to inspect the degree of over-fitting
or shrinkage of a model. It uses bootstrapped data, cross-validation data, and, if possible, retrain
data.



46 crossValidationFeatureSelection_Res

Value

formula.list A list containing objects of class formula with the formulas used to fit the mod-
els found at each cycle

Models.testPrediction

A data frame with the blind test set predictions made at each fold of the cross val-
idation (Full B:SWiMS,Median,Bagged,Forward,Backward Elimination), where
the models used to generate such predictions (formula.list) were generated
via a feature selection process which included only the train set. It also includes
a column with the Outcome of each prediction, and a column with the number
of the fold at which the prediction was made.

FullBSWiMS.testPrediction

A data frame similar to Models.testPrediction, but where the model used to
generate the predictions was the Full model, generated via a feature selection
process which included all data.

BSWiMS A list containing the values returned by bootstrapVarElimination_Res using
all data and the model from updatedforwardModel

forwardSelection

A list containing the values returned by ForwardSelection.Model.Res using
all data

updatedforwardModel

A list containing the values returned by updateModel.Res using all data and
the model from forwardSelection

testRMSE The global blind test root-mean-square error (RMSE) of the cross-validation
procedure

testPearson The global blind test Pearson r product-moment correlation coefficient of the
cross-validation procedure

testSpearman The global blind test Spearman ρ rank correlation coefficient of the cross-validation
procedure

FulltestRMSE The global blind test RMSE of the Full model
FullTestPearson

The global blind test Pearson r product-moment correlation coefficient of the
Full model

FullTestSpearman

The global blind test Spearman ρ rank correlation coefficient of the Full model

trainRMSE The train RMSE at each fold of the cross-validation procedure

trainPearson The train Pearson r product-moment correlation coefficient at each fold of the
cross-validation procedure

trainSpearman The train Spearman ρ rank correlation coefficient at each fold of the cross-
validation procedure

FullTrainRMSE The train RMSE of the Full model at each fold of the cross-validation procedure
FullTrainPearson

The train Pearson r product-moment correlation coefficient of the Full model at
each fold of the cross-validation procedure



crossValidationFeatureSelection_Res 47

FullTrainSpearman

The train Spearman ρ rank correlation coefficient of the Full model at each fold
of the cross-validation procedure

testRMSEAtFold The blind test RMSE at each fold of the cross-validation procedure
FullTestRMSEAtFold

The blind test RMSE of the Full model at each fold of the cross-validation pro-
cedure

Fullenet An object of class cv.glmnet containing the results of an elastic net cross-
validation fit

LASSO.testPredictions

A data frame similar to Models.testPrediction, but where the predictions
were made by the elastic net model

LASSOVariables A list with the elastic net Full model and the models found at each cross-
validation fold

byFoldTestMS A vector with the Mean Square error for each blind fold
byFoldTestSpearman

A vector with the Spearman correlation between prediction and outcome for
each blind fold

byFoldTestPearson

A vector with the Pearson correlation between prediction and outcome for each
blind fold

byFoldCstat A vector with the C-index (Somers’ Dxy rank correlation :rcorr.cens) between
prediction and outcome for each blind fold

CVBlindPearson A vector with the Pearson correlation between the outcome and prediction for
each repeated experiment

CVBlindSpearman

A vector with the Spearm correlation between the outcome and prediction for
each repeated experiment

CVBlindRMS A vector with the RMS between the outcome and prediction for each repeated
experiment

Models.trainPrediction

A data frame with the outcome and the train prediction of every model
FullBSWiMS.trainPrediction

A data frame with the outcome and the train prediction at each CV fold for the
main model

LASSO.trainPredictions

A data frame with the outcome and the prediction of each enet lasso model

uniTrainMSS A data frame with mean square of the train residuals from the univariate models
of the model terms

uniTestMSS A data frame with mean square of the test residuals of the univariate models of
the model terms

BSWiMS.ensemble.prediction

The ensemble prediction by all models on the test data
AtOptFormulas.list

The list of formulas with "optimal" performance



48 CVsignature

ForwardFormulas.list

The list of formulas produced by the forward procedure
baggFormulas.list

The list of the bagged models
LassoFilterVarList

The list of variables used by LASSO fitting

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

crossValidationFeatureSelection_Bin, improvedResiduals, bootstrapVarElimination_Res

CVsignature Cross-validated Signature

Description

A formula based wrapper of the getSignature function

Usage

CVsignature(formula = formula,data=NULL,...)

Arguments

formula The base formula

data The data to be used for training the signature method

... Parameters for the getSignature function

Value

fit A getSignature object.

method The distance method
variable.importance

The named vector of relevant features

Author(s)

Jose G. Tamez-Pena

See Also

getSignature,signatureDistance



EmpiricalSurvDiff 49

EmpiricalSurvDiff Estimate the LR value and its associated p-values

Description

Permutations or Bootstrapping computation of the standardized log-rank (SLR) or the Chi=SLR^2
p-values for differences in survival times

Usage

EmpiricalSurvDiff(times=times,
status=status,
groups=groups,
samples=1000,
type=c("SLR","Chi"),
plots=FALSE,
minAproxSamples=100,
computeDist=FALSE,
...
)

Arguments

times A numeric vector with he observed times to event

status A numeric vector indicating if the time to event is censored

groups A numeric vector indicating the label of the two survival groups

samples The number of bootstrap samples

type The type of log-rank statistics. SLR or Chi

plots If TRUE, the Kaplan-Meier plot will be plotted
minAproxSamples

The number of tail samples used for the normal-distribution approximation

computeDist If TRUE, it will compute the bootstrapped distribution of the SLR

... Additional parameters for the plot

Details

It will compute the null distribution of the SRL or the square SLR (Chi) via permutations, and it
will return the p-value of differences between survival times between two groups. It may also be
used to compute the empirical distribution of the difference in SLR using bootstrapping. (com-
puteDist=TRUE) The p-values will be estimated based on the sampled distribution, or normal-
approximated along the tails.



50 EmpiricalSurvDiff

Value

pvalue the minimum one-tailed p-value : min[p(SRL < 0),p(SRL > 0)] for type="SLR"
or the two tailed p-value: 1-p(|SRL| > 0) for type="Chi"

LR A list of LR statistics: LR=Expected, VR=Variance, SLR=Standardized LR.

p.equal The two tailed p-value: 1-p(|SRL| > 0)

p.sup The one tailed p-value: p(SRL < 0), return NA for type="Chi"

p.inf The one tailed p-value: p(SRL > 0), return NA for type="Chi"

nullDist permutation derived probability density function of the null distribution

LRDist bootstrapped derived probability density function of the SLR (computeDist=TRUE)

Author(s)

Jose G. Tamez-Pena

Examples

## Not run:

library(rpart)
data(stagec)

# The Log-Rank Analysis using survdiff

lrsurvdiff <- survdiff(Surv(pgtime,pgstat)~grade>2,data=stagec)
print(lrsurvdiff)

# The Log-Rank Analysis: permutations of the null Chi distribution
lrp <- EmpiricalSurvDiff(stagec$pgtime,stagec$pgstat,stagec$grade>2,

type="Chi",plots=TRUE,samples=10000,
main="Chi Null Distribution")

print(list(unlist(c(lrp$LR,lrp$pvalue))))

# The Log-Rank Analysis: permutations of the null SLR distribution
lrp <- EmpiricalSurvDiff(stagec$pgtime,stagec$pgstat,stagec$grade>2,

type="SLR",plots=TRUE,samples=10000,
main="SLR Null Distribution")

print(list(unlist(c(lrp$LR,lrp$pvalue))))

# The Log-Rank Analysis: Bootstraping the SLR distribution
lrp <- EmpiricalSurvDiff(stagec$pgtime,stagec$pgstat,stagec$grade>2,

computeDist=TRUE,plots=TRUE,samples=100000,
main="SLR Null and SLR bootrapped")

print(list(unlist(c(lrp$LR,lrp$pvalue))))

## End(Not run)



ensemblePredict 51

ensemblePredict The median prediction from a list of models

Description

Given a list of model formulas, this function will train such models and return the a single(ensemble)
prediction from the list of formulas on a test data set. It may also provides a k-nearest neighbors
(KNN) prediction using the features listed in such models.

Usage

ensemblePredict(formulaList,
trainData,
testData = NULL,
predictType = c("prob", "linear"),
type = c("LOGIT", "LM", "COX","SVM"),
Outcome = NULL,
nk = 0

)

Arguments

formulaList A list made of objects of class formula, each representing a model formula to
be fitted and predicted with

trainData A data frame with the data to train the model, where all variables are stored in
different columns

testData A data frame similar to trainData, but with the data set to be predicted. If
NULL, trainData will be used

predictType Prediction type: Probability ("prob") or linear predictor ("linear")

type Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")

Outcome The name of the column in data that stores the variable to be predicted by the
model

nk The number of neighbors used to generate the KNN classification. If zero, k is
set to the square root of the number of cases. If less than zero, it will not perform
the KNN classification

Value
ensemblePredict

A vector with the median prediction for the testData data set, using the models
from formulaList

medianKNNPredict

A vector with the median prediction for the testData data set, using the KNN
models

predictions A matrix, where each column represents the predictions made with each model
from formulaList



52 featureAdjustment

KNNpredictions A matrix, where each column represents the predictions made with a different
KNN model

wPredict A vector with the weighted mean ensemble

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

featureAdjustment Adjust each listed variable to the provided set of covariates

Description

This function fits the candidate variables to the provided model formula,for each strata, on a control
population. If the variance of the residual (the fitted observation minus the real observation) is
reduced significantly, then, such residual is used in the resulting data frame. Otherwise, the control
mean is subtracted to the observation.

Usage

featureAdjustment(variableList,
baseFormula,
strata = NA,
data,
referenceframe,
type = c("LM", "GLS", "RLM","NZLM","SPLINE","MARS","LOESS"),
pvalue = 0.05,
correlationGroup = "ID",
...
)

Arguments

variableList A data frame with two columns. The first one must have the names of the can-
didate variables and the other one the description of such variables

baseFormula A string of the type "var1 +...+ varn" that defines the model formula to which
variables will be fitted

strata The name of the column in data that stores the variable that will be used to
stratify the fitting

data A data frame where all variables are stored in different columns

referenceframe A data frame similar to data, but with only the control population

type Fit type: linear fitting ("LM"), generalized least squares fitting ("GLS") or Ro-
bust ("RLM")

pvalue The maximum p-value, associated to the F-test, for the model to be allowed to
reduce variability



filteredFit 53

correlationGroup

The name of the column in data that stores the variable to be used to group the
data (only needed if type defined as "GLS")

... parameters for smooth.spline,loess or mda::mars)

Value

A data frame, where each input observation has been adjusted from data at each strata

Note

This function prints the residuals and the F-statistic for all candidate variables

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

filteredFit A generic pipeline of Feature Selection, Transformation, Scale and fit

Description

Sequential application of feature selection, linear transformation, data scaling then fit

Usage

filteredFit(formula = formula,
data=NULL,
filtermethod=univariate_KS,
filtermethod.control=list(limit=0),

Transf=c("none","PCA","CCA","ILAA"),
Transf.control=list(thr=0.8),

Scale="none",
Scale.control=list(strata=NA),
refNormIDs=NULL,
trainIDs=NULL,

fitmethod=e1071::svm,
...
)

Arguments

formula the base formula to extract the outcome

data the data to be used for training the KNN method

filtermethod the method for feature selection
filtermethod.control

the set of parameters required by the feature selection function



54 FilterUnivariate

Scale Scale the data using the provided method

Scale.control Scale parameters

Transf Data transformations: "none","PCA","CCA" or "ILAA",

Transf.control Parameters to the transformation function

fitmethod The fit function to be used

trainIDs The list of sample IDs to be used for training

refNormIDs The list of sample IDs to be used for transformations. ie. Reference Control IDs

... Parameters for the fitting function

Value

fit The fitted model

filter The output of the feature selection function
selectedfeatures

The character vector with all the selected features

usedFeatures The set of features used for training

parameters The parameters passed to the fitting method

asFactor Indicates if the fitting was to a factor

classLen The number of possible outcomes

Author(s)

Jose G. Tamez-Pena

FilterUnivariate Univariate Filters

Description

Returns the top set of features that are statistically associated with the outcome.

Usage

univariate_Logit(data=NULL, Outcome=NULL, pvalue=0.2, adjustMethod="BH",
uniTest=c("zIDI","zNRI"),limit=0,...,n=0)

univariate_residual(data=NULL, Outcome=NULL, pvalue=0.2, adjustMethod="BH",
uniTest=c("Ftest","Binomial","Wilcox","tStudent"),
type=c("LM","LOGIT"),limit=0,...,n=0)

univariate_tstudent(data=NULL, Outcome=NULL, pvalue=0.2, adjustMethod="BH",
limit=0,...,n=0)

univariate_Wilcoxon(data=NULL, Outcome=NULL, pvalue=0.2, adjustMethod="BH",
limit=0,...,n=0)

univariate_KS(data=NULL, Outcome=NULL, pvalue=0.2, adjustMethod="BH",
limit=0,...,n=0)



FilterUnivariate 55

univariate_DTS(data=NULL, Outcome=NULL, pvalue=0.2, adjustMethod="BH",
limit=0,...,n=0)

univariate_correlation(data=NULL, Outcome=NULL, pvalue=0.2, adjustMethod="BH",
method = "kendall",limit=0,...,n=0)

univariate_cox(data=NULL, Outcome=NULL, pvalue=0.2, adjustMethod="BH",
limit=0,...,n=0)

univariate_BinEnsemble(data,Outcome, pvalue=0.2,limit=0,adjustMethod="BH",...)
univariate_Strata(data,Outcome,pvalue=0.2,limit=0,

adjustMethod="BH",
unifilter=univariate_BinEnsemble,strata="Gender",...)

correlated_Remove(data=NULL,fnames=NULL,thr=0.999,isDataCorMatrix=FALSE)

Arguments

data The data frame

Outcome The outcome feature

pvalue The threshold pvalue used after the p.adjust method

adjustMethod The method used by the p.adjust method

uniTest The unitTest to be performed by the linear fitting model

type The type of linear model: LM or LOGIT

method The correlation method: pearson,spearman or kendall.

limit The samples-wise fraction of features to return.

fnames The list of features to test inside the correlated_Remove function

thr The maximum correlation to allow between features

unifilter The filter function to be stratified

strata The feature to be used for data stratification

... Parameters to be passed to the correlated_Remove function

n the number of original features passed to p.adjust
isDataCorMatrix

The provided data is the correlation matrix

Value

Named vector with the adjusted p-values or the list of no-correlated features for the correlated_Remove

Author(s)

Jose G. Tamez-Pena

Examples

## Not run:

library("FRESA.CAD")

### Univariate Filter Examples ####



56 FilterUnivariate

# Get the stage C prostate cancer data from the rpart package
data(stagec,package = "rpart")

# Prepare the data. Create a model matrix without the event time and interactions
stagec$pgtime <- NULL
stagec$eet <- as.factor(stagec$eet)
options(na.action = 'na.pass')
stagec_mat <- cbind(pgstat = stagec$pgstat,

as.data.frame(model.matrix(pgstat ~ .*.,stagec))[-1])
fnames <- colnames(stagec_mat)
fnames <- str_replace_all(fnames,":","__")
colnames(stagec_mat) <- fnames

# Impute the missing data
dataCancerImputed <- nearestNeighborImpute(stagec_mat)

dataCancerImputed[,1:ncol(dataCancerImputed)] <- sapply(dataCancerImputed,as.numeric)

# Get the top Features associated to pgstat

q_values <- univariate_Logit(data=dataCancerImputed,
Outcome="pgstat",
pvalue = 0.05)

qValueMatrix <- q_values
idiqValueMatrix <- q_values
barplot(-log(q_values),las=2,cex.names=0.4,ylab="-log(Q)",
main="Association with PGStat: IDI Test")

q_values <- univariate_Logit(data=dataCancerImputed,
Outcome="pgstat",
uniTest="zNRI",pvalue = 0.05)

qValueMatrix <- cbind(idiqValueMatrix,q_values[names(idiqValueMatrix)])

q_values <- univariate_residual(data=dataCancerImputed,
Outcome="pgstat",
pvalue = 0.05,type="LOGIT")

qValueMatrix <- cbind(qValueMatrix,q_values[names(idiqValueMatrix)])

q_values <- univariate_tstudent(data=dataCancerImputed,
Outcome="pgstat",
pvalue = 0.05)

qValueMatrix <- cbind(qValueMatrix,q_values[names(idiqValueMatrix)])

q_values <- univariate_Wilcoxon(data=dataCancerImputed,
Outcome="pgstat",
pvalue = 0.05)

qValueMatrix <- cbind(qValueMatrix,q_values[names(idiqValueMatrix)])

q_values <- univariate_correlation(data=dataCancerImputed,
Outcome="pgstat",
pvalue = 0.05)

qValueMatrix <- cbind(qValueMatrix,q_values[names(idiqValueMatrix)])



ForwardSelection.Model.Bin 57

q_values <- univariate_correlation(data=dataCancerImputed,
Outcome="pgstat",
pvalue = 0.05,
method = "pearson")

#The qValueMatrix has the qValues of all filter methods.
qValueMatrix <- cbind(qValueMatrix,q_values[names(idiqValueMatrix)])
colnames(qValueMatrix) <- c("IDI","NRI","F","t","W","K","P")
#Do the log transform to display the heatmap
qValueMatrix <- -log10(qValueMatrix)
#the Heatmap of the q-values
gplots::heatmap.2(qValueMatrix,Rowv = FALSE,dendrogram = "col",
main = "Method q.values",cexRow = 0.4)

## End(Not run)

ForwardSelection.Model.Bin

IDI/NRI-based feature selection procedure for linear, logistic, and Cox
proportional hazards regression models

Description

This function performs a bootstrap sampling to rank the variables that statistically improve pre-
diction. After the frequency rank, the function uses a forward selection procedure to create a final
model, whose terms all have a significant contribution to the integrated discrimination improvement
(IDI) or the net reclassification improvement (NRI). For each bootstrap, the IDI/NRI is computed
and the variable with the largest statically significant IDI/NRI is added to the model. The procedure
is repeated at each bootstrap until no more variables can be inserted. The variables that enter the
model are then counted, and the same procedure is repeated for the rest of the bootstrap loops. The
frequency of variable-inclusion in the model is returned as well as a model that uses the frequency
of inclusion.

Usage

ForwardSelection.Model.Bin(size = 100,
fraction = 1,
pvalue = 0.05,
loops = 100,
covariates = "1",
Outcome,
variableList,
data,
maxTrainModelSize = 20,
type = c("LM", "LOGIT", "COX"),
timeOutcome = "Time",



58 ForwardSelection.Model.Bin

selectionType=c("zIDI", "zNRI"),
cores = 6,
randsize = 0,
featureSize=0)

Arguments

size The number of candidate variables to be tested (the first size variables from
variableList)

fraction The fraction of data (sampled with replacement) to be used as train

pvalue The maximum p-value, associated to either IDI or NRI, allowed for a term in
the model

loops The number of bootstrap loops

covariates A string of the type "1 + var1 + var2" that defines which variables will always
be included in the models (as covariates)

Outcome The name of the column in data that stores the variable to be predicted by the
model

variableList A data frame with two columns. The first one must have the names of the can-
didate variables and the other one the description of such variables

data A data frame where all variables are stored in different columns
maxTrainModelSize

Maximum number of terms that can be included in the model

type Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")

timeOutcome The name of the column in data that stores the time to event (needed only for a
Cox proportional hazards regression model fitting)

selectionType The type of index to be evaluated by the improveProb function (Hmisc pack-
age): z-score of IDI or of NRI

cores Cores to be used for parallel processing

randsize the model size of a random outcome. If randsize is less than zero. It will estimate
the size

featureSize The original number of features to be explored in the data frame.

Value

final.model An object of class lm, glm, or coxph containing the final model

var.names A vector with the names of the features that were included in the final model

formula An object of class formula with the formula used to fit the final model

ranked.var An array with the ranked frequencies of the features

z.selection A vector in which each term represents the z-score of the index defined in
selectionType obtained with the Full model and the model without one term

formula.list A list containing objects of class formula with the formulas used to fit the mod-
els found at each cycle

variableList A list of variables used in the forward selection



ForwardSelection.Model.Res 59

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

References

Pencina, M. J., D’Agostino, R. B., & Vasan, R. S. (2008). Evaluating the added predictive ability of
a new marker: from area under the ROC curve to reclassification and beyond. Statistics in medicine
27(2), 157-172.

See Also

ForwardSelection.Model.Res

ForwardSelection.Model.Res

NeRI-based feature selection procedure for linear, logistic, or Cox pro-
portional hazards regression models

Description

This function performs a bootstrap sampling to rank the most frequent variables that statistically
aid the models by minimizing the residuals. After the frequency rank, the function uses a forward
selection procedure to create a final model, whose terms all have a significant contribution to the
net residual improvement (NeRI).

Usage

ForwardSelection.Model.Res(size = 100,
fraction = 1,
pvalue = 0.05,
loops = 100,
covariates = "1",
Outcome,
variableList,
data,
maxTrainModelSize = 20,
type = c("LM", "LOGIT", "COX"),
testType=c("Binomial", "Wilcox", "tStudent", "Ftest"),
timeOutcome = "Time",
cores = 6,
randsize = 0,
featureSize=0)



60 ForwardSelection.Model.Res

Arguments

size The number of candidate variables to be tested (the first size variables from
variableList)

fraction The fraction of data (sampled with replacement) to be used as train
pvalue The maximum p-value, associated to the NeRI, allowed for a term in the model

(controls the false selection rate)
loops The number of bootstrap loops
covariates A string of the type "1 + var1 + var2" that defines which variables will always

be included in the models (as covariates)
Outcome The name of the column in data that stores the variable to be predicted by the

model
variableList A data frame with two columns. The first one must have the names of the can-

didate variables and the other one the description of such variables
data A data frame where all variables are stored in different columns
maxTrainModelSize

Maximum number of terms that can be included in the model
type Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")
testType Type of non-parametric test to be evaluated by the improvedResiduals func-

tion: Binomial test ("Binomial"), Wilcoxon rank-sum test ("Wilcox"), Student’s
t-test ("tStudent"), or F-test ("Ftest")

timeOutcome The name of the column in data that stores the time to event (needed only for a
Cox proportional hazards regression model fitting)

cores Cores to be used for parallel processing
randsize the model size of a random outcome. If randsize is less than zero. It will estimate

the size
featureSize The original number of features to be explored in the data frame.

Value

final.model An object of class lm, glm, or coxph containing the final model
var.names A vector with the names of the features that were included in the final model
formula An object of class formula with the formula used to fit the final model
ranked.var An array with the ranked frequencies of the features
formula.list A list containing objects of class formula with the formulas used to fit the mod-

els found at each cycle
variableList A list of variables used in the forward selection

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

ForwardSelection.Model.Bin



FRESA.Model 61

FRESA.Model Automated model selection

Description

This function uses a wrapper procedure to select the best features of a non-penalized linear model
that best predict the outcome, given the formula of an initial model template (linear, logistic, or Cox
proportional hazards), an optimization procedure, and a data frame. A filter scheme may be enabled
to reduce the search space of the wrapper procedure. The false selection rate may be empirically
controlled by enabling bootstrapping, and model shrinkage can be evaluated by cross-validation.

Usage

FRESA.Model(formula,
data,
OptType = c("Binary", "Residual"),
pvalue = 0.05,
filter.p.value = 0.10,
loops = 32,
maxTrainModelSize = 20,
elimination.bootstrap.steps = 100,
bootstrap.steps = 100,
print = FALSE,
plots = FALSE,
CVfolds = 1,
repeats = 1,
nk = 0,
categorizationType = c("Raw",

"Categorical",
"ZCategorical",
"RawZCategorical",
"RawTail",
"RawZTail",
"Tail",
"RawRaw"),

cateGroups = c(0.1, 0.9),
raw.dataFrame = NULL,
var.description = NULL,
testType = c("zIDI",

"zNRI",
"Binomial",
"Wilcox",
"tStudent",
"Ftest"),

lambda="lambda.1se",
equivalent=FALSE,
bswimsCycles=20,



62 FRESA.Model

usrFitFun=NULL
)

Arguments

formula An object of class formula with the formula to be fitted

data A data frame where all variables are stored in different columns

OptType Optimization type: Based on the integrated discrimination improvement (Bi-
nary) index for binary classification ("Binary"), or based on the net residual
improvement (NeRI) index for linear regression ("Residual")

pvalue The maximum p-value, associated to the testType, allowed for a term in the
model (it will control the false selection rate)

filter.p.value The maximum p-value, for a variable to be included to the feature selection
procedure

loops The number of bootstrap loops for the forward selection procedure
maxTrainModelSize

Maximum number of terms that can be included in the model
elimination.bootstrap.steps

The number of bootstrap loops for the backwards elimination procedure
bootstrap.steps

The number of bootstrap loops for the bootstrap validation procedure

print Logical. If TRUE, information will be displayed

plots Logical. If TRUE, plots are displayed

CVfolds The number of folds for the final cross-validation

repeats The number of times that the cross-validation procedure will be repeated

nk The number of neighbors used to generate a k-nearest neighbors (KNN) classi-
fication. If zero, k is set to the square root of the number of cases. If less than
zero, it will not perform the KNN classification

categorizationType

How variables will be analyzed: As given in data ("Raw"); broken into the
p-value categories given by cateGroups ("Categorical"); broken into the p-
value categories given by cateGroups, and weighted by the z-score ("ZCate-
gorical"); broken into the p-value categories given by cateGroups, weighted by
the z-score, plus the raw values ("RawZCategorical"); raw values, plus the tails
("RawTail"); or raw values, weighted by the z-score, plus the tails ("RawZTail")

cateGroups A vector of percentiles to be used for the categorization procedure

raw.dataFrame A data frame similar to data, but with unadjusted data, used to get the means
and variances of the unadjusted data

var.description

A vector of the same length as the number of columns of data, containing a
description of the variables



FRESA.Model 63

testType For an Binary-based optimization, the type of index to be evaluated by the
improveProb function (Hmisc package): z-value of Binary or of NRI. For a
NeRI-based optimization, the type of non-parametric test to be evaluated by the
improvedResiduals function: Binomial test ("Binomial"), Wilcoxon rank-sum
test ("Wilcox"), Student’s t-test ("tStudent"), or F-test ("Ftest")

lambda The passed value to the s parameter of the glmnet cross validation coefficient

equivalent Is set to TRUE CV will compute the equivalent model

bswimsCycles The maximum number of models to be returned by BSWiMS.model

usrFitFun An optional user provided fitting function to be evaluated by the cross validation
procedure: fitting: usrFitFun(formula,data), with a predict function

Details

This important function of FRESA.CAD will model or cross validate the models. Given an outcome
formula, and a data.frame this function will do an univariate analysis of the data (univariateRankVariables),
then it will select the top ranked variables; after that it will select the model that best describes the
outcome. At output it will return the bootstrapped performance of the model (bootstrapValidation_Bin
or bootstrapValidation_Res). It can be set to report the cross-validation performance of the se-
lection process which will return either a crossValidationFeatureSelection_Bin or a crossValidationFeatureSelection_Res
object.

Value

BSWiMS.model An object of class lm, glm, or coxph containing the final model

reducedModel The resulting object of the backward elimination procedure
univariateAnalysis

A data frame with the results from the univariate analysis

forwardModel The resulting object of the feature selection function.
updatedforwardModel

The resulting object of the the update procedure
bootstrappedModel

The resulting object of the bootstrap procedure on final.model

cvObject The resulting object of the cross-validation procedure

used.variables The number of terms that passed the filter procedure

call the function call

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

References

Pencina, M. J., D’Agostino, R. B., & Vasan, R. S. (2008). Evaluating the added predictive ability of
a new marker: from area under the ROC curve to reclassification and beyond. Statistics in medicine
27(2), 157-172.



64 FRESA.Model

Examples

## Not run:

# Start the graphics device driver to save all plots in a pdf format
pdf(file = "FRESA.Model.Example.pdf",width = 8, height = 6)
# Get the stage C prostate cancer data from the rpart package
data(stagec,package = "rpart")
options(na.action = 'na.pass')
stagec_mat <- cbind(pgstat = stagec$pgstat,

pgtime = stagec$pgtime,
as.data.frame(model.matrix(Surv(pgtime,pgstat) ~ .,stagec))[-1])

data(cancerVarNames)
dataCancerImputed <- nearestNeighborImpute(stagec_mat)

# Get a Cox proportional hazards model using:
# - The default parameters
md <- FRESA.Model(formula = Surv(pgtime, pgstat) ~ 1,

data = dataCancerImputed,
var.description = cancerVarNames[,2])

pt <- plot(md$bootstrappedModel)
sm <- summary(md$BSWiMS.model)
print(sm$coefficients)

# Get a 10 fold CV Cox proportional hazards model using:
# - Repeat 10 times de CV
md <- FRESA.Model(formula = Surv(pgtime, pgstat) ~ 1,

data = dataCancerImputed, CVfolds = 10,
repeats = 10,
var.description = cancerVarNames[,2])

pt <- plotModels.ROC(md$cvObject$Models.testPrediction,theCVfolds = 10)
print(pt$predictionTable)

pt <- plotModels.ROC(md$cvObject$LASSO.testPredictions,theCVfolds = 10)
pt <- plotModels.ROC(md$cvObject$KNN.testPrediction,theCVfolds = 10)

# Get a regression of the survival time

timeSubjects <- dataCancerImputed
timeSubjects$pgtime <- log(timeSubjects$pgtime)

md <- FRESA.Model(formula = pgtime ~ 1,
data = timeSubjects,
var.description = cancerVarNames[,2])

pt <- plot(md$bootstrappedModel)
sm <- summary(md$BSWiMS.model)
print(sm$coefficients)

# Get a logistic regression model using
# - The default parameters and removing time as possible predictor



FRESAScale 65

dataCancerImputed$pgtime <- NULL

md <- FRESA.Model(formula = pgstat ~ 1,
data = dataCancerImputed,
var.description = cancerVarNames[,2])

pt <- plot(md$bootstrappedModel)
sm <- summary(md$BSWiMS.model)
print(sm$coefficients)

# Get a logistic regression model using:
# - residual-based optimization
md <- FRESA.Model(formula = pgstat ~ 1,

data = dataCancerImputed,
OptType = "Residual",
var.description = cancerVarNames[,2])

pt <- plot(md$bootstrappedModel)
sm <- summary(md$BSWiMS.model)
print(sm$coefficients)

# Shut down the graphics device driver
dev.off()

## End(Not run)

FRESAScale Data frame normalization

Description

All features from the data will be normalized based on the distribution of the reference data-frame

Usage

FRESAScale(data,refFrame=NULL,method=c("Norm","Order",
"OrderLogit","RankInv","LRankInv"),

refMean=NULL,refDisp=NULL,strata=NA)

Arguments

data The dataframe to be normalized

refFrame The reference frame that will be used to extract the feature distribution

method The normalization method. Norm: Mean and Std, Order: Median and IQR,OrderLogit
order plus logit, RankInv: rankInverseNormalDataFrame

refMean The mean vector of the reference frame

refDisp the data dispersion method of the reference frame

strata the data stratification variable for the RankInv method



66 getKNNpredictionFromFormula

Details

The data-frame will be normalized according to the distribution of the reference frame or the mean
vector(refMean) scaled by the reference dispersion vector(refDisp).

Value

scaledData The scaled data set
refMean The mean or median vector of the reference frame
refDisp The data dispersion (standard deviation or IQR)
strata The normalization strata
method The normalization method
refFrame The data frame used to estimate the normalization

Author(s)

Jose G. Tamez-Pena

See Also

rankInverseNormalDataFrame

getKNNpredictionFromFormula

Predict classification using KNN

Description

This function will return the classification of the samples of a test set using a k-nearest neighbors
(KNN) algorithm with euclidean distances, given a formula and a train set.

Usage

getKNNpredictionFromFormula(model.formula,
trainData,
testData,
Outcome = "CLASS",
nk = 3)

Arguments

model.formula An object of class formula with the formula to be used
trainData A data frame with the data to train the model, where all variables are stored in

different columns
testData A data frame similar to trainData, but with the data set to be predicted
Outcome The name of the column in trainData that stores the variable to be predicted

by the model
nk The number of neighbors used to generate the KNN classification



getLatentCoefficients 67

Value

prediction A vector with the predicted outcome for the testData data set

prob The proportion of k neighbors that predicted the class to be the one being re-
ported in prediction

binProb The proportion of k neighbors that predicted the class of the outcome to be equal
to 1

featureList A vector with the names of the features used by the KNN procedure

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

predict.fitFRESA

getLatentCoefficients Derived Features of the UPLTM transform

Description

Returs the list latent features, and their corresponding coeficients, from the UPLTM transform

Usage

getLatentCoefficients(decorrelatedobject)
getObservedCoef(decorrelatedobject,latentModel)

Arguments

decorrelatedobject

The returned dataframe of the IDeA function

latentModel A linear model with coefficients

Details

The UPLTM transformation extracted by the IDeA function is analyzed and a named list of latent
features will be returned with their required formula used to compute the latent varible. Given
a coeficient vector of latent variables. The getObservedCoef will return a vector of coefficients
associated with the observed variables.

Value

The list of derived coefficients of each one of latent feature or vector of coefficients



68 getMedianSurvCalibratedPrediction

Author(s)

Jose G. Tamez-Pena

See Also

IDeA

Examples

# load FRESA.CAD library
# library("FRESA.CAD")

# iris data set
data('iris')

#Decorrelating with usupervised basis and correlation goal set to 0.25
system.time(irisDecor <- IDeA(iris,thr=0.25))
print(getLatentCoefficients(irisDecor));

getMedianSurvCalibratedPrediction

Binary Predictions Calibration of Random CV

Description

Remove the bias from the test predictions generated via RandomCV

Usage

getMedianSurvCalibratedPrediction(testPredictions)
getMedianLogisticCalibratedPrediction(testPredictions)

Arguments

testPredictions

A matrix with the test predictions from the randomCV() function

Details

There is one function for binary predictions and one for survival predictions. For each trained-test
prediction partition. The funciton will subtract the bias. Then it will compute the median prediction.
Warning: This procedure is not blinded to the outcome hence it has infromation leakage.

Value

The median estimation of each calibrated predictions



getSignature 69

Author(s)

Jose G. Tamez-Pena

See Also

randomCV

getSignature Returns a CV signature template

Description

This function returns the matrix template [mean,sd,IQR] that maximizes the ROC AUC between
cases of controls.

Usage

getSignature(
data,
varlist=NULL,
Outcome=NULL,
target=c("All","Control","Case"),
CVFolds=3,
repeats=9,
distanceFunction=signatureDistance,
...

)

Arguments

data A data frame whose rows contains the sampled "subject" data, and each column
is a feature.

varlist The varlist is a character vector that list all the features to be searched by the
Backward elimination forward selection procedure.

Outcome The name of the column that has the binary outcome. 1 for cases, 0 for controls

target The target template that will be used to maximize the AUC.

CVFolds The number of folds to be used

repeats how many times the CV procedure will be repeated
distanceFunction

The function to be used to compute the distance between the template and each
sample

... the parameters to be passed to the distance function



70 getVar.Bin

Details

The function repeats full cycles of a Cross Validation (RCV) procedure. At each CV cycle the
algorithm estimate the mean template and the distance between the template and the test samples.
The ROC AUC is computed after the RCV is completed. A forward selection scheme. The set of
features that maximize the AUC during the Forward loop is returned.

Value
controlTemplate

the control matrix with quantile probs[0.025,0.25,0.5,0.75,0.975] that maximized
the AUC (template of controls subjects)

caseTamplate the case matrix with quantile probs[0.025,0.25,0.5,0.75,0.975] that maximized
the AUC (template of case subjects)

AUCevolution The AUC value at each cycle
featureSizeEvolution

The number of features at each cycle

featureList The final list of features

CVOutput A data frame with four columns: ID, Outcome, Case Distances, Control Dis-
tances. Each row contains the CV test results

MaxAUC The maximum ROC AUC

Author(s)

Jose G. Tamez-Pena

getVar.Bin Analysis of the effect of each term of a binary classification model by
analysing its reclassification performance

Description

This function provides an analysis of the effect of each model term by comparing the binary classi-
fication performance between the Full model and the model without each term. The model is fitted
using the train data set, but probabilities are predicted for the train and test data sets. Reclassifi-
cation improvement is evaluated using the improveProb function (Hmisc package). Additionally,
the integrated discrimination improvement (IDI) and the net reclassification improvement (NRI) of
each model term are reported.

Usage

getVar.Bin(object,
data,
Outcome = "Class",
type = c("LOGIT", "LM", "COX"),
testData = NULL,
callCpp=TRUE)



getVar.Bin 71

Arguments

object An object of class lm, glm, or coxph containing the model to be analysed

data A data frame where all variables are stored in different columns

Outcome The name of the column in data that stores the variable to be predicted by the
model

type Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")

testData A data frame similar to data, but with a data set to be independently tested. If
NULL, data will be used.

callCpp is set to true it will use the c++ implementation of improvement.

Value

z.IDIs A vector in which each term represents the z-score of the IDI obtained with the
Full model and the model without one term

z.NRIs A vector in which each term represents the z-score of the NRI obtained with the
Full model and the model without one term

IDIs A vector in which each term represents the IDI obtained with the Full model and
the model without one term

NRIs A vector in which each term represents the NRI obtained with the Full model
and the model without one term

testData.z.IDIs

A vector similar to z.IDIs, where values were estimated in testdata

testData.z.NRIs

A vector similar to z.NRIs, where values were estimated in testdata

testData.IDIs A vector similar to IDIs, where values were estimated in testdata

testData.NRIs A vector similar to NRIs, where values were estimated in testdata

uniTrainAccuracy

A vector with the univariate train accuracy of each model variable
uniTestAccuracy

A vector with the univariate test accuracy of each model variable

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

References

Pencina, M. J., D’Agostino, R. B., & Vasan, R. S. (2008). Evaluating the added predictive ability of
a new marker: from area under the ROC curve to reclassification and beyond. Statistics in medicine
27(2), 157-172.

See Also

getVar.Res



72 getVar.Res

getVar.Res Analysis of the effect of each term of a linear regression model by
analysing its residuals

Description

This function provides an analysis of the effect of each model term by comparing the residuals of
the Full model and the model without each term. The model is fitted using the train data set, but
analysis of residual improvement is done on the train and test data sets. Residuals are compared
by a paired t-test, a paired Wilcoxon rank-sum test, a binomial sign test and the F-test on residual
variance. Additionally, the net residual improvement (NeRI) of each model term is reported.

Usage

getVar.Res(object,
data,
Outcome = "Class",
type = c("LM", "LOGIT", "COX"),
testData = NULL,
callCpp=TRUE)

Arguments

object An object of class lm, glm, or coxph containing the model to be analyzed

data A data frame where all variables are stored in different columns

Outcome The name of the column in data that stores the variable to be predicted by the
model

type Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")

testData A data frame similar to data, but with a data set to be independently tested. If
NULL, data will be used.

callCpp is set to true it will use the c++ implementation of residual improvement.

Value

tP.value A vector in which each element represents the single sided p-value of the paired
t-test comparing the absolute values of the residuals obtained with the Full
model and the model without one term

BinP.value A vector in which each element represents the p-value associated with a signifi-
cant improvement in residuals according to the binomial sign test

WilcoxP.value A vector in which each element represents the single sided p-value of the Wilcoxon
rank-sum test comparing the absolute values of the residuals obtained with the
Full model and the model without one term

FP.value A vector in which each element represents the single sided p-value of the F-test
comparing the residual variances of the residuals obtained with the Full model
and the model without one term



GLMNET 73

NeRIs A vector in which each element represents the net residual improvement be-
tween the Full model and the model without one term

testData.tP.value

A vector similar to tP.value, where values were estimated in testdata

testData.BinP.value

A vector similar to BinP.value, where values were estimated in testdata

testData.WilcoxP.value

A vector similar to WilcoxP.value, where values were estimated in testdata

testData.FP.value

A vector similar to FP.value, where values were estimated in testdata

testData.NeRIs A vector similar to NeRIs, where values were estimated in testdata

unitestMSE A vector with the univariate residual mean sum of squares of each model vari-
able on the test data

unitrainMSE A vector with the univariate residual mean sum of squares of each model vari-
able on the train data

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

getVar.Bin

GLMNET GLMNET fit with feature selection"

Description

Fits a glmnet::cv.glmnet object to the data, and sets the prediction to use the features that created
the minimum CV error or one SE.

Usage

GLMNET(formula = formula,data=NULL,coef.thr=0.001,s="lambda.min",...)
LASSO_MIN(formula = formula,data=NULL,...)
LASSO_1SE(formula = formula,data=NULL,...)
GLMNET_ELASTICNET_MIN(formula = formula,data=NULL,...)
GLMNET_ELASTICNET_1SE(formula = formula,data=NULL,...)
GLMNET_RIDGE_MIN(formula = formula,data=NULL,...)
GLMNET_RIDGE_1SE(formula = formula,data=NULL,...)



74 GMVEBSWiMS

Arguments

formula The base formula to extract the outcome
data The data to be used for training the KNN method
coef.thr The threshold for feature selection when alpha < 1.
s The lambda threshold to be use at prediction and feature selection
... Parameters to be passed to the cv.glmnet function

Value

fit The glmnet::cv.glmnet fitted object
s The s. Set to "lambda.min" or "lambda.1se" for prediction
formula The formula
outcome The name of the outcome
usedFeatures The list of features to be used

Author(s)

Jose G. Tamez-Pena

See Also

glmnet::cv.glmnet

GMVEBSWiMS Hybrid Hierarchical Modeling with GMVE and BSWiMS

Description

This function returns the BSWiMS supervised-classifier present at each one of the GMVE unsuper-
vised Gaussian data clusters

Usage

GMVEBSWiMS(formula = formula,
data=NULL,
GMVE.control = list(p.threshold = 0.95,p.samplingthreshold = 0.5),
...

)

Arguments

formula An object of class formula with the formula to be fitted
data A data frame where all variables are stored in different columns
GMVE.control Control parameters of the GMVECluster function
... Parameters to be passed to the BSWiMS.model function



GMVECluster 75

Details

First, the function calls the BSWiMS function that returns the relevant features associated with the
outcome. Then, it calls the GMVE clustering algorithm (GMVECluster) that returns a relevant
data partition based on Gaussian clusters. Finally, the function will execute the BSWiMS.model
classification function on each cluster returned by GMVECluster.

Value

features The character vector with the releavant BSWiMS features.

cluster The GMVECluster object

models The list of BSWiMS.model models per cluster

Author(s)

Jose G. Tamez-Pena

Examples

## Not run:
# Get the Sonar data set

library(mlbench)
data(Sonar)
Sonar$Class <- 1*(Sonar$Class == "M")

#Train hierachical classifier
mc <- GMVEBSWiMS(Class~.,Sonar)

#report the classification
pb <- predict(mc,Sonar)
print(table(1*(pb>0.0),Sonar$Class))

## End(Not run)

GMVECluster Set Clustering using the Generalized Minimum Volume Ellipsoid
(GMVE)

Description

The Function will return the set of Gaussian Ellipsoids that best model the data

Usage

GMVECluster(dataset,
p.threshold=0.975,
samples=10000,
p.samplingthreshold=0.50,
sampling.rate = 3,
jitter=TRUE,



76 GMVECluster

tryouts=25,
pca=TRUE,
verbose=FALSE)

Arguments

dataset The data set to be clustered

p.threshold The p-value threshold of point acceptance into a set.

samples If the set is large, The number of random samples
p.samplingthreshold

Defines the maximum distance between set candidate points

sampling.rate Uniform sampling rate for candidate clusters

jitter If true, will jitter the data set

tryouts The number of cluster candidates that will be analyed per sampled point

pca If TRUE, it will use the PCA transform for dimension reduction

verbose If true it will print the clustering evolution

Details

Implementation of the GMVE clustering algorithm as proposed by Jolion et al. (1991).

Value

cluster The numeric vector with the cluster label of each point

classification The numeric vector with the cluster label of each point

centers The list of cluster centers

covariances The list of cluster covariance

robCov The list of robust covariances per cluster

k The number of discovered clusters

features The characer vector with the names of the features used

jitteredData The jittered dataset

Author(s)

Jose G. Tamez-Pena

References

Jolion, Jean-Michel, Peter Meer, and Samira Bataouche. "Robust clustering with applications in
computer vision." IEEE Transactions on Pattern Analysis & Machine Intelligence 8 (1991): 791-
802.



heatMaps 77

heatMaps Plot a heat map of selected variables

Description

This function creates a heat map for a data set based on a univariate or frequency ranking

Usage

heatMaps(variableList=NULL,
varRank = NULL,
Outcome,
data,
title = "Heat Map",
hCluster = FALSE,
prediction = NULL,
Scale = FALSE,
theFiveColors=c("blue","cyan","black","yellow","red"),
outcomeColors = c("blue","lightgreen","yellow","orangered","red"),
transpose=FALSE,
...)

Arguments

variableList A data frame with two columns. The first one must have the names of the can-
didate variables and the other one the description of such variables

varRank A data frame with the name of the variables in variableList, ranked according
to a certain metric

Outcome The name of the column in data that stores the variable to be predicted by the
model

data A data frame where all variables are stored in different columns

title The title of the plot

hCluster Logical. If TRUE, variables will be clustered

prediction A vector with a prediction for each subject, which will be used to rank the heat
map

Scale An optional value to force the data normalization outcome

theFiveColors the colors of the heatmap

outcomeColors the colors of the outcome bar

transpose transpose the heatmap

... additional parameters for the heatmap.2 function



78 HLCM

Value

dataMatrix A matrix with all the terms in data described by variableList

orderMatrix A matrix similar to dataMatrix, where rows are ordered according to the outcome

heatMap A list with the values returned by the heatmap.2 function (gplots package)

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

Examples

## Not run:

library(rpart)
data(stagec)

# Set the options to keep the na
options(na.action='na.pass')
# create a model matrix with all the NA values imputed
stagecImputed <- as.data.frame(nearestNeighborImpute(model.matrix(~.,stagec)[,-1]))

# the simple heat map
hm <- heatMaps(Outcome="pgstat",data=stagecImputed,title="Heat Map",Scale=TRUE)

# transposing the heat-map with clustered colums
hm <- heatMaps(Outcome="pgstat",data=stagecImputed,title="Heat Map",Scale=TRUE,

transpose= TRUE,hCluster = TRUE,
cexRow=0.80,cexCol=0.50,srtCol=35)

# transposing the heat-map with reds and time to event as outcome
hm <- heatMaps(Outcome="pgtime",data=stagecImputed,title="Heat Map",Scale=TRUE,

theFiveColors=c("black","red","orange","yellow","white"),
cexRow=0.50,cexCol=0.80,srtCol=35)

## End(Not run)

HLCM Latent class based modeling of binary outcomes

Description

Modeling a binary outcome via the the discovery of latent clusters. Each discovered latent cluster is
modeled by the user provided fit function. Discovered clusters will be modeled by KNN or SVM.



HLCM 79

Usage

HLCM(formula = formula,
data=NULL,
method=BSWiMS.model,
hysteresis = 0.1,

classMethod=KNN_method,
classModel.Control=NULL,
minsize=10,

...
)

Arguments

formula the base formula to extract the outcome

data the data to be used for training the method

method the binary classification function

hysteresis the hysteresis shift for detecting wrongly classified subjects

classMethod the function name for modeling the discovered latent clusters
classModel.Control

the parameters to be passed to the latent-class fitting function

minsize the minimum size of the discovered clusters

... parameters for the classification function

Value

original The original model trained with all the dataset
alternativeModel

The model used to classify the wrongly classified samples

classModel The method that models the latent class

accuracy The original accuracy
selectedfeatures

The character vector of selected features

hysteresis The used hysteresis

classSet The discovered class label of each sample

Author(s)

Jose G. Tamez-Pena

See Also

class::knn



80 IDeA

IDeA Decorrelation of data frames

Description

All continous features that with significant correlation will be decorrelated

Usage

ILAA(data=NULL,
thr=0.80,
method=c("pearson","spearman"),
Outcome=NULL,
drivingFeatures=NULL,
maxLoops=100,
verbose=FALSE,
bootstrap=0
)

IDeA(data=NULL,thr=0.80,
method=c("fast","pearson","spearman","kendall"),
Outcome=NULL,
refdata=NULL,
drivingFeatures=NULL,
useDeCorr=TRUE,
relaxed=TRUE,
corRank=TRUE,
maxLoops=100,
unipvalue=0.05,
verbose=FALSE,
...)

predictDecorrelate(decorrelatedobject,testData)

Arguments

data The dataframe whose features will de decorrelated

thr The maximum allowed correlation.

refdata Option: A data frame that may be used to decorrelate the target dataframe

Outcome The target outcome for supervised basis
drivingFeatures

A vector of features to be used as basis vectors.

unipvalue Maximum p-value for correlation significance

useDeCorr if TRUE, the transformation matrix (UPLTM) will be computed



IDeA 81

maxLoops the maxumum number of iteration loops

verbose if TRUE, it will display internal evolution of algorithm.

method if not set to "fast" the method will be pased to the cor() function.

relaxed is set to TRUE it will use relaxed convergence

corRank is set to TRUE it will correlation matrix to break ties.

... parameters passed to the featureAdjustment function.
decorrelatedobject

The returned dataframe of the IDeA function

testData The new dataframe to be decorrelated

bootstrap If greater than 1 the number of boostrapping loops

Details

The dataframe will be analyzed and significantly correlated features whose correlation is larger than
the user supplied threshold will be decorrelated. Basis feature selection may be based on Outcome
association or by an unsupervised method. The default options will run the decorrelation using
fast matrix operations using Rfast; hence, Pearson correlation will be used to estimate the unit-
preserving spatial transformation matrix (UPLTM). ILAA is a wrapper of the more comprensive
IDeA method. It estimates linear transforms and allows for boosted transform estimations

Value
decorrelatedDataframe

The decorrelated data frame with the follwing attributes

attr:UPLTM Attribute of decorrelatedDataframe: The Decorrelation matrix with the beta co-
efficients

attr:fscore Attribute of decorrelatedDataframe: The score of each feature.
attr:drivingFeatures

Attribute of decorrelatedDataframe: The list of features used as base features
for supervised basis

attr:unipvalue Attribute of decorrelatedDataframe: The p-value used to check for fit signifi-
cance

attr:R.critical

Attribute of decorrelatedDataframe: The pearson correlation critical value
attr:IDeAEvolution

Attribute of decorrelatedDataframe: The R measure history and the sparcity

attr:VarRatio Attribute of decorrelatedDataframe: The variance ratio between the output latent
variable and the observed

Author(s)

Jose G. Tamez-Pena

See Also

featureAdjustment



82 improvedResiduals

Examples

## Not run:
# load FRESA.CAD library
# library("FRESA.CAD")

# iris data set
data('iris')

colors <- c("red","green","blue")
names(colors) <- names(table(iris$Species))
classcolor <- colors[iris$Species]

#Decorrelating with usupervised basis and correlation goal set to 0.25
system.time(irisDecor <- IDeA(iris,thr=0.25))

## The transformation matrix is stored at "UPLTM" attribute
UPLTM <- attr(irisDecor,"UPLTM")
print(UPLTM)

#Decorrelating with supervised basis and correlation goal set to 0.25
system.time(irisDecorOutcome <- IDeA(iris,Outcome="Species",thr=0.25))
## The transformation matrix is stored at "UPLTM" attribute
UPLTM <- attr(irisDecorOutcome,"UPLTM")
print(UPLTM)

## Compute PCA
features <- colnames(iris[,sapply(iris,is,"numeric")])
irisPCA <- prcomp(iris[,features]);
## The PCA transformation
print(irisPCA$rotation)

## Plot the transformed sets
plot(iris[,features],col=classcolor,main="Raw IRIS")

plot(as.data.frame(irisPCA$x),col=classcolor,main="PCA IRIS")

featuresDecor <- colnames(irisDecor[,sapply(irisDecor,is,"numeric")])
plot(irisDecor[,featuresDecor],col=classcolor,main="Outcome-Blind IDeA IRIS")

featuresDecor <- colnames(irisDecorOutcome[,sapply(irisDecorOutcome,is,"numeric")])
plot(irisDecorOutcome[,featuresDecor],col=classcolor,main="Outcome-Driven IDeA IRIS")

## End(Not run)

improvedResiduals Estimate the significance of the reduction of predicted residuals



improvedResiduals 83

Description

This function will test the hypothesis that, given a set of two residuals (new vs. old), the new ones
are better than the old ones as measured with non-parametric tests. Four p-values are provided:
one for the binomial sign test, one for the paired Wilcoxon rank-sum test, one for the paired t-test,
and one for the F-test. The proportion of subjects that improved their residuals, the proportion that
worsen their residuals, and the net residual improvement (NeRI) will be returned.

Usage

improvedResiduals(oldResiduals,
newResiduals,
testType = c("Binomial", "Wilcox", "tStudent", "Ftest"))

Arguments

oldResiduals A vector with the residuals of the original model

newResiduals A vector with the residuals of the new model

testType Type of non-parametric test to be evaluated: Binomial test ("Binomial"), Wilcoxon
rank-sum test ("Wilcox"), Student’s t-test ("tStudent"), or F-test ("Ftest")

Details

This function will test the hypothesis that the new residuals are "better" than the old residuals. To
test this hypothesis, four types of tests are performed:

1. The paired t-test, which compares the absolute value of the residuals

2. The paired Wilcoxon rank-sum test, which compares the absolute value of residuals

3. The binomial sign test, which evaluates whether the number of subjects with improved resid-
uals is greater than the number of subjects with worsened residuals

4. The F-test, which is the standard test for evaluating whether the residual variance is "better"
in the new residuals.

The proportions of subjects that improved and worsen their residuals are returned, and so is the
NeRI.

Value

p1 Proportion of subjects that improved their residuals to the total number of sub-
jects

p2 Proportion of subjects that worsen their residuals to the total number of subjects

NeRI The net residual improvement (p1-p2)

p.value The one tail p-value of the test specified in testType

BinP.value The p-value associated with a significant improvement in residuals

WilcoxP.value The single sided p-value of the Wilcoxon rank-sum test comparing the absolute
values of the new and old residuals



84 jaccardMatrix

tP.value The single sided p-value of the paired t-test comparing the absolute values of
the new and old residuals

FP.value The single sided p-value of the F-test comparing the residual variances of the
new and old residuals

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

jaccardMatrix Jaccard Index of two labeled sets

Description

The Jaccard Index analysis of two labeled sets

Usage

jaccardMatrix(clustersA=NULL,clustersB=NULL)

Arguments

clustersA The first labeled point set

clustersB The second labeled point set

Details

This function will compute the Jaccard Index Matrix: [(A = i) ∩ (B = j)]/[(A = i) ∪ (B = j)]
for all (i, j) possible label pairs presenet in A and B

Value

jaccardMat The numeric matrix of Jaccard Indexes of all possible paired sets

elementJaccard The corresponding Jaccard index for each data point
balancedMeanJaccard

The average of all marginal Jaccards

Author(s)

Jose G. Tamez-Pena



KNN_method 85

KNN_method KNN Setup for KNN prediction

Description

Prepares the KNN function to be used to predict the class of a new set

Usage

KNN_method(formula = formula,data=NULL,...)

Arguments

formula the base formula to extract the outcome

data the data to be used for training the KNN method

... parameters for the KNN function and the data scaling method

Value

trainData The data frame to be used to train the KNN prediction

scaledData The scaled training set

classData A vector with the outcome to be used by the KNN function

outcome The name of the outcome

usedFeatures The list of features to be used by the KNN method

mean_col A vector with the mean of each training feature

disp_col A vector with the dispesion of each training feature

kn The number of neigbors to be used by the predict function

scaleMethod The scaling method to be used by FRESAScale() function

Author(s)

Jose G. Tamez-Pena

See Also

class::knn,FRESAScale



86 listTopCorrelatedVariables

listTopCorrelatedVariables

List the variables that are highly correlated with each other

Description

This function computes the Pearson, Spearman, or Kendall correlation for each specified variable
in the data set and returns a list of the variables that are correlated to them. It also provides a short
variable list without the highly correlated variables.

Usage

listTopCorrelatedVariables(variableList,
data,
pvalue = 0.001,
corthreshold = 0.9,
method = c("pearson", "kendall", "spearman"))

Arguments

variableList A data frame with two columns. The first one must have the names of the can-
didate variables and the other one the description of such variables

data A data frame where all variables are stored in different columns

pvalue The maximum p-value, associated to method, allowed for a pair of variables to
be defined as significantly correlated

corthreshold The minimum correlation score, associated to method, allowed for a pair of
variables to be defined as significantly correlated

method Correlation method: Pearson product-moment ("pearson"), Spearman’s rank
("spearman"), or Kendall rank ("kendall")

Value
correlated.variables

A data frame with two columns:

1. cor.var.names: The variables that are correlated
2. cor.var.value: The correlation value

short.list A vector with a list of variables that are not correlated to each other. For every
correlated pair, only the variable that first entered the correlation analysis was
kept

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya



LM_RIDGE_MIN 87

Examples

## Not run:
# Start the graphics device driver to save all plots in a pdf format
pdf(file = "Example.pdf")
# Get the stage C prostate cancer data from the rpart package
library(rpart)
data(stagec)
# Split the stages into several columns
dataCancer <- cbind(stagec[,c(1:3,5:6)],

gleason4 = 1*(stagec[,7] == 4),
gleason5 = 1*(stagec[,7] == 5),
gleason6 = 1*(stagec[,7] == 6),
gleason7 = 1*(stagec[,7] == 7),
gleason8 = 1*(stagec[,7] == 8),
gleason910 = 1*(stagec[,7] >= 9),
eet = 1*(stagec[,4] == 2),
diploid = 1*(stagec[,8] == "diploid"),
tetraploid = 1*(stagec[,8] == "tetraploid"),
notAneuploid = 1-1*(stagec[,8] == "aneuploid"))

# Remove the incomplete cases
dataCancer <- dataCancer[complete.cases(dataCancer),]
# Load a pre-stablished data frame with the names and descriptions of all variables
data(cancerVarNames)
# Get the variables that have a correlation coefficient larger
# than 0.65 at a p-value of 0.05
cor <- listTopCorrelatedVariables(variableList = cancerVarNames,

data = dataCancer,
pvalue = 0.05,
corthreshold = 0.65,
method = "pearson")

# Shut down the graphics device driver
dev.off()
## End(Not run)

LM_RIDGE_MIN Ridge Linear Models

Description

FRESA wrapper to fit MASS::lm.ridge object to the data and returning the coef with minimum
GCV

Usage

LM_RIDGE_MIN(formula = formula,data=NULL,...)

Arguments

formula The base formula to extract the outcome



88 metric95ci

data The data to be used for training the method

... Parameters to be passed to the MASS::lm.ridge function

Value

fit The MASS::lm.ridge fitted object

Author(s)

Jose G. Tamez-Pena

See Also

MASS::lm.ridge

metric95ci Estimators and 95CI

Description

Bootstraped estimation of mean and 95CI

Usage

metric95ci(metric,nss=1000,ssize=0)
concordance95ci(datatest,nss=1000)
sperman95ci(datatest,nss=4000)
MAE95ci(datatest,nss=4000)
ClassMetric95ci(datatest,nss=4000)

Arguments

datatest A matrix whose first column is the model predictionground truth, and the second
the prediction

nss The number of bootstrap samples

metric A vector with metric estimations

ssize The maximim number of samples to use

Details

A set of auxiliary samples to bootstrap estimations of the 95CI

Value

the mean estimation of the metrics with its corresponding 95CI



modelFitting 89

Author(s)

Jose G. Tamez-Pena

See Also

randomCV

modelFitting Fit a model to the data

Description

This function fits a linear, logistic, or Cox proportional hazards regression model to given data

Usage

modelFitting(model.formula,
data,
type = c("LOGIT", "LM", "COX","SVM"),
fitFRESA=TRUE,
...)

Arguments

model.formula An object of class formula with the formula to be used

data A data frame where all variables are stored in different columns

type Fit type: Logistic ("LOGIT"), linear ("LM"), Cox proportional hazards ("COX")
or "SVM"

fitFRESA if true it will perform use the FRESA cpp code for fitting

... Additional parameters for fitting a default glm object

Value

A fitted model of the type defined in type

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya



90 multivariate_BinEnsemble

mRMR.classic_FRESA FRESA.CAD wrapper of mRMRe::mRMR.classic

Description

Returns the positive MI-scored set of maximum relevance minimum redundancy (mRMR) features
returned by the mMRM.classic function

Usage

mRMR.classic_FRESA(data=NULL, Outcome=NULL,feature_count=0,...)

Arguments

data The data frame

Outcome The outcome feature

feature_count The number of features to return

... Extra parameters to be passed to the mRMRe::mMRM.classic function

Value

Named vector with the MI-score of the selected features

Author(s)

Jose G. Tamez-Pena

See Also

mRMRe::mRMR.classic

multivariate_BinEnsemble

Multivariate Filters

Description

Returns the top set of features that are associated with the outcome based on Multivariate logistic
models: LASSO and BSWiMS

Usage

multivariate_BinEnsemble(data,Outcome,limit=-1,adjustMethod="BH",...)



multivariate_BinEnsemble 91

Arguments

data The data frame

Outcome The outcome feature

adjustMethod The method used by the p.adjust method

limit The samples-wise fraction of features to return.

... Parameters to be passed to the correlated_Remove function

Value

Named vector with the adjusted p-values of the associted features

Author(s)

Jose G. Tamez-Pena

Examples

## Not run:

library("FRESA.CAD")

### Univariate Filter Examples ####

# Get the stage C prostate cancer data from the rpart package
data(stagec,package = "rpart")

# Prepare the data. Create a model matrix without the event time and interactions
stagec$pgtime <- NULL
stagec$eet <- as.factor(stagec$eet)
options(na.action = 'na.pass')
stagec_mat <- cbind(pgstat = stagec$pgstat,

as.data.frame(model.matrix(pgstat ~ .*.,stagec))[-1])
fnames <- colnames(stagec_mat)
fnames <- str_replace_all(fnames,":","__")
colnames(stagec_mat) <- fnames

# Impute the missing data
dataCancerImputed <- nearestNeighborImpute(stagec_mat)

dataCancerImputed[,1:ncol(dataCancerImputed)] <- sapply(dataCancerImputed,as.numeric)

# Get the top Features associated to pgstat

q_values <- multivariate_BinEnsemble(data=dataCancerImputed,
Outcome="pgstat")

## End(Not run)



92 nearestCentroid

NAIVE_BAYES Naive Bayes Modeling

Description

FRESA wrapper to fit naivebayes::naive_bayes object to the data

Usage

NAIVE_BAYES(formula = formula,data=NULL,pca=TRUE,normalize=TRUE,...)

Arguments

formula The base formula to extract the outcome

data The data to be used for training the method

pca Apply PCA?

normalize Apply data normalization?

... Parameters to be passed to the naivebayes::naive_bayes function

Value

fit The naivebayes::naive_bayes fitted object

Author(s)

Jose G. Tamez-Pena

See Also

naivebayes::naive_bayes

nearestCentroid Class Label Based on the Minimum Mahalanobis Distance

Description

The function will return the set of labels of a data set

Usage

nearestCentroid(dataset,
clustermean=NULL,
clustercov=NULL,
p.threshold=1.0e-6)



nearestNeighborImpute 93

Arguments

dataset The data set to be labeled

clustermean The list of cluster centers.

clustercov The list of cluster covariances

p.threshold The minimum aceptance p.value

Details

The data set will be labeled based on the nearest cluster label. Points distance with membership
probability lower than the acceptance threshold will have the "0" label.

Value

ClusterLabels The labels of each point

Author(s)

Jose G. Tamez-Pena

nearestNeighborImpute nearest neighbor NA imputation

Description

The function will replace any NA present in the data-frame with the median values of the nearest
neighbours.

Usage

nearestNeighborImpute(tobeimputed,
referenceSet=NULL,

catgoricCol=NULL,
distol=1.05,

useorder=TRUE
)

Arguments

tobeimputed a data frame with missing values (NA values)

referenceSet An optional data frame with a set of complete observations. This data frame will
be added to the search set

catgoricCol An optional list of columns names that should be consider categorical

distol The tolerance used to define if a particular set of row observations is similar to
the minimum distance

useorder Impute using the last observation on startified by categorical data



94 plot.bootstrapValidation_Bin

Details

This function will find any NA present in the data set and it will search for the row set of complete
observations that have the closest IQR normalized Manhattan distance to the row with missing
values. If a set of rows have similar minimum distances (toldis*(minimum distance) > row set
distance) the median value will be used.

Value

A data frame, where each NA has been replaced with the value of the nearest neighbors

Author(s)

Jose G. Tamez-Pena

Examples

## Not run:
# Get the stage C prostate cancer data from the rpart package
library(rpart)
data(stagec)
# Set the options to keep the na
options(na.action='na.pass')
# create a model matrix with all the NA values imputed
stagecImputed <- nearestNeighborImpute(model.matrix(~.,stagec)[,-1])

## End(Not run)

plot.bootstrapValidation_Bin

Plot ROC curves of bootstrap results

Description

This function plots ROC curves and a Kaplan-Meier curve (when fitting a Cox proportional hazards
regression model) of a bootstrapped model.

Usage

## S3 method for class 'bootstrapValidation_Bin'
plot(x,

xlab = "Years",
ylab = "Survival",

strata.levels=c(0),
main = "ROC",

cex=1.0,
...)



plot.bootstrapValidation_Res 95

Arguments

x A bootstrapValidation_Bin object

xlab The label of the x-axis

ylab The label of the y-axis

strata.levels stratification level for the Kaplan-Meier plots

main Main Plot title

cex The text cex

... Additional parameters for the generic plot function

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

plot.bootstrapValidation_Res

plot.bootstrapValidation_Res

Plot ROC curves of bootstrap results

Description

This function plots ROC curves and a Kaplan-Meier curve (when fitting a Cox proportional hazards
regression model) of a bootstrapped model.

Usage

## S3 method for class 'bootstrapValidation_Res'
plot(x,

xlab = "Years",
ylab = "Survival",
...)

Arguments

x A bootstrapValidation_Res object

xlab The label of the x-axis

ylab The label of the y-axis

... Additional parameters for the plot

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya



96 plot.FRESA_benchmark

See Also

plot.bootstrapValidation_Bin

plot.FRESA_benchmark Plot the results of the model selection benchmark

Description

The different output metrics of the benchmark (BinaryBenchmark,RegresionBenchmark or Ordi-
nalBenchmark) are plotted. It returns data matrices that describe the different plots.

Usage

## S3 method for class 'FRESA_benchmark'
plot(x,...)

Arguments

x A FRESA_benchmark object

... Additional parameters for the generic plot function

Value

metrics The model test performance based on the predictionStats_binary, predictionStats_regression
or predictionStats_ordinal functions.

barPlotsCI The barPlotCiError outputs for each metric.

metrics_filter The model test performance for each filter method based on the predictionStats_binary
function.

barPlotsCI_filter

The barPlotCiError outputs for each metric on the filter methods

minMaxMetrics Reports the min and maximum value for each reported metric.

Author(s)

Jose G. Tamez-Pena

See Also

BinaryBenchmark, predictionStats_binary



plotModels.ROC 97

plotModels.ROC Plot test ROC curves of each cross-validation model

Description

This function plots test ROC curves of each model found in the cross validation process. It will
also aggregate the models into a single prediction performance, plotting the resulting ROC curve
(models coherence). Furthermore, it will plot the mean sensitivity for a given set of specificities.

Usage

plotModels.ROC(modelPredictions,
number.of.models=0,

specificities=c(0.975,0.95,0.90,0.80,0.70,0.60,0.50,0.40,0.30,0.20,0.10,0.05),
theCVfolds=1,
predictor="Prediction",

cex=1.0,
thr=NULL,

...)

Arguments

modelPredictions

A data frame returned by the crossValidationFeatureSelection_Bin func-
tion, either the Models.testPrediction, the FullBSWiMS.testPrediction,
the Models.CVtestPredictions, the TestRetrained.blindPredictions,
the KNN.testPrediction, or the LASSO.testPredictions value

number.of.models

The maximum number of models to plot

specificities Vector containing the specificities at which the ROC sensitivities will be calcu-
lated

theCVfolds The number of folds performed in a Cross-validation experiment

predictor The name of the column to be plotted

cex Controlling the font size of the text inside the plots

thr The threshold for confusion matrix

... Additional parameters for the roc function (pROC package)

Value

ROC.AUCs A vector with the AUC of each ROC
mean.sensitivities

A vector with the mean sensitivity at the specificities given by specificities

model.sensitivities

A matrix where each row represents the sensitivity at the specificity given by
specificities for a different ROC



98 ppoisGzero

specificities The specificities used to calculate the sensitivities

senAUC The AUC of the ROC curve that resulted from using mean.sensitivities

predictionTable

The confusion matrix between the outcome and the ensemble prediction
ensemblePrediction

The ensemble (median prediction) of the repeated predictions

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

ppoisGzero Probability of more than zero events

Description

Returns the probability of having 1 or more Poisson events the adjusted probability (adjustProb) the
exptected time to event (meanTimeToEvent) or the exected number of events per interval (expect-
edEventsPerInterval)

Usage

ppoisGzero(index,h0)
adjustProb(probGZero,gain)
meanTimeToEvent(probGZero,timeInterval)
expectedEventsPerInterval(probGZero)

Arguments

index The hazard index

h0 Baseline hazard

probGZero The probability of having any event

gain The calibration gain

timeInterval The time interval

Details

Auxiliary functions for the estimation of the probability of having at least one Poisson event. Or
the mean time to event.

Value

The probability of nozero events. Or the expected time to event (meanTimeToEvent) Or the ex-
pected number of events per interval (expectedEventsPerInterval)



predict.BAGGS 99

Author(s)

Jose G. Tamez-Pena

See Also

RRPlot

Examples

#TBD

predict.BAGGS Predicts baggedModel bagged models

Description

This function predicts the class of a BAGGS generated models

Usage

## S3 method for class 'BAGGS'
predict(object,...)

Arguments

object An object of class BAGGS

... A list with: testdata=testdata.

Value

a named list with the predicted class of every data sample

Author(s)

Jose G. Tamez-Pena

See Also

baggedModel



100 predict.fitFRESA

predict.CLUSTER_CLASS Predicts ClustClass outcome

Description

This function predicts the outcome from a ClustClass classifier

Usage

## S3 method for class 'CLUSTER_CLASS'
predict(object,...)

Arguments

object An object of class CLUSTER_CLASS

... A list with: testdata=testdata

Value

the predict of a hierarchical ClustClass classifier

Author(s)

Jose G. Tamez-Pena

See Also

ClustClass

predict.fitFRESA Linear or probabilistic prediction

Description

This function returns the predicted outcome of a specific model. The model is used to generate
linear predictions. The probabilistic values are generated using the logistic transformation on the
linear predictors.

Usage

## S3 method for class 'fitFRESA'
predict(object,

...)



predict.FRESAKNN 101

Arguments

object An object of class fitFRESA containing the model to be analyzed

... A list with: testdata=testdata;predictType=c("linear","prob") and impute=FALSE.
If impute is set to TRUE it will use the object model to impute missing data

Value

A vector with the predicted values

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

nearestNeighborImpute

predict.FRESAKNN Predicts class::knn models

Description

This function predicts the outcome from a FRESAKNN model

Usage

## S3 method for class 'FRESAKNN'
predict(object,...)

Arguments

object An object of class FRESAKNN containing the KNN train set

... A list with: testdata=testdata

Value

A vector of the predicted values

Author(s)

Jose G. Tamez-Pena

See Also

KNN_method, class::knn



102 predict.FRESA_BESS

predict.FRESAsignature

Predicts CVsignature models

Description

This function predicts the outcome from a FRESAsignature model

Usage

## S3 method for class 'FRESAsignature'
predict(object,...)

Arguments

object An object of class FRESAsignature

... A list with: testdata=testdata

Value

A vector of the predicted values

Author(s)

Jose G. Tamez-Pena

See Also

CVsignature,getSignature,signatureDistance

predict.FRESA_BESS Predicts BESS models

Description

This function predicts the outcome from a BESS model

Usage

## S3 method for class 'FRESA_BESS'
predict(object,...)

Arguments

object An object of class FRESA_BESS

... A list with: testdata=testdata



predict.FRESA_FILTERFIT 103

Value

the predict BESS object

Author(s)

Jose G. Tamez-Pena

See Also

BESS

predict.FRESA_FILTERFIT

Predicts filteredFit models

Description

This function predicts the outcome from a filteredFit model

Usage

## S3 method for class 'FRESA_FILTERFIT'
predict(object,...)

Arguments

object An object of class FRESA_FILTERFIT

... A list with: testdata=testdata

Value

the predicted outcome

Author(s)

Jose G. Tamez-Pena



104 predict.FRESA_HLCM

predict.FRESA_GLMNET Predicts GLMNET fitted objects

Description

This function predicts the outcome from a FRESA_GLMNET fitted object

Usage

## S3 method for class 'FRESA_GLMNET'
predict(object,...)

Arguments

object An object of class FRESA_GLMNET containing the model to be analyzed

... A list with: testdata=testdata

Value

A vector of the predicted values

Author(s)

Jose G. Tamez-Pena

See Also

GLMNET

predict.FRESA_HLCM Predicts BOOST_BSWiMS models

Description

This function predicts the outcome from a BOOST_BSWiMS model

Usage

## S3 method for class 'FRESA_HLCM'
predict(object,...)

Arguments

object An object of class FRESA_HLCM

... A list with: testdata=testdata



predict.FRESA_NAIVEBAYES 105

Value

the predict of boosted BSWiMS

Author(s)

Jose G. Tamez-Pena

See Also

BSWiMS.model

predict.FRESA_NAIVEBAYES

Predicts NAIVE_BAYES models

Description

This function predicts the outcome from a FRESA_NAIVEBAYES model

Usage

## S3 method for class 'FRESA_NAIVEBAYES'
predict(object,...)

Arguments

object An object of class FRESA_NAIVEBAYES

... A list with: testdata=testdata

Value

A vector of the predicted values

Author(s)

Jose G. Tamez-Pena

See Also

NAIVE_BAYES



106 predict.FRESA_SVM

predict.FRESA_RIDGE Predicts LM_RIDGE_MIN models

Description

This function predicts the outcome from a LM_RIDGE_MIN model

Usage

## S3 method for class 'FRESA_RIDGE'
predict(object,...)

Arguments

object An object of class FRESA_RIDGE

... A list with: testdata=testdata

Value

A vector of the predicted values

Author(s)

Jose G. Tamez-Pena

See Also

LM_RIDGE_MIN

predict.FRESA_SVM Predicts TUNED_SVM models

Description

This function predicts the outcome from a TUNED_SVM model

Usage

## S3 method for class 'FRESA_SVM'
predict(object,...)

Arguments

object An object of class FRESA_SVM

... A list with: testdata=testdata



predict.GMVE 107

Value

the predict e1071::svm object

Author(s)

Jose G. Tamez-Pena

See Also

TUNED_SVM

predict.GMVE Predicts GMVECluster clusters

Description

This function predicts the class of a GMVE generated cluster

Usage

## S3 method for class 'GMVE'
predict(object,...)

Arguments

object An object of class GMVE

... A list with: testdata=testdata. thr=p.value threshold

Value

a named list with the predicted class of every data sample

Author(s)

Jose G. Tamez-Pena

See Also

GMVECluster



108 predict.LogitCalPred

predict.GMVE_BSWiMS Predicts GMVEBSWiMS outcome

Description

This function predicts the outcome from a GMVEBSWiMS classifier

Usage

## S3 method for class 'GMVE_BSWiMS'
predict(object,...)

Arguments

object An object of class GMVE_BSWiMS

... A list with: testdata=testdata

Value

the predict of a hierarchical GMVE-BSWiMS classifier

Author(s)

Jose G. Tamez-Pena

See Also

GMVEBSWiMS

predict.LogitCalPred Predicts calibrated probabilities

Description

This function predicts the calibrated probability of a binary outcome

Usage

## S3 method for class 'LogitCalPred'
predict(object,...)

Arguments

object An object of class LogitCalPred

... A list with: testdata=testdata



predictionStats 109

Value

the calibrated probability

Author(s)

Jose G. Tamez-Pena

See Also

calBinProb

predictionStats Prediction Evaluation

Description

This function returns the statistical metrics describing the association between model predictions
and the ground truth outcome

Usage

predictionStats_binary(predictions, plotname="", center=FALSE,...)
predictionStats_regression(predictions, plotname="",...)
predictionStats_ordinal(predictions,plotname="",...)
predictionStats_survival(predictions,plotname="",atriskthr=1.0,...)

Arguments

predictions A matrix whose first column is the ground truth, and the second is the model
prediction

plotname The main title to be used by the plot function. If empty, no plot will be provided

center For binary predictions indicates if the prediction is around zero

atriskthr For survival predictions indicates the threshoold for at risk subjects.

... Extra parameters to be passed to the plot function.

Details

These functions will analyze the prediction outputs and will compare to the ground truth. The output
will depend on the prediction task: Binary classification, Linear Regression, Ordinal regression or
Cox regression.



110 predictionStats

Value

accc The classification accuracy with its95% confidence intervals (95/

berror The balanced error rate with its 95%CI

aucs The ROC area under the curve (ROC AUC) of the binary classifier with its
95%CI

specificity The specificity with its 95%CI

sensitivity The sensitivity with its 95%CI

ROC.analysis The output of the ROC function

CM.analysis The output of the epiR::epi.tests function

corci the Pearson correlation with its 95%CI

biasci the regression bias and its 95%CI

RMSEci the root mean square error (RMSE) and its 95%CI

spearmanci the Spearman correlation and its 95%CI

MAEci the mean absolute difference(MAE) and its 95%CI

pearson the output of the cor.test function

Kendall the Kendall correlation and its 95%CI

Bias the ordinal regression bias and its 95%CI

BMAE the balanced mean absolute difference for ordinal regression

class95ci the output of the bootstrapped estimation of accuracy, sensitivity, and ROC AUC

KendallTauB the output of the DescTools::KendallTauB function

Kappa.analysis the output of the irr::kappa2 function

CIFollowUp The follow-up concordance index with its95% confidence intervals (95/

CIRisk The risks concordance index with its95% confidence intervals (95/

LogRank The LogRank test with its95% confidence intervals (95/

Author(s)

Jose G. Tamez-Pena

See Also

randomCV



randomCV 111

randomCV Cross Validation of Prediction Models

Description

The data set will be divided into a random train set and a test sets. The train set will be modeled by
the user provided fitting method. Each fitting method must have a prediction function that will be
used to predict the outcome of the test set.

Usage

randomCV(theData = NULL,
theOutcome = "Class",
fittingFunction=NULL,
trainFraction = 0.5,
repetitions = 100,
trainSampleSets=NULL,
featureSelectionFunction=NULL,
featureSelection.control=NULL,
asFactor=FALSE,
addNoise=FALSE,
classSamplingType=c("Proportional",

"Balanced",
"Augmented",
"LOO"),

testingSet=NULL,
...
)

Arguments

theData The data-frame for cross-validation

theOutcome The name of the outcome
fittingFunction

The fitting function used to model the data

trainFraction The percentage of the data to be used for training

repetitions The number of times that the CV process will be repeated
trainSampleSets

A set of train samples
featureSelectionFunction

The feature selection function to be used to filter out irrelevant features
featureSelection.control

The parameters to control the feature selection function

asFactor Set theOutcome as factor

addNoise if TRUE will add 0.1



112 randomCV

classSamplingType

if "Proportional": proportional to the data classes. "Augmented": Augment
samples to balance training class "Balanced": All class in training set have the
same samples "LOO": Leave one out per class

testingSet An extra set for testing Models

... Parameters to be passed to the fitting function

Value
testPredictions

All the predicted outcomes. Is a data matrix with three columns c("Outcome","Model","Prediction").
Each row has a prediction for a given test subject

trainPredictions

All the predicted outcomes in the train data set. Is a data matrix with three
columns c("Outcome","Model","Prediction"). Each row has a prediction for a
given test subject

medianTest The median of the test prediction for each subject

medianTrain The median of the prediction for each train subject

boxstaTest The statistics of the boxplot for test data

boxstaTrain The statistics of the boxplot for train data
trainSamplesSets

The id of the subjects used for training
selectedFeaturesSet

A list with all the features used at each training cycle
featureFrequency

A order table object that describes how many times a feature was selected.

jaccard The jaccard index of the features as well as the average number of features used
for prediction

theTimes The CPU time analysis

formula.list If fit method returns the formulas: the agregated list of formulas

Author(s)

Jose G. Tamez-Pena

Examples

## Not run:

### Cross Validation Example ####
# Start the graphics device driver to save all plots in a pdf format
pdf(file = "CrossValidationExample.pdf",width = 8, height = 6)

# Get the stage C prostate cancer data from the rpart package
data(stagec,package = "rpart")

# Prepare the data. Create a model matrix with interactions but no event time



randomCV 113

stagec$pgtime <- NULL
stagec$eet <- as.factor(stagec$eet)
options(na.action = 'na.pass')
stagec_mat <- cbind(pgstat = stagec$pgstat,

as.data.frame(model.matrix(pgstat ~ .*.,stagec))[-1])
fnames <- colnames(stagec_mat)
fnames <- str_replace_all(fnames,":","__")
colnames(stagec_mat) <- fnames

# Impute the missing data
dataCancerImputed <- nearestNeighborImpute(stagec_mat)

dataCancerImputed[,1:ncol(dataCancerImputed)] <- sapply(dataCancerImputed,as.numeric)

# Cross validating a Random Forest classifier
cvRF <- randomCV(dataCancerImputed,"pgstat",

randomForest::randomForest,
trainFraction = 0.8,
repetitions = 10,
asFactor = TRUE);

# Evaluate the prediction performance of the Random Forest classifier
RFStats <- predictionStats_binary(cvRF$medianTest,
plotname = "Random Forest",cex = 0.9);

# Cross validating a BSWiMS with the same train/test set
cvBSWiMS <- randomCV(fittingFunction = BSWiMS.model,
trainSampleSets = cvRF$trainSamplesSets);

# Evaluate the prediction performance of the BSWiMS classifier
BSWiMSStats <- predictionStats_binary(cvBSWiMS$medianTest,
plotname = "BSWiMS",cex = 0.9);

# Cross validating a LDA classifier with a t-student filter
cvLDA <- randomCV(dataCancerImputed,"pgstat",MASS::lda,

trainSampleSets = cvRF$trainSamplesSets,
featureSelectionFunction = univariate_tstudent,
featureSelection.control = list(limit = 0.5,thr = 0.975));

# Evaluate the prediction performance of the LDA classifier
LDAStats <- predictionStats_binary(cvLDA$medianTest,plotname = "LDA",cex = 0.9);

# Cross validating a QDA classifier with LDA t-student features and RF train/test set
cvQDA <- randomCV(fittingFunction = MASS::qda,

trainSampleSets = cvRF$trainSamplesSets,
featureSelectionFunction = cvLDA$selectedFeaturesSet);

# Evaluate the prediction performance of the QDA classifier
QDAStats <- predictionStats_binary(cvQDA$medianTest,plotname = "QDA",cex = 0.9);

#Create a barplot with 95
errorciTable <- rbind(RFStats$berror,
BSWiMSStats$berror,
LDAStats$berror,



114 rankInverseNormalDataFrame

QDAStats$berror)

bpCI <- barPlotCiError(as.matrix(errorciTable),metricname = "Balanced Error",
thesets = c("Classifier Method"),
themethod = c("RF","BSWiMS","LDA","QDA"),
main = "Balanced Error",
offsets = c(0.5,0.15),
scoreDirection = "<",
ho = 0.5,
args.legend = list(bg = "white",x = "topright"),
col = terrain.colors(4));

dev.off()

## End(Not run)

rankInverseNormalDataFrame

rank-based inverse normal transformation of the data

Description

This function takes a data frame and a reference control population to return a z-transformed data
set conditioned to the reference population. Each sample data for each feature column in the data
frame is conditionally z-transformed using a rank-based inverse normal transformation, based on
the rank of the sample in the reference frame.

Usage

rankInverseNormalDataFrame(variableList,
data,
referenceframe,
strata=NA)

Arguments

variableList A data frame with two columns. The first one must have the names of the can-
didate variables and the other one the description of such variables

data A data frame where all variables are stored in different columns

referenceframe A data frame similar to data, but with only the control population

strata The name of the column in data that stores the variable that will be used to
stratify the model

Value

A data frame where each observation has been conditionally z-transformed, given control data



reportEquivalentVariables 115

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

Examples

## Not run:
# Start the graphics device driver to save all plots in a pdf format
pdf(file = "Example.pdf")
# Get the stage C prostate cancer data from the rpart package
library(rpart)
data(stagec)
# Split the stages into several columns
dataCancer <- cbind(stagec[,c(1:3,5:6)],

gleason4 = 1*(stagec[,7] == 4),
gleason5 = 1*(stagec[,7] == 5),
gleason6 = 1*(stagec[,7] == 6),
gleason7 = 1*(stagec[,7] == 7),
gleason8 = 1*(stagec[,7] == 8),
gleason910 = 1*(stagec[,7] >= 9),
eet = 1*(stagec[,4] == 2),
diploid = 1*(stagec[,8] == "diploid"),
tetraploid = 1*(stagec[,8] == "tetraploid"),
notAneuploid = 1-1*(stagec[,8] == "aneuploid"))

# Remove the incomplete cases
dataCancer <- dataCancer[complete.cases(dataCancer),]
# Load a pre-established data frame with the names and descriptions of all variables
data(cancerVarNames)
# Set the group of no progression
noProgress <- subset(dataCancer,pgstat==0)
# z-transform g2 values using the no-progression group as reference
dataCancerZTransform <- rankInverseNormalDataFrame(variableList = cancerVarNames[2,],

data = dataCancer,
referenceframe = noProgress)

# Shut down the graphics device driver
dev.off()
## End(Not run)

reportEquivalentVariables

Report the set of variables that will perform an equivalent IDI dis-
criminant function

Description

Given a model, this function will report a data frame with all the variables that may be interchanged
in the model without affecting its classification performance. For each variable in the model, this
function will loop all candidate variables and report all of which result in an equivalent or better
zIDI than the original model.



116 reportEquivalentVariables

Usage

reportEquivalentVariables(object,
pvalue = 0.05,
data,
variableList,
Outcome = "Class",
timeOutcome=NULL,
type = c("LOGIT", "LM", "COX"),
description = ".",
method="BH",
osize=0,
fitFRESA=TRUE)

Arguments

object An object of class lm, glm, or coxph containing the model to be analyzed

pvalue The maximum p-value, associated to the IDI , allowed for a pair of variables to
be considered equivalent

data A data frame where all variables are stored in different columns

variableList A data frame with two columns. The first one must have the names of the can-
didate variables and the other one the description of such variables

Outcome The name of the column in data that stores the variable to be predicted by the
model

timeOutcome The name of the column in data that stores the time to event

type Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")

description The name of the column in variableList that stores the variable description

method The method used by the p-value adjustment algorithm

osize The number of features used for p-value adjustment

fitFRESA if TRUE it will use the cpp based fitting method

Value

pvalueList A list with all the unadjusted p-values of the equivalent features per model vari-
able

equivalentMatrix

A data frame with three columns. The first column is the original variable of
the model. The second column lists all variables that, if interchanged, will not
statistically affect the performance of the model. The third column lists the
corresponding z-scores of the IDI for each equivalent variable.

formulaList a character vector with all the equivalent formulas
equivalentModel

a bagged model that used all the equivalent formulas. The model size is limited
by the number of observations



residualForFRESA 117

Author(s)

Jose G. Tamez-Pena

residualForFRESA Return residuals from prediction

Description

Given a model and a new data set, this function will return the residuals of the predicted values.
When dealing with a Cox proportional hazards regression model, the function will return the Mar-
tingale residuals.

Usage

residualForFRESA(object,
testData,
Outcome,
eta = 0.05)

Arguments

object An object of class lm, glm, or coxph containing the model to be analyzed

testData A data frame where all variables are stored in different columns, with the data
set to be predicted

Outcome The name of the column in data that stores the variable to be predicted by the
model

eta The weight of the contribution of the Martingale residuals, or 1 - the weight of
the contribution of the classification residuals (only needed if object is of class
coxph)

Value

A vector with the residuals (i.e. the differences between the predicted and the real outcome)

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya



118 RRPlot

RRPlot Plot and Analysis of Indices of Risk

Description

Plots of calibration and performance of risk probabilites

Usage

RRPlot(riskData=NULL,
timetoEvent=NULL,
riskTimeInterval=NULL,
ExpectedPrevalence=NULL,
atRate=c(0.90,0.80),
atThr=NULL,

plotRR=TRUE,
title="",
ysurvlim=c(0,1.0)
)

Arguments

riskData The data frame with two columns: First: Event label (event=1, censored=0).
Second: Probability of any future event within the riskTimeInterval

timetoEvent The time to event vector
riskTimeInterval

The time interval of the probability estimations
ExpectedPrevalence

For Case-Control Studies: The expected prevalence of events.
atRate The desired TNR (specificity) or FNR (1.0-sensitivity) of the computed risk at

threshold
atThr The risk threshold
plotRR If set to FALSE it will not generate the plots
title The title postfix to be appended on each one of the generated plot titles
ysurvlim The y limits of the survival plot

Details

The RRPlot function will analyze the provided probabilities of risk and its associated events to
generate calibration plots and plots of Relative Risk (RR) vs all the sensitivity values. Furthermore,
it will compute and analyze the RR of the computed threshold that contains the prescribed rate of
true negative cases (TNR) or if the atRate value is lower than 0.5 it will assume that it is the FNR (1-
Specificity). If the user provides the time to event data, the function will also plot the Kaplan-Meier
curve and return the logrank probability of differences between risk categories. For the calibration
plot it will use the user provided riskTimeInterval to get the expected number of events. If the user
does not provide the riskTimeInterval the function will use the maximum time of observations with
events.



RRPlot 119

Value

CumulativeOvs Matrix with the Cumulative and Observed Events

OEData Matrix with the Estimated and Observed Events

DCA Decision Curve Analysis data matrix

RRData The risk ratios data matrix for the ploted observations
timetoEventData

The dataframe with hazards, class and expeted time to event

keyPoints The threshold values and metrics at: Specified, Max BACC, Max RR, and 100

OERatio The Observed/Expected poisson test

OE95ci The mean OE Ratio over the top 90

OARatio The Observed/Accumlated poisson test

OAcum95ci The mean O/A Ratio over the top 90

fit The loess fit of the Risk Ratios

ROCAnalysis The Reciver Operating Curve and Binary performance analysis

prevalence The prevalence of events

thr_atP The p-value that contains atProb of the negative subjects

c.index The c-index with 90

surfit The survival fit object

surdif The logrank test analysis

LogRankE The bootstreped p-value of the logrank test

Author(s)

Jose G. Tamez-Pena

See Also

EmpiricalSurvDiff

Examples

## Not run:

### RR Plot Example ####
# Start the graphics device driver to save all plots in a pdf format
pdf(file = "RRPlot.pdf",width = 8, height = 6)

library(survival)
library(FRESA.CAD)

op <- par(no.readonly = TRUE)

### Libraries

data(cancer, package="survival")



120 RRPlot

lungD <- lung
lungD$inst <- NULL
lungD$status <- lungD$status - 1
lungD <- lungD[complete.cases(lungD),]

## Exploring Raw Features with RRPlot

convar <- colnames(lungD)[lapply(apply(lungD,2,unique),length) > 10]
convar <- convar[convar != "time"]
topvar <- univariate_BinEnsemble(lungD[,c("status",convar)],"status")
print(names(topvar))
topv <- min(5,length(topvar))
topFive <- names(topvar)[1:topv]
RRanalysis <- list();
idx <- 1
for (topf in topFive)
{

RRanalysis[[idx]] <- RRPlot(cbind(lungD$status,lungD[,topf]),
atRate=c(0.90),
timetoEvent=lungD$time,
title=topf,
# plotRR=FALSE
)
idx <- idx + 1

}
names(RRanalysis) <- topFive

## Reporting the Metrics

ROCAUC <- NULL
CstatCI <- NULL
LogRangp <- NULL
Sensitivity <- NULL
Specificity <- NULL

for (topf in topFive)
{

CstatCI <- rbind(CstatCI,RRanalysis[[topf]]$c.index$cstatCI)
LogRangp <- rbind(LogRangp,RRanalysis[[topf]]$surdif$pvalue)
Sensitivity <- rbind(Sensitivity,RRanalysis[[topf]]$ROCAnalysis$sensitivity)
Specificity <- rbind(Specificity,RRanalysis[[topf]]$ROCAnalysis$specificity)
ROCAUC <- rbind(ROCAUC,RRanalysis[[topf]]$ROCAnalysis$aucs)

}
rownames(CstatCI) <- topFive
rownames(LogRangp) <- topFive
rownames(Sensitivity) <- topFive
rownames(Specificity) <- topFive
rownames(ROCAUC) <- topFive

print(ROCAUC)
print(CstatCI)
print(LogRangp)



RRPlot 121

print(Sensitivity)
print(Specificity)

meanMatrix <- cbind(ROCAUC[,1],CstatCI[,1],Sensitivity[,1],Specificity[,1])
colnames(meanMatrix) <- c("ROCAUC","C-Stat","Sen","Spe")
print(meanMatrix)

## COX Modeling
ml <- BSWiMS.model(Surv(time,status)~1,data=lungD,NumberofRepeats = 10)
sm <- summary(ml)
print(sm$coefficients)

### Cox Model Performance

timeinterval <- 2*mean(subset(lungD,status==1)$time)

h0 <- sum(lungD$status & lungD$time <= timeinterval)
h0 <- h0/sum((lungD$time > timeinterval) | (lungD$status==1))
print(t(c(h0=h0,timeinterval=timeinterval)),caption="Initial Parameters")

index <- predict(ml,lungD)

rdata <- cbind(lungD$status,ppoisGzero(index,h0))

rrAnalysisTrain <- RRPlot(rdata,atRate=c(0.90),
timetoEvent=lungD$time,
title="Raw Train: lung Cancer",
ysurvlim=c(0.00,1.0),
riskTimeInterval=timeinterval)

### Reporting Performance

print(rrAnalysisTrain$keyPoints,caption="Key Values")
print(rrAnalysisTrain$OERatio,caption="O/E Test")
print(t(rrAnalysisTrain$OE95ci),caption="O/E Mean")
print(rrAnalysisTrain$OARatio,caption="O/Acum Test")
print(t(rrAnalysisTrain$OAcum95ci),caption="O/Acum Mean")
print(rrAnalysisTrain$c.index$cstatCI,caption="C. Index")
print(t(rrAnalysisTrain$ROCAnalysis$aucs),caption="ROC AUC")
print((rrAnalysisTrain$ROCAnalysis$sensitivity),caption="Sensitivity")
print((rrAnalysisTrain$ROCAnalysis$specificity),caption="Specificity")
print(t(rrAnalysisTrain$thr_atP),caption="Probability Thresholds")
print(rrAnalysisTrain$surdif,caption="Logrank test")

dev.off()

## End(Not run)



122 signatureDistance

signatureDistance Distance to the signature template

Description

This function returns a normalized distance to the signature template

Usage

signatureDistance(
template,
data=NULL,
method = c("pearson","spearman","kendall","RSS","MAN","NB"),
fwts=NULL

)

Arguments

template A list with a template matrix of the signature described with quantiles = [0.025,0.100,0.159,0.250,0.500,0.750,0.841,0.900,0.975]

data A data frame that will be used to compute the distance

method The distance method.

fwts A numeric vector defining the weight of each feature

Details

The distance to the template: "pearson","spearman" and "kendall" distances are computed using the
correlation function i.e. 1-r. "RSS" distance is the normalized root sum square distance "MAN"
Manhattan. The standardized L^1 distance "NB" Weighted Naive-Bayes distance

Value

result the distance to the template

Author(s)

Jose G. Tamez-Pena



summary.bootstrapValidation_Bin 123

summary.bootstrapValidation_Bin

Generate a report of the results obtained using the bootstrapValida-
tion_Bin function

Description

This function prints two tables describing the results of the bootstrap-based validation of binary
classification models. The first table reports the accuracy, sensitivity, specificity and area under the
ROC curve (AUC) of the train and test data set, along with their confidence intervals. The second
table reports the model coefficients and their corresponding integrated discrimination improvement
(IDI) and net reclassification improvement (NRI) values.

Usage

## S3 method for class 'bootstrapValidation_Bin'
summary(object,

...)

Arguments

object An object of class bootstrapValidation_Bin

... Additional parameters for the generic summary function

Value

performance A vector describing the results of the bootstrapping procedure

summary An object of class summary.lm, summary.glm, or summary.coxph containing a
summary of the analyzed model

coef A matrix with the coefficients, IDI, NRI, and the 95% confidence intervals ob-
tained via bootstrapping

performance.table

A matrix with the tabulated results of the blind test accuracy, sensitivity, speci-
ficities, and area under the ROC curve

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

summaryReport



124 summary.fitFRESA

summary.fitFRESA Returns the summary of the fit

Description

Returns a summary of fitted model created by the modelFitting function with the fitFRESA param-
eter set to TRUE

Usage

## S3 method for class 'fitFRESA'
summary(object,
type=c("Improvement","Residual"),
ci=c(0.025,0.975),
data=NULL,
...)

Arguments

object fitted model with the modelFitting function

type the type of coefficient estimation

ci lower and upper limit of the ci estimation

data the data to be used for 95

... parameters of the boostrap method

Value

a list with the analysis results.

Author(s)

Jose G. Tamez-Pena

See Also

modelFitting,bootstrapValidation_Bin,bootstrapValidation_Res



summaryReport 125

summaryReport Report the univariate analysis, the cross-validation analysis and the
correlation analysis

Description

This function takes the variables of the cross-validation analysis and extracts the results from the
univariate and correlation analyses. Then, it prints the cross-validation results, the univariate anal-
ysis results, and the correlated variables. As output, it returns a list of each one of these results.

Usage

summaryReport(univariateObject,
summaryBootstrap,
listOfCorrelatedVariables = NULL,
digits = 2)

Arguments

univariateObject

A data frame that contains the results of the univariateRankVariables func-
tion

summaryBootstrap

A list that contains the results of the summary.bootstrapValidation_Bin func-
tion

listOfCorrelatedVariables

A matrix that contains the correlated.variables value from the results ob-
tained with the listTopCorrelatedVariables function

digits The number of significant digits to be used in the print function

Value
performance.table

A matrix with the tabulated results of the blind test accuracy, sensitivity, speci-
ficities, and area under the ROC curve

coefStats A data frame that lists all the model features along with its univariate statistics
and bootstrapped coefficients

cor.varibles A matrix that lists all the features that are correlated to the model variables

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

summary.bootstrapValidation_Bin



126 timeSerieAnalysis

timeSerieAnalysis Fit the listed time series variables to a given model

Description

This function plots the time evolution and does a longitudinal analysis of time dependent features.
Features listed are fitted to the provided time model (mixed effect model) with a generalized least
squares (GLS) procedure. As output, it returns the coefficients, standard errors, t-values, and corre-
sponding p-values.

Usage

timeSerieAnalysis(variableList,
baseModel,
data,
timevar = "time",
contime = ".",
Outcome = ".",
...,
description = ".",
Ptoshow = c(1),
plegend = c("p"),
timesign = "-",
catgo.names = c("Control", "Case")
)

Arguments

variableList A data frame with two columns. The first one must have the names of the can-
didate variables and the other one the description of such variables

baseModel A string of the type "1 + var1 + var2" that defines the model to which variables
will be fitted

data A data frame where all variables are stored in different columns

timevar The name of the column in data that stores the visit ID

contime The name of the column in data that stores the continuous time (e.g. days or
months) that has elapsed since the baseline visit

Outcome The name of the column in data that stores an optional binary outcome that may
be used to show the stratified analysis

description The name of the column in variableList that stores the variable description

Ptoshow Index of the p-values to be shown in the plot

plegend Legend of the p-values to be shown in the plot

timesign The direction of the arrow of time

catgo.names The legends of the binary categories

... Additional parameters to be passed to the gls function



trajectoriesPolyFeatures 127

Details

This function will plot the evolution of the mean value of the listed variables with its corresponding
error bars. Then, it will fit the data to the provided time model with a GLS procedure and it will plot
the fitted values. If a binary variable was provided, the plots will contain the case and control data.
As output, the function will return the model coefficients and their corresponding t-values, and the
standard errors and their associated p-values.

Value

coef A matrix with the coefficients of the GLS fitting

std.Errors A matrix with the standardized error of each coefficient

t.values A matrix with the t-value of each coefficient

p.values A matrix with the p-value of each coefficient

sigmas The root-mean-square error of the fitting

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

trajectoriesPolyFeatures

Extract the per patient polynomial Coefficients of a feature trayectory

Description

Given a longituinal data set, it will extract the associated polynomial coefficients for each sample.

Usage

trajectoriesPolyFeatures(data,
feature="v1",
degree=2,
time="t",
group="ID",
timeOffset=0,
strata=NULL,
plot=TRUE,
...)

Arguments

data The dataframe

feature The name of the outcome

degree The fitting function used to model the data

time The percentage of the data to be used for training



128 TUNED_SVM

group The number of times that the CV process will be repeated

timeOffset The time offset

strata Data strafication

plot if TRUE it will plot the data

... parameters passed to plot

Value

coef The trayaectory coefficient matrix

Author(s)

Jose G. Tamez-Pena

TUNED_SVM Tuned SVM

Description

FRESA wrapper to fit grid-tuned e1071::svm object

Usage

TUNED_SVM(formula = formula,
data=NULL,
gamma = 10^(-5:-1),
cost = 10^(-3:1),
...
)

Arguments

formula The base formula to extract the outcome

data The data to be used for training the method

gamma The vector of possible gamma values

cost The vector of possible cost values

... Parameters to be passed to the e1071::svm function

Value

fit The e1071::svm fitted object

tuneSVM The e1071::tune.svm object

Author(s)

Jose G. Tamez-Pena



uniRankVar 129

See Also

e1071::svm

uniRankVar Univariate analysis of features (additional values returned)

Description

This function reports the mean and standard deviation for each feature in a model, and ranks them
according to a user-specified score. Additionally, it does a Kolmogorov-Smirnov (KS) test on the
raw and z-standardized data. It also reports the raw and z-standardized t-test score, the p-value of
the Wilcoxon rank-sum test, the integrated discrimination improvement (IDI), the net reclassifica-
tion improvement (NRI), the net residual improvement (NeRI), and the area under the ROC curve
(AUC). Furthermore, it reports the z-value of the variable significance on the fitted model. Besides
reporting an ordered data frame, this function returns all arguments as values, so that the results can
be updates with the update.uniRankVar if needed.

Usage

uniRankVar(variableList,
formula,
Outcome,
data,
categorizationType = c("Raw",

"Categorical",
"ZCategorical",
"RawZCategorical",
"RawTail",
"RawZTail",
"Tail",
"RawRaw"),

type = c("LOGIT", "LM", "COX"),
rankingTest = c("zIDI",

"zNRI",
"IDI",
"NRI",
"NeRI",
"Ztest",
"AUC",
"CStat",
"Kendall"),

cateGroups = c(0.1, 0.9),
raw.dataFrame = NULL,
testData = NULL,
description = ".",
uniType = c("Binary", "Regression"),



130 uniRankVar

FullAnalysis=TRUE,
acovariates = NULL,
timeOutcome = NULL)

Arguments

variableList A data frame with two columns. The first one must have the names of the can-
didate variables and the other one the description of such variables

formula An object of class formula with the formula to be fitted

Outcome The name of the column in data that stores an optional binary outcome that may
be used to show the stratified analysis

data A data frame where all variables are stored in different columns
categorizationType

How variables will be analyzed : As given in data ("Raw"); broken into the
p-value categories given by cateGroups ("Categorical"); broken into the p-
value categories given by cateGroups, and weighted by the z-score ("ZCate-
gorical"); broken into the p-value categories given by cateGroups, weighted by
the z-score, plus the raw values ("RawZCategorical"); raw values, plus the tails
("RawTail"); or raw values, weighted by the z-score, plus the tails ("RawZTail")

type Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")

rankingTest Variables will be ranked based on: The z-score of the IDI ("zIDI"), the z-score of
the NRI ("zNRI"), the IDI ("IDI"), the NRI ("NRI"), the NeRI ("NeRI"), the z-
score of the model fit ("Ztest"), the AUC ("AUC"), the Somers’ rank correlation
("Cstat"), or the Kendall rank correlation ("Kendall")

cateGroups A vector of percentiles to be used for the categorization procedure

raw.dataFrame A data frame similar to data, but with unadjusted data, used to get the means
and variances of the unadjusted data

testData A data frame for model testing

description The name of the column in variableList that stores the variable description

uniType Type of univariate analysis: Binary classification ("Binary") or regression ("Re-
gression")

FullAnalysis If FALSE it will only order the features according to its z-statistics of the linear
model

acovariates the list of covariates

timeOutcome the name of the Time to event feature

Details

This function will create valid dummy categorical variables if, and only if, data has been z-
standardized. The p-values provided in cateGroups will be converted to its corresponding z-score,
which will then be used to create the categories. If non z-standardized data were to be used, the
categorization analysis would return wrong results.



univariateRankVariables 131

Value

orderframe A sorted list of model variables stored in a data frame

variableList The argument variableList

formula The argument formula

Outcome The argument Outcome

data The argument data
categorizationType

The argument categorizationType

type The argument type

rankingTest The argument rankingTest

cateGroups The argument cateGroups

raw.dataFrame The argument raw.dataFrame

description The argument description

uniType The argument uniType

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

References

Pencina, M. J., D’Agostino, R. B., & Vasan, R. S. (2008). Evaluating the added predictive ability of
a new marker: from area under the ROC curve to reclassification and beyond. Statistics in medicine
27(2), 157-172.

See Also

update.uniRankVar, univariateRankVariables

univariateRankVariables

Univariate analysis of features

Description

This function reports the mean and standard deviation for each feature in a model, and ranks them
according to a user-specified score. Additionally, it does a Kolmogorov-Smirnov (KS) test on the
raw and z-standardized data. It also reports the raw and z-standardized t-test score, the p-value of
the Wilcoxon rank-sum test, the integrated discrimination improvement (IDI), the net reclassifica-
tion improvement (NRI), the net residual improvement (NeRI), and the area under the ROC curve
(AUC). Furthermore, it reports the z-value of the variable significance on the fitted model.



132 univariateRankVariables

Usage

univariateRankVariables(variableList,
formula,
Outcome,
data,
categorizationType = c("Raw",

"Categorical",
"ZCategorical",
"RawZCategorical",
"RawTail",
"RawZTail",
"Tail",
"RawRaw"),

type = c("LOGIT", "LM", "COX"),
rankingTest = c("zIDI",

"zNRI",
"IDI",
"NRI",
"NeRI",
"Ztest",
"AUC",
"CStat",
"Kendall"),

cateGroups = c(0.1, 0.9),
raw.dataFrame = NULL,
description = ".",
uniType = c("Binary","Regression"),
FullAnalysis=TRUE,
acovariates = NULL,
timeOutcome = NULL

)

Arguments

variableList A data frame with the candidate variables to be ranked

formula An object of class formula with the formula to be fitted

Outcome The name of the column in data that stores the variable to be predicted by the
model

data A data frame where all variables are stored in different columns
categorizationType

How variables will be analyzed: As given in data ("Raw"); broken into the
p-value categories given by cateGroups ("Categorical"); broken into the p-
value categories given by cateGroups, and weighted by the z-score ("ZCate-
gorical"); broken into the p-value categories given by cateGroups, weighted by
the z-score, plus the raw values ("RawZCategorical"); raw values, plus the tails
("RawTail"); or raw values, weighted by the z-score, plus the tails ("RawZTail")

type Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")



univariateRankVariables 133

rankingTest Variables will be ranked based on: The z-score of the IDI ("zIDI"), the z-score of
the NRI ("zNRI"), the IDI ("IDI"), the NRI ("NRI"), the NeRI ("NeRI"), the z-
score of the model fit ("Ztest"), the AUC ("AUC"), the Somers’ rank correlation
("Cstat"), or the Kendall rank correlation ("Kendall")

cateGroups A vector of percentiles to be used for the categorization procedure

raw.dataFrame A data frame similar to data, but with unadjusted data, used to get the means
and variances of the unadjusted data

description The name of the column in variableList that stores the variable description

uniType Type of univariate analysis: Binary classification ("Binary") or regression ("Re-
gression")

FullAnalysis If FALSE it will only order the features according to its z-statistics of the linear
model

acovariates the list of covariates

timeOutcome the name of the Time to event feature

Details

This function will create valid dummy categorical variables if, and only if, data has been z-
standardized. The p-values provided in cateGroups will be converted to its corresponding z-score,
which will then be used to create the categories. If non z-standardized data were to be used, the
categorization analysis would return wrong results.

Value

A sorted data frame. In the case of a binary classification analysis, the data frame will have the
following columns:

Name Name of the raw variable or of the dummy variable if the data has been catego-
rized

parent Name of the raw variable from which the dummy variable was created

descrip Description of the parent variable, as defined in description

cohortMean Mean value of the variable

cohortStd Standard deviation of the variable

cohortKSD D statistic of the KS test when comparing a normal distribution and the distri-
bution of the variable

cohortKSP Associated p-value to the cohortKSD

caseMean Mean value of cases (subjects with Outcome equal to 1)

caseStd Standard deviation of cases

caseKSD D statistic of the KS test when comparing a normal distribution and the distri-
bution of the variable only for cases

caseKSP Associated p-value to the caseKSD

caseZKSD D statistic of the KS test when comparing a normal distribution and the distri-
bution of the z-standardized variable only for cases



134 univariateRankVariables

caseZKSP Associated p-value to the caseZKSD

controlMean Mean value of controls (subjects with Outcome equal to 0)

controlStd Standard deviation of controls

controlKSD D statistic of the KS test when comparing a normal distribution and the distri-
bution of the variable only for controls

controlKSP Associated p-value to the controlsKSD

controlZKSD D statistic of the KS test when comparing a normal distribution and the distri-
bution of the z-standardized variable only for controls

controlZKSP Associated p-value to the controlsZKSD

t.Rawvalue Normal inverse p-value (z-value) of the t-test performed on raw.dataFrame

t.Zvalue z-value of the t-test performed on data

wilcox.Zvalue z-value of the Wilcoxon rank-sum test performed on data

ZGLM z-value returned by the lm, glm, or coxph functions for the z-standardized vari-
able

zNRI z-value returned by the improveProb function (Hmisc package) when evaluating
the NRI

zIDI z-value returned by the improveProb function (Hmisc package) when evaluating
the IDI

zNeRI z-value returned by the improvedResiduals function when evaluating the NeRI

ROCAUC Area under the ROC curve returned by the roc function (pROC package)

cStatCorr c index of Somers’ rank correlation returned by the rcorr.cens function (Hmisc
package)

NRI NRI returned by the improveProb function (Hmisc package)

IDI IDI returned by the improveProb function (Hmisc package)

NeRI NeRI returned by the improvedResiduals function

kendall.r Kendall τ rank correlation coefficient between the variable and the binary out-
come

kendall.p Associated p-value to the kendall.r

TstudentRes.p p-value of the improvement in residuals, as evaluated by the paired t-test

WilcoxRes.p p-value of the improvement in residuals, as evaluated by the paired Wilcoxon
rank-sum test

FRes.p p-value of the improvement in residual variance, as evaluated by the F-test
caseN_Z_Low_Tail

Number of cases in the low tail
caseN_Z_Hi_Tail

Number of cases in the top tail
controlN_Z_Low_Tail

Number of controls in the low tail
controlN_Z_Hi_Tail

Number of controls in the top tail



univariateRankVariables 135

In the case of regression analysis, the data frame will have the following columns:

Name Name of the raw variable or of the dummy variable if the data has been catego-
rized

parent Name of the raw variable from which the dummy variable was created

descrip Description of the parent variable, as defined in description

cohortMean Mean value of the variable

cohortStd Standard deviation of the variable

cohortKSD D statistic of the KS test when comparing a normal distribution and the distri-
bution of the variable

cohortKSP Associated p-value to the cohortKSP

cohortZKSD D statistic of the KS test when comparing a normal distribution and the distri-
bution of the z-standardized variable

cohortZKSP Associated p-value to the cohortZKSD

ZGLM z-value returned by the glm or Cox procedure for the z-standardized variable

zNRI z-value returned by the improveProb function (Hmisc package) when evaluating
the NRI

NeRI NeRI returned by the improvedResiduals function

cStatCorr c index of Somers’ rank correlation returned by the rcorr.cens function (Hmisc
package)

spearman.r Spearman ρ rank correlation coefficient between the variable and the outcome

pearson.r Pearson r product-moment correlation coefficient between the variable and the
outcome

kendall.r Kendall τ rank correlation coefficient between the variable and the outcome

kendall.p Associated p-value to the kendall.r

TstudentRes.p p-value of the improvement in residuals, as evaluated by the paired t-test

WilcoxRes.p p-value of the improvement in residuals, as evaluated by the paired Wilcoxon
rank-sum test

FRes.p p-value of the improvement in residual variance, as evaluated by the F-test

Author(s)

Jose G. Tamez-Pena

References

Pencina, M. J., D’Agostino, R. B., & Vasan, R. S. (2008). Evaluating the added predictive ability of
a new marker: from area under the ROC curve to reclassification and beyond. Statistics in medicine
27(2), 157-172.



136 updateModel.Bin

update.uniRankVar Update the univariate analysis using new data

Description

This function updates the results from an univariate analysis using a new data set

Usage

## S3 method for class 'uniRankVar'
update(object,

...)

Arguments

object A list with the results from the uniRankVar function

... Additional parameters to be passed to the uniRankVar function, used to update
the univariate analysis

Value

A list with the same format as the one yielded by the uniRankVar function

Author(s)

Jose G. Tamez-Pena

See Also

uniRankVar

updateModel.Bin Update the IDI/NRI-based model using new data or new threshold
values

Description

This function will take the frequency-ranked set of variables and will generate a new model with
terms that meet either the integrated discrimination improvement (IDI), or the net reclassification
improvement (NRI), threshold criteria.



updateModel.Bin 137

Usage

updateModel.Bin(Outcome,
covariates = "1",
pvalue = c(0.025, 0.05),
VarFrequencyTable,
variableList,
data,
type = c("LM", "LOGIT", "COX"),
lastTopVariable = 0,
timeOutcome = "Time",
selectionType = c("zIDI","zNRI"),
maxTrainModelSize = 0,
zthrs = NULL
)

Arguments

Outcome The name of the column in data that stores the variable to be predicted by the
model

covariates A string of the type "1 + var1 + var2" that defines which variables will always
be included in the models (as covariates)

pvalue The maximum p-value, associated to either IDI or NRI, allowed for a term in
the model

VarFrequencyTable

An array with the ranked frequencies of the features, (e.g. the ranked.var value
returned by the ForwardSelection.Model.Bin function)

variableList A data frame with two columns. The first one must have the names of the can-
didate variables and the other one the description of such variables

data A data frame where all variables are stored in different columns

type Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")
lastTopVariable

The maximum number of variables to be tested

timeOutcome The name of the column in data that stores the time to event (needed only for a
Cox proportional hazards regression model fitting)

selectionType The type of index to be evaluated by the improveProb function (Hmisc pack-
age): z-score of IDI or of NRI

maxTrainModelSize

Maximum number of terms that can be included in the model

zthrs The z-thresholds estimated in forward selection

Value

final.model An object of class lm, glm, or coxph containing the final model

var.names A vector with the names of the features that were included in the final model

formula An object of class formula with the formula used to fit the final model



138 updateModel.Res

z.selectionType

A vector in which each term represents the z-score of the index defined in
selectionType obtained with the Full model and the model without one term

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

updateModel.Res

updateModel.Res Update the NeRI-based model using new data or new threshold values

Description

This function will take the frequency-ranked set of variables and will generate a new model with
terms that meet the net residual improvement (NeRI) threshold criteria.

Usage

updateModel.Res(Outcome,
covariates = "1",
pvalue = c(0.025, 0.05),
VarFrequencyTable,
variableList,
data,
type = c("LM", "LOGIT", "COX"),
testType=c("Binomial", "Wilcox", "tStudent"),
lastTopVariable = 0,
timeOutcome = "Time",
maxTrainModelSize = -1,
p.thresholds = NULL
)

Arguments

Outcome The name of the column in data that stores the variable to be predicted by the
model

covariates A string of the type "1 + var1 + var2" that defines which variables will always
be included in the models (as covariates)

pvalue The maximum p-value, associated to the NeRI, allowed for a term in the model
VarFrequencyTable

An array with the ranked frequencies of the features, (e.g. the ranked.var value
returned by the ForwardSelection.Model.Res function)



updateModel.Res 139

variableList A data frame with two columns. The first one must have the names of the can-
didate variables and the other one the description of such variables

data A data frame where all variables are stored in different columns

type Fit type: Logistic ("LOGIT"), linear ("LM"), or Cox proportional hazards ("COX")

testType Type of non-parametric test to be evaluated by the improvedResiduals func-
tion: Binomial test ("Binomial"), Wilcoxon rank-sum test ("Wilcox"), Student’s
t-test ("tStudent"), or F-test ("Ftest")

lastTopVariable

The maximum number of variables to be tested

timeOutcome The name of the column in data that stores the time to event (needed only for a
Cox proportional hazards regression model fitting)

maxTrainModelSize

Maximum number of terms that can be included in the model

p.thresholds The p.value thresholds estimated in forward selection

Value

final.model An object of class lm, glm, or coxph containing the final model

var.names A vector with the names of the features that were included in the final model

formula An object of class formula with the formula used to fit the final model

z.NeRI A vector in which each element represents the z-score of the NeRI, associated
to the testType, for each feature found in the final model

Author(s)

Jose G. Tamez-Pena and Antonio Martinez-Torteya

See Also

updateModel.Bin



Index

∗ Bagged_Prediction
predict.BAGGS, 99

∗ Benchmarking
barPlotCiError, 14
benchmarking, 15

∗ Cluster_Evaluation
jaccardMatrix, 84

∗ Cluster_Generation
clusterISODATA, 37
GMVECluster, 75

∗ Cluster_Prediction
predict.GMVE, 107

∗ Data Labeling
nearestCentroid, 92

∗ Data Transformations
getLatentCoefficients, 67
IDeA, 80

∗ Data Visualization
RRPlot, 118

∗ Data_Conditioning
featureAdjustment, 52
nearestNeighborImpute, 93
rankInverseNormalDataFrame, 114

∗ Data_Inspection
heatMaps, 77
listTopCorrelatedVariables, 86
timeSerieAnalysis, 126
uniRankVar, 129
univariateRankVariables, 131
update.uniRankVar, 136

∗ Datasets
cancerVarNames, 35

∗ Feature_Filtering
FilterUnivariate, 54
mRMR.classic_FRESA, 90

∗ Feature_Selection
getSignature, 69
multivariate_BinEnsemble, 90
signatureDistance, 122

∗ Hypothesis_Testing
EmpiricalSurvDiff, 49

∗ Model Calibration
CalibrationProbPoissonRisk, 34
ppoisGzero, 98

∗ Model_CV
FRESAScale, 65
randomCV, 111

∗ Model_Calibration
getMedianSurvCalibratedPrediction,

68
∗ Model_Diagnosis

bootstrapValidation_Bin, 20
bootstrapValidation_Res, 23

∗ Model_Generation
backVarElimination_Bin, 9
backVarElimination_Res, 10
baggedModel, 12
BESS, 19
bootstrapVarElimination_Bin, 25
bootstrapVarElimination_Res, 27
BSWiMS.model, 28
calBinProb, 33
ClustClass, 36
crossValidationFeatureSelection_Bin,

39
crossValidationFeatureSelection_Res,

44
CVsignature, 48
filteredFit, 53
ForwardSelection.Model.Bin, 57
ForwardSelection.Model.Res, 59
FRESA.Model, 61
GLMNET, 73
GMVEBSWiMS, 74
HLCM, 78
KNN_method, 85
LM_RIDGE_MIN, 87
NAIVE_BAYES, 92

140



INDEX 141

TUNED_SVM, 128
updateModel.Bin, 136
updateModel.Res, 138

∗ Model_Inspection
ensemblePredict, 51
getKNNpredictionFromFormula, 66
getVar.Bin, 70
getVar.Res, 72
improvedResiduals, 82
metric95ci, 88
modelFitting, 89
plot.bootstrapValidation_Bin, 94
plot.bootstrapValidation_Res, 95
plot.FRESA_benchmark, 96
plotModels.ROC, 97
predictionStats, 109
reportEquivalentVariables, 115
residualForFRESA, 117
summary.bootstrapValidation_Bin,

123
summary.fitFRESA, 124
summaryReport, 125

∗ Model_Prediction
predict.CLUSTER_CLASS, 100
predict.fitFRESA, 100
predict.FRESA_BESS, 102
predict.FRESA_FILTERFIT, 103
predict.FRESA_GLMNET, 104
predict.FRESA_HLCM, 104
predict.FRESA_NAIVEBAYES, 105
predict.FRESA_RIDGE, 106
predict.FRESA_SVM, 106
predict.FRESAKNN, 101
predict.FRESAsignature, 102
predict.GMVE_BSWiMS, 108
predict.LogitCalPred, 108

∗ Trajectory
trajectoriesPolyFeatures, 127

∗ package
FRESA.CAD-package, 3

adjustProb (ppoisGzero), 98

backVarElimination_Bin, 9, 12, 26
backVarElimination_Res, 10, 10, 26, 28
baggedModel, 12, 99
baggedModelS (baggedModel), 12
barPlotCiError, 14
benchmarking, 15

BESS, 19, 102, 103
BESS_EBIC (BESS), 19
BESS_GSECTION (BESS), 19
BinaryBenchmark, 96
BinaryBenchmark (benchmarking), 15
bootstrapValidation_Bin, 20, 25, 124
bootstrapValidation_Res, 22, 23, 28, 124
bootstrapVarElimination_Bin, 10, 12, 25,

28
bootstrapVarElimination_Res, 10, 12, 26,

27, 48
BSWiMS.model, 28, 105

calBinProb, 33, 109
CalibrationProbPoissonRisk, 34
cancerVarNames, 35
ClassMetric95ci (metric95ci), 88
ClustClass, 36, 100
clusterISODATA, 37
concordance95ci (metric95ci), 88
correlated_Remove (FilterUnivariate), 54
CoxBenchmark (benchmarking), 15
CoxRiskCalibration

(CalibrationProbPoissonRisk),
34

crossValidationFeatureSelection_Bin,
39, 48

crossValidationFeatureSelection_Res,
43, 44

CVsignature, 48, 102

EmpiricalSurvDiff, 49
ensemblePredict, 13, 51
expectedEventsPerInterval (ppoisGzero),

98

featureAdjustment, 52
filteredFit, 53, 103
FilterUnivariate, 54
ForwardSelection.Model.Bin, 43, 57, 60
ForwardSelection.Model.Res, 43, 59, 59
FRESA.CAD (FRESA.CAD-package), 3
FRESA.CAD-package, 3
FRESA.Model, 61
FRESAScale, 65, 85

getKNNpredictionFromFormula, 66
getLatentCoefficients, 67



142 INDEX

getMedianLogisticCalibratedPrediction
(getMedianSurvCalibratedPrediction),
68

getMedianSurvCalibratedPrediction, 68
getObservedCoef

(getLatentCoefficients), 67
getSignature, 48, 69, 102
getVar.Bin, 70, 73
getVar.Res, 71, 72
GLMNET, 73, 104
GLMNET_ELASTICNET_1SE (GLMNET), 73
GLMNET_ELASTICNET_MIN (GLMNET), 73
GLMNET_RIDGE_1SE (GLMNET), 73
GLMNET_RIDGE_MIN (GLMNET), 73
GMVEBSWiMS, 74, 108
GMVECluster, 75, 107

heatMaps, 77
HLCM, 78
HLCM_EM (HLCM), 78

IDeA, 80
ILAA (IDeA), 80
improvedResiduals, 48, 82

jaccardMatrix, 84

KNN_method, 85, 101

LASSO_1SE (GLMNET), 73
LASSO_MIN (GLMNET), 73
listTopCorrelatedVariables, 86
LM_RIDGE_MIN, 87, 106

MAE95ci (metric95ci), 88
meanTimeToEvent (ppoisGzero), 98
metric95ci, 88
modelFitting, 89, 124
mRMR.classic_FRESA, 90
multivariate_BinEnsemble, 90

NAIVE_BAYES, 92, 105
nearestCentroid, 92
nearestNeighborImpute, 93, 101

OrdinalBenchmark (benchmarking), 15

plot (plot.bootstrapValidation_Bin), 94
plot.bootstrapValidation_Bin, 22, 94, 96
plot.bootstrapValidation_Res, 25, 95, 95

plot.FRESA_benchmark, 96
plotModels.ROC, 97
ppoisGzero, 98
predict (predict.fitFRESA), 100
predict.BAGGS, 99
predict.CLUSTER_CLASS, 100
predict.fitFRESA, 67, 100
predict.FRESA_BESS, 102
predict.FRESA_FILTERFIT, 103
predict.FRESA_GLMNET, 104
predict.FRESA_HLCM, 104
predict.FRESA_NAIVEBAYES, 105
predict.FRESA_RIDGE, 106
predict.FRESA_SVM, 106
predict.FRESAKNN, 101
predict.FRESAsignature, 102
predict.GMVE, 107
predict.GMVE_BSWiMS, 108
predict.LogitCalPred, 108
predictDecorrelate (IDeA), 80
predictionStats, 109
predictionStats_binary, 96
predictionStats_binary

(predictionStats), 109
predictionStats_ordinal

(predictionStats), 109
predictionStats_regression

(predictionStats), 109
predictionStats_survival

(predictionStats), 109

randomCV, 16, 17, 69, 89, 110, 111
rankInverseNormalDataFrame, 65, 66, 114
RegresionBenchmark (benchmarking), 15
reportEquivalentVariables, 115
residualForFRESA, 117
RRPlot, 118

signatureDistance, 48, 102, 122
sperman95ci (metric95ci), 88
summary (summary.fitFRESA), 124
summary.bootstrapValidation_Bin, 22,

123, 125
summary.fitFRESA, 124
summaryReport, 123, 125

timeSerieAnalysis, 126
trajectoriesPolyFeatures, 127
TUNED_SVM, 106, 107, 128



INDEX 143

uniRankVar, 129, 136
univariate_BinEnsemble

(FilterUnivariate), 54
univariate_correlation

(FilterUnivariate), 54
univariate_cox (FilterUnivariate), 54
univariate_DTS (FilterUnivariate), 54
univariate_KS (FilterUnivariate), 54
univariate_Logit (FilterUnivariate), 54
univariate_residual (FilterUnivariate),

54
univariate_Strata (FilterUnivariate), 54
univariate_tstudent (FilterUnivariate),

54
univariate_Wilcoxon (FilterUnivariate),

54
univariateRankVariables, 131, 131
update (update.uniRankVar), 136
update.uniRankVar, 131, 136
updateModel.Bin, 136, 139
updateModel.Res, 138, 138


	FRESA.CAD-package
	backVarElimination_Bin
	backVarElimination_Res
	baggedModel
	barPlotCiError
	benchmarking
	BESS
	bootstrapValidation_Bin
	bootstrapValidation_Res
	bootstrapVarElimination_Bin
	bootstrapVarElimination_Res
	BSWiMS.model
	calBinProb
	CalibrationProbPoissonRisk
	cancerVarNames
	ClustClass
	clusterISODATA
	crossValidationFeatureSelection_Bin
	crossValidationFeatureSelection_Res
	CVsignature
	EmpiricalSurvDiff
	ensemblePredict
	featureAdjustment
	filteredFit
	FilterUnivariate
	ForwardSelection.Model.Bin
	ForwardSelection.Model.Res
	FRESA.Model
	FRESAScale
	getKNNpredictionFromFormula
	getLatentCoefficients
	getMedianSurvCalibratedPrediction
	getSignature
	getVar.Bin
	getVar.Res
	GLMNET
	GMVEBSWiMS
	GMVECluster
	heatMaps
	HLCM
	IDeA
	improvedResiduals
	jaccardMatrix
	KNN_method
	listTopCorrelatedVariables
	LM_RIDGE_MIN
	metric95ci
	modelFitting
	mRMR.classic_FRESA
	multivariate_BinEnsemble
	NAIVE_BAYES
	nearestCentroid
	nearestNeighborImpute
	plot.bootstrapValidation_Bin
	plot.bootstrapValidation_Res
	plot.FRESA_benchmark
	plotModels.ROC
	ppoisGzero
	predict.BAGGS
	predict.CLUSTER_CLASS
	predict.fitFRESA
	predict.FRESAKNN
	predict.FRESAsignature
	predict.FRESA_BESS
	predict.FRESA_FILTERFIT
	predict.FRESA_GLMNET
	predict.FRESA_HLCM
	predict.FRESA_NAIVEBAYES
	predict.FRESA_RIDGE
	predict.FRESA_SVM
	predict.GMVE
	predict.GMVE_BSWiMS
	predict.LogitCalPred
	predictionStats
	randomCV
	rankInverseNormalDataFrame
	reportEquivalentVariables
	residualForFRESA
	RRPlot
	signatureDistance
	summary.bootstrapValidation_Bin
	summary.fitFRESA
	summaryReport
	timeSerieAnalysis
	trajectoriesPolyFeatures
	TUNED_SVM
	uniRankVar
	univariateRankVariables
	update.uniRankVar
	updateModel.Bin
	updateModel.Res
	Index

