
Package ‘EWSmethods’
January 20, 2025

Type Package

Title Forecasting Tipping Points at the Community Level

Version 1.3.1

Maintainer Duncan O'Brien <duncan.a.obrien@gmail.com>

Description Rolling and expanding window approaches to assessing abundance based early warn-
ing signals, non-equilibrium resilience measures, and machine learn-
ing. See Dakos et al. (2012) <doi:10.1371/journal.pone.0041010>, Deb et al. (2022) <doi:10.1098/rsos.211475>, Drake and Grif-
fen (2010) <doi:10.1038/nature09389>, Ushio et al. (2018) <doi:10.1038/nature25504> and Weinans et al. (2021) <doi:10.1038/s41598-
021-87839-y> for methodological details. Graphical presentation of the outputs are also pro-
vided for clear and publishable figures. Visit the 'EWSmethods' website for more informa-
tion, and tutorials.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports curl, egg, ggplot2, gtools, forecast, foreach, infotheo, mAr,
moments, rEDM (>= 1.15.0), reticulate, scales, zoo

RoxygenNote 7.3.1

URL https://github.com/duncanobrien/EWSmethods,

https://duncanobrien.github.io/EWSmethods/

BugReports https://github.com/duncanobrien/EWSmethods/issues

Suggests devtools, doParallel, knitr, fs, parallel, rmarkdown,
testthat (>= 3.0.0)

VignetteBuilder knitr

Depends R (>= 4.4)

Config/testthat/edition 3

NeedsCompilation no

Author Duncan O'Brien [aut, cre, cph]
(<https://orcid.org/0000-0002-3420-5210>),

Smita Deb [aut] (<https://orcid.org/0000-0001-7037-7055>),
Sahil Sidheekh [aut],

1

https://doi.org/10.1371/journal.pone.0041010
https://doi.org/10.1098/rsos.211475
https://doi.org/10.1038/nature09389
https://doi.org/10.1038/nature25504
https://doi.org/10.1038/s41598-021-87839-y
https://doi.org/10.1038/s41598-021-87839-y
https://github.com/duncanobrien/EWSmethods
https://duncanobrien.github.io/EWSmethods/
https://github.com/duncanobrien/EWSmethods/issues
https://orcid.org/0000-0002-3420-5210
https://orcid.org/0000-0001-7037-7055

2 CODrecovery

Narayanan Krishnan [aut],
Partha Dutta [aut] (<https://orcid.org/0000-0001-6067-1023>),
Christopher Clements [aut] (<https://orcid.org/0000-0001-5677-5401>)

Repository CRAN

Date/Publication 2024-05-15 16:20:02 UTC

Contents
CODrecovery . 2
conda_clean . 3
default_weights_path . 4
deseason_ts . 4
detrend_ts . 6
embed_ts . 7
ewsnet_finetune . 7
ewsnet_init . 9
ewsnet_predict . 10
ewsnet_reset . 12
FI . 13
II . 14
imbalance_gain . 15
multiAR . 17
multiEWS . 18
multiJI . 19
multi_smap_jacobian . 20
mvi . 22
perm_rollEWS . 23
plot.EWSmethods . 25
simTransComms . 26
tuneII . 27
uniAR . 28
uniEWS . 29
uniJI . 31
uni_smap_jacobian . 33

Index 35

CODrecovery Three Recovering Cod Populations

Description

A dataset containing three simulated cod populations. Community 1 does not recovery whereas
Community 100 and 200 do.

https://orcid.org/0000-0001-6067-1023
https://orcid.org/0000-0001-5677-5401

conda_clean 3

Usage

CODrecovery

Format

A list of three dataframes with 191 rows and 6 variables each:

community_id the identity of the simulated community

time time index

biomass population total biomass

mean.size average length of cod individuals

sd.size variation in length of cod individuals

inflection_pt the time index where transition occurs

Source

Clements C., McCarthy M., Blanchard J. (2019) Early warning signals of recovery in complex
systems. Nature Communications, 10:1681.

Examples

data("CODrecovery", package = "EWSmethods")

cod_data <- CODrecovery$scenario2

conda_clean Python Removal

Description

Removes ewsnet_init() downloaded Anaconda binaries and environments.

Usage

conda_clean(envname, conda_path = reticulate::miniconda_path(), auto = FALSE)

Arguments

envname A string naming the desired Python environment to remove.

conda_path The location of Python install. By default, this follows minicondata_path de-
fined by the reticulate package.

auto Boolean. If FALSE, asks permission to uninstall Python, packages and specified
environment. If TRUE, no user confirmation is required for activation.

4 deseason_ts

Value

Does not return an object as is cleaning Python and its environments.

Examples

#Prior to running `conda_clean()`, you must restart
#your R session to detach any activated environments

conda_clean("EWSNET_env", auto = TRUE)

default_weights_path Path to Model Weights

Description

The default path for EWSNet model weights to use. Is the location of the EWSmethods package. If
you’d like to instead set your own path, ewsnet_reset() contains the argument weights_path to
do so.

Usage

default_weights_path()

Value

No return value, called for reference.

deseason_ts Deseason Seasonal Time Series

Description

Removes seasonal signals from time series using either averaging or time series decomposition
methods. Three decomposition methods are available: traditional decompostion, loess decomposi-
tion and X11 decompostion.

Usage

deseason_ts(
data,
increment = c("month", "year", "week", "day"),
method = c("average", "decompose", "stl"),
order = NULL

)

deseason_ts 5

Arguments

data The dataframe to be transformed, The first column must be a vector of dates
with all other columns the individual time series.

increment The time-step increment in either month, year, week, or day. Provides the basis
for deaseasoning.

method String of either "average", "decompose", "stl" or "x11" indicating the method
of deseasoning. "average" subtracts the average representative month/week/day-
of-the-year from each time point whereas "decompose", "stl" and "x11" sub-
tracts the seasonal component estimated by time series decomposition, loess
decomposition and the X11 method respectively.

order String indicating the date format of the date columns. Options are "dmy", "ymd"
or "mdy".

Value

Dataframe of deseasoned time series.

Examples

#Generate five random monthly time series
#of 5 years length.

spp_data <- matrix(nrow = 5*12, ncol = 5)
spp_data <- sapply(1:dim(spp_data)[2], function(x){
spp_data[,x] <- rnorm(5*12,mean=20,sd=5)})
multi_spp_data <- cbind("time" =
seq(as.Date('2000/01/01'), as.Date('2004/12/01'), by="month"),
as.data.frame(spp_data))

#Deseason using time series
#decomposition.

decomp_dat <- deseason_ts(data = multi_spp_data,
increment = "month",
method = "decompose",
order = "ymd")

#Deseason using loess

decomp_dat <- deseason_ts(data = multi_spp_data,
increment = "month",
method = "stl",
order = "ymd")

6 detrend_ts

detrend_ts Detrend Time Series

Description

Removes directional signals from time series using loess, linear regression or gaussian detrending.

Usage

detrend_ts(data, method = "linear", bandwidth = NULL, span = 0.25, degree = 2)

Arguments

data The dataframe to be detrended. The first column must be a vector of dates with
all other columns the individual time series.

method The method of detrending. Options include "linear" (residuals of a linear re-
gression), loess (smoothing by local polynomial regression), gaussian (smooth-
ing by a gaussian kernel), or first.difference.

bandwidth If method = "gaussian", dictates the bandwidth of the gaussian kernel. If NULL,
this is estimated from the data.

span If method = "loess", controls the degree of smoothing as a proportion of points
to be used (if span = 1, all points are used)

degree If method = "loess", specifies the degree polynomials allowed. Options are
normally 1 or 2.

Value

Dataframe of deseasoned time series.

Examples

#Generate five random monthly time series
#of 5 years length.

spp_data <- matrix(nrow = 5*12, ncol = 5)
spp_data <- sapply(1:dim(spp_data)[2], function(x){
spp_data[,x] <- rnorm(5*12,mean=20,sd=5)})
multi_spp_data <- cbind("time" =
seq(as.Date('2000/01/01'), as.Date('2004/12/01'), by="month"),
as.data.frame(spp_data))

detrend_dat <- detrend_ts(data = multi_spp_data,
method = "gaussian",
bandwidth = 2)

embed_ts 7

embed_ts Construct an Embedded Timeseries

Description

Embeds timeseries given an embedding dimension (‘E‘) and a time lag (‘tau‘).

Usage

embed_ts(X, E, tau = 1, sample_times = NULL)

Arguments

X A numeric matrix of species abundances, names across columns, time across
rows. The first column is a time vector, the remainder are species values.

E Numeric. Embedding dimension.

tau Numeric. Time lag.

sample_times Numeric vector. Defines the time indices to subset prior to embedding.

Value

A matrix where the first column is last time index of the window and the second column is the
estimated index value.

Examples

#Load the multivariate simulated
#dataset `simTransComms`

data(simTransComms)

#Embed one timeseries by 5 time points

eg_embed <- embed_ts(X = simTransComms$community2[,2:3],
E = 5, tau = 1)

ewsnet_finetune EWSNet Finetune

Description

Communicates with EWSNet (https://ewsnet.github.io), a deep learning framework for modelling
and anticipating regime shifts in dynamical systems, and finetunes the model to match the inputted
training data. This overwrites the Pretrained weights bundled with EWSmethods. See reset_ewsnet()
on how to reset these trained weights.

8 ewsnet_finetune

Usage

ewsnet_finetune(
x,
y,
scaling = TRUE,
envname,
weights_path = default_weights_path()

)

Arguments

x A numeric matrix to finetune EWSNet on. Each column represents a separate
timeseries and each row is a timestep.

y A numeric vector consisting of target labels for each training time series. Labels
include: 0 (no transition), 1 (smooth transition) or 2 (critical transition).

scaling Boolean. If TRUE, the time series will be scaled between 1 and 2 and scaled
EWSNet model weights will be used. This is the recommended setting.

envname A string naming the Python environment prepared by ewsnet_init().

weights_path A string naming the path to model weights installed by ewsnet_reset().

Value

No return value, called for side effects.

Examples

#Activate python environment (only necessary
#on first opening of R session).

Not run:
ewsnet_init(envname = "EWSNET_env")

End(Not run)

#A dummy dataset of a hedgerow bird population
#monitored over 50 years that needs to be tuned.

abundance_data <- data.frame(time = seq(1:50),
abundance = rnorm(50,mean = 20))

#Generate training data (this is random data as
#an example).

x <- matrix(nrow = 50, ncol = 10)
x <- sapply(1:dim(x)[2], function(i){
x[,i] <- rnorm(50,mean=20,sd=10)})

#Label each time series.

ewsnet_init 9

y <- sample(0:2,10,replace = TRUE)

#Finetune EWSNet.

Not run:
ewsnet_finetune(
x = x,
y = y,
scaling = TRUE,
envname = "EWSNET_env")

End(Not run)

#Generate new EWSNet predictions.

Not run:
pred <- ewsnet_predict(
abundance_data$abundance,
scaling = TRUE,
ensemble = 15,
envname = "EWSNET_env")

End(Not run)

ewsnet_init EWSNet Initialisation

Description

Prepares your R session for communicating with Python. This function first searches your com-
puter for an appropriate Python environment and activates it, importing the vital Python packages
required. If no appropriate Python install or environment is found, after asking permission, mini-
conda is downloaded and an environment created.

Usage

ewsnet_init(
envname,
conda_path = reticulate::miniconda_path(),
pip_ignore_installed = FALSE,
auto = FALSE

)

Arguments

envname A string naming the desired Python environment to create/activate. If no Python
or environment found, the functions prompts to install miniconda and the re-
quired python packages.

10 ewsnet_predict

conda_path The location to install Python. By default, this follows minicondata_path de-
fined by the reticulate package.

pip_ignore_installed

Boolean. If FALSE, any packages already installed are loaded and not re-downloaded.
However, if TRUE, packages are downloaded irregardless, overwriting any ver-
sion already present (is analagous to updating if required).

auto Boolean. If FALSE, asks permission to install Python and/or packages. If TRUE,
no user confirmation is required for activation.

Value

Does not return an object as is simply preparing your R session.

Examples

Not run:
ewsnet_init(envname = "EWSNET_env", auto = FALSE)

End(Not run)
#Common errors at this stage result from 'reticulate's
#behaviour. For example, conflicts between 'ewsnet_init'
#and RETICULATE_PYTHON may occur if run inside a
#RStudio R project. To fix this, navigate to
#Preferences -> Python, untick 'Automatically
#activate project-local Python environments'
#and restart R.

#if this fails due to timeout, you may need to
#increase the timeout length using something
#like below:

options(timeout = max(300, getOption("timeout")))

Not run:
reticulate::py_config()

End(Not run)
#If successful, 'EWSNET_env forced by use_python
#function' will be printed.

ewsnet_predict EWSNet Predict

Description

Communicates with EWSNet (https://ewsnet.github.io), a deep learning framework for modelling
and anticipating regime shifts in dynamical systems, and returns the model’s prediction for the
inputted univariate time series.

ewsnet_predict 11

Usage

ewsnet_predict(
x,
scaling = TRUE,
ensemble = 25,
envname,
weights_path = default_weights_path()

)

Arguments

x A numeric vector of values to be tested.

scaling Boolean. If TRUE, the time series will be scaled between 1 and 2 and scaled
EWSNet model weights will be used. This is the recommended setting.

ensemble A numeric value stating the number of models to average over. Options range
from 1 to 25.

envname A string naming the Python environment prepared by ewsnet_init().

weights_path A string naming the path to model weights installed by ewsnet_reset().

Value

A dataframe of EWSNet predictions. Values represent the estimated probability that the quoted
event will occur.

Examples

#A dummy dataset of a hedgerow bird population
#monitored over 50 years.

abundance_data <- data.frame(time = seq(1:50),
abundance = rnorm(50,mean = 20))

#Activate python environment (only necessary
#on first opening of R session).

Not run:
ewsnet_init(envname = "EWSNET_env")

End(Not run)

#Generate EWSNet predictions.

Not run:
pred <- ewsnet_predict(
abundance_data$abundance,
scaling = TRUE,
ensemble = 15,
envname = "EWSNET_env")

12 ewsnet_reset

End(Not run)

ewsnet_reset Reset EWSNet Model Weights

Description

Restores EWSNet model weights to the pretrained defaults published at https://ewsnet.github.io.
This is vital on first use of EWSNet as no model weights are provided with ‘EWSmethods‘. The
use of this function may also be necessary after finetuning to reset the model.

Usage

ewsnet_reset(
weights_path = default_weights_path(),
remove_weights = FALSE,
auto = FALSE

)

Arguments

weights_path A string naming the path to install model weights. Can be changed, but by de-
fault, attempts to add weights to the same location as the Python scripts bundled
with EWSmethods.

remove_weights Boolean. Should all weights be removed (TRUE) or should weights be re/downloaded
(FALSE).

auto Boolean. If FALSE, asks permission to download model weights from Google
Drive. If TRUE, no user confirmation is required for re/download.

Value

No return value, called for side effects.

Examples

on first use of EWSNet via `EWSmethods`
ewsnet_reset(remove_weights = FALSE, auto = TRUE,
weights_path = tempdir())

if this fails due to timeout, you may need to
increase the timeout length using something
like below:

options(timeout = max(300, getOption("timeout")))

FI 13

to remove all downloaded weights
ewsnet_reset(remove_weights = TRUE, auto = TRUE,
weights_path = tempdir())

FI Calculate Fisher Information

Description

Uses a multivariate array of time series to estimate Fisher information following the approach of
Karunanithi et al. (2010).

Usage

FI(data, sost, winsize = 50, winspace = 1, TL = 90)

Arguments

data A numeric matrix of individual time series across the columns. These could be
different species, populations or measurements. The first column must be an
equally spaced time vector.

sost A 1 x n matrix where n is a length equal to the number of time series in data.
Each value is the ’size of state’ tolerable for that time series and typically is rep-
resented by the standard deviation of the time series during a reference period.

winsize Numeric value. Defines the window size of the rolling window as a percentage
of the time series length.

winspace Numeric value. The number of data points to roll the window over in each
iteration. Must be less than winsize.

TL Numeric value. The ’tightening level’ or percentage of points shared between
states that allows the algorithm to classify data points as the same state.

Value

A list containing three objects:

FI A dataframe of Fisher information estimates and the last time point contributing
to each window.

midt_win A numeric vector of the time index at the centre of the window for that associated
value in FI.

t_win A n x m numeric matrix where the length of n is the winspace and length of m
is the number of window shifts made. Values are consequently the timepoint
indices that contribute to that window.

14 II

Examples

#Load the multivariate simulated
#dataset `simTransComms`

data(simTransComms)

#Estimate the size-of-states for each
#time series in the first community.
#This is typically suggested
#to be the standard deviation of a
#reference period or the entire time
#series

eg.sost <- t(apply(simTransComms$community1[,3:7], MARGIN = 2, FUN = sd))
#transpose required to ensure a 1 x n matrix

egFI <- FI(data = simTransComms$community1[1:50,2:7],
sost = eg.sost,
winsize = 10,
winspace = 1,
TL = 90)

II Information Imbalance

Description

Estimates the information imbalance of two hypothesised linked system measurements for a given
scalar (‘alpha‘).

Usage

II(X, Y, tau = 1, alpha = 1, k = 1, method = "euclidean")

Arguments

X Numeric matrix of hypothesised driving variable measurements. If univariate,
call ‘embedTS(X)‘ prior to calling ‘II()‘.

Y Numeric matrix of hypothesised response variable measurements. If univariate,
call ‘embedTS(Y)‘ prior to calling ‘II()‘.

tau Numeric. Time lag of information transfer between X and Y.

alpha Numeric. Scaling parameter for X. If information imbalance is minimised at an
‘alpha‘ > 0, this may be indicative of Granger causality.

k Numeric. Number of nearest neighbours when estimating ranks.

method String. Distance measure to be used - defaults to ‘euclidean‘ but see ‘?dist‘ for
options.

imbalance_gain 15

Value

Information imbalance

Source

Del Tatto, V., Bueti, D. & Laio, A. (2024) Robust inference of causality in high-dimensional dynam-
ical processes from the Information Imbalance of distance ranks. PNAS 121 (19) e2317256121.

Examples

#Load the multivariate simulated
#dataset `simTransComms`

data(simTransComms)

#Embed the spp_2 and spp_5 of the third community

embedX <- embed_ts(X = simTransComms$community3[,c("time","spp_2")],
E = 5, tau = 1)

embedY <- embed_ts(X = simTransComms$community3[,c("time","spp_5")],
E = 5, tau = 1)

#Estimate the forward information imbalance
#between spp_2 and spp_5

egII_for <- II(X = embedX[,-1], Y = embedY[,-1],
tau = 1, alpha = 1, k = 5)

#Estimate the reverse information imbalance
#between spp_2 and spp_5

egII_rev <- II(X = embedY[,-1], Y = embedX[,-1],
tau = 1, alpha = 1, k = 5)

imbalance_gain Information Gain

Description

Estimates the information imbalance of two hypothesised linked system measurements using dis-
tance ranks.

Usage

imbalance_gain(info_imbalance)

16 imbalance_gain

Arguments

info_imbalance Dataframe outputted by ‘tuneII()‘.

Value

A dataframe of the optimal alpha and the estimated information gain.

Source

Del Tatto, V., Bueti, D. & Laio, A. (2024) Robust inference of causality in high-dimensional dynam-
ical processes from the Information Imbalance of distance ranks. PNAS 121 (19) e2317256121.

Examples

#Load the multivariate simulated
#dataset `simTransComms`

data(simTransComms)

#Embed the spp_4 and spp_3 of the third community

embedX <- embed_ts(X = simTransComms$community3[,c("time","spp_4")],
E = 5, tau = 1)

embedY <- embed_ts(X = simTransComms$community3[,c("time","spp_3")],
E = 5, tau = 1)

alphas <- seq(from = 0, to = 1, by = 0.1)

#Estimate the forward information imbalance
#between spp_4 and spp_3

egII_for <- tuneII(target = embedX[,-1], columns = embedY[,-1],
tau = 1, alphas = alphas, k = 5)

#Estimate the reverse information imbalance
#between spp_4 and spp_3

egII_rev <- tuneII(target = embedY[,-1], columns = embedX[,-1],
tau = 1, alphas = alphas, k = 5)

#Calculate the information gain
igain_for <- imbalance_gain(egII_for)
igain_rev <- imbalance_gain(egII_rev)

multiAR 17

multiAR Multivariate Jacobian Index Estimated From Multivariate Autocorre-
lation Matrix

Description

Estimate the dominant Jacobian eigenvalue of a multivariate time series using autocorrelated stochas-
tic differential equations

Usage

multiAR(data, scale = TRUE, winsize = 50, p = 1, dt = 1)

Arguments

data Numeric matrix with time in first column and species abundance in the remain-
der.

scale Boolean. Should data be scaled prior to estimating the Jacobian.

winsize Numeric. Defines the window size of the rolling window as a percentage of the
time series length.

p Numeric. Defines the model order. Defaults to ‘1‘.

dt Numeric An appropriate time step

Value

A dataframe where the first column is last time index of the window and the second column is the
estimated index value. A value <1.0 indicates stability, a value >1.0 indicates instability.

Source

Williamson and Lenton (2015). Detection of bifurcations in noisy coupled systems from multiple
time series. Chaos, 25, 036407

Examples

#Load the multivariate simulated
#dataset `simTransComms`

data(simTransComms)

#Subset the second community prior to the transition

pre_simTransComms <- subset(simTransComms$community2,time < inflection_pt)

#Estimate the univariate stability index for the first species in
#the second community

18 multiEWS

egarJ <- multiAR(data = pre_simTransComms[,2:7],
winsize = 25, dt = 1)

multiEWS Multivariate Early Warning Signal Assessment

Description

A single function for performing early warning signal (EWS) assessment on multivariate systems
where multiple time series have been measured. Both methods of EWS assessment can be per-
formed (rolling or expanding windows) with the assessments returned as a dataframe. The two
methods of dimension reduction used to perform these assessments are Principal Component Anal-
ysis and Maximum/Minimum Autocorrelation Factors.

Usage

multiEWS(
data,
metrics = c("meanAR", "maxAR", "meanSD", "maxSD", "eigenMAF", "mafAR", "mafSD",

"pcaAR", "pcaSD", "eigenCOV", "maxCOV", "mutINFO"),
method = c("expanding", "rolling"),
winsize = 50,
burn_in = 5,
threshold = 2,
tail.direction = "one.tailed"

)

Arguments

data A dataframe where the first column is an equally spaced time vector and all other
columns are individual time series. These could be different species, populations
or measurements.

metrics String vector of early warning signal metrics to be assessed. Options include:
"meanSD", "maxSD", "meanAR", "maxAR", "eigenMAF", "mafAR", "mafSD", "pcaAR",
"pcaSD", "eigenCOV", "maxCOV" and "mutINFO".

method Single string of either "expanding" or "rolling". "expanding" calls com-
posite, expanding window EWS assessment. "rolling" calls typical, rolling
window EWS assessment.

winsize Numeric value. If method = "rolling", defines the window size of the rolling
window as a percentage of the time series’ length.

burn_in Numeric value. If method = "expanding", defines the number of data points to
’train’ signals prior to EWS assessment.

threshold Numeric value of either 1 or 2. Threshold*sigma is the value which, if the EWS
strength exceeds it, constitutes a "signal".

tail.direction String of either "one.tailed" or "two.tailed". "one.tailed" only indi-
cates a warning if positive threshold sigma exceeded. "two.tailed" indicates
a warning if positive OR negative threshold*sigma exceeded.

multiJI 19

Value

A list containing up to two objects: EWS outputs through time (EWS), and an identifier string
(method).

EWS$raw Dataframe of EWS measurements through time. If method = "expanding",
then each metric has been rbound into a single dataframe and extra columns are
provided indicating whether the threshold*sigma value has been exceeded (i.e.
"threshold.crossed"). If method = "rolling", then each metric’s evolution
over time is returned in individual columns.

EWS$dimred.ts Dataframe containing the dimension reduction time series

EWS$cor Dataframe of Kendall Tau correlations. Only returned if method = "rolling".

Examples

#Generate a random five species, non-transitioning
#ecosystem with 50 years of monitoring data.

spp_data <- matrix(nrow = 50, ncol = 5)
spp_data <- sapply(1:dim(spp_data)[2], function(x){
spp_data[,x] <- rnorm(50,mean=20,sd=5)})
multi_spp_data <- as.data.frame(cbind("time" =
seq(1:50), spp_data))

#Rolling window early warning signal assessment of
#the ecosystem.

roll_ews <- multiEWS(
data = multi_spp_data,
method = "rolling",
winsize = 50)

#Expanding window early warning signal assessment of
#the ecosystem.

exp_ews <- multiEWS(
data = multi_spp_data,
method = "expanding",
burn_in = 10)

multiJI Multivariate S-map Jacobian index function

Description

Calculate a stability metric from the multivariate s-map estimated Jacobian

20 multi_smap_jacobian

Usage

multiJI(data, winsize = 50, theta_seq = NULL, scale = TRUE)

Arguments

data Numeric matrix with time in first column and species abundances in other columns

winsize Numeric. Defines the window size of the rolling window as a percentage of the
time series length.

theta_seq Numeric vector of thetas (nonlinear tuning parameters) to estimate the Jacobian
over. If ‘NULL‘, a default sequence covering ‘0:8‘ is provided.

scale Boolean. Should data be scaled within each window prior to estimating the
Jacobian.

Value

A dataframe where the first column is last time index of the window and the second column is the
estimated index value. A value <1.0 indicates stability, a value >1.0 indicates instability.

Source

Ushio, M., Hsieh, Ch., Masuda, R. et al. (2018) Fluctuating interaction network and time-varying
stability of a natural fish community. Nature 554, 360–363.

Examples

#Load the multivariate simulated
#dataset `simTransComms`

data(simTransComms)

#Subset the third community prior to the transition

pre_simTransComms <- subset(simTransComms$community3,time < inflection_pt)

#Estimate the stability index for the third community
#(trimmed for speed)

egJI <- multiJI(data = pre_simTransComms[1:10,2:5],
winsize = 75)

multi_smap_jacobian Multivariate S-map Inferred Jacobian

Description

Performs the S-map on a multivariate time series to infer the Jacobian matrix at different points in
time across thetas.

multi_smap_jacobian 21

Usage

multi_smap_jacobian(data, theta_seq = NULL, scale = TRUE)

Arguments

data Numeric matrix with time in first column and species abundances in other columns

theta_seq Numeric vector of thetas (nonlinear tuning parameters) to estimate the Jacobian
over. If ‘NULL‘, a default sequence is provided.

scale Boolean. Should data be scaled prior to estimating the Jacobian.

Value

A list containing three objects:

smap_J Jacobian matrices for each point in time. It is recommended to just use the last
estimate.

rho Pearson correlation between observed and predicted for each species.

smap_intercept.r

Intercepts of the regression fit.

Source

Medeiros, L.P., Allesina, S., Dakos, V., Sugihara, G. & Saavedra, S. (2022) Ranking species based
on sensitivity to perturbations under non-equilibrium community dynamics. Ecology Letters, 00,
1– 14.

Examples

#Load the multivariate simulated
#dataset `simTransComms`

data("simTransComms")

#Subset the third community prior to the transition

pre_simTransComms <- subset(simTransComms$community3,time < inflection_pt)

#Estimate the Jacobian using s-map (typically only
#the final estimate is informative)
est_jac <- multi_smap_jacobian(pre_simTransComms[1:10,2:7])

22 mvi

mvi Multivariate Variance Index function

Description

Calculate a multivariate variance following Brock, W. A., and S. R. Carpenter. 2006. Variance as a
leading indicator of regime shift in ecosystem services. Ecology and Society 11(2): 9.

Usage

mvi(data, winsize = 50)

Arguments

data A numeric matrix of species abundances, names across columns, time across
rows. The first column is a time vector, the remainder are species values.

winsize Numeric. Defines the window size of the rolling window as a percentage of the
time series length.

Value

A matrix where the first column is last time index of the window and the second column is the
estimated index value.

Source

Brock, W.A. & Carpenter, S.R. (2006) Variance as a leading indicator of regime shift in ecosystem
services. Ecology and Society 11(2): 9.

Examples

#Load the multivariate simulated
#dataset `simTransComms`

data(simTransComms)

#Estimate the MVI for the second community

egMVI <- mvi(data = simTransComms$community2[,2:7],
winsize = 10)

perm_rollEWS 23

perm_rollEWS Significance Testing of Rolling Window Early Warning Signals

Description

A function for identifying whether a warning has been generated from rolling early warning signal
data using permutation tests. If a parallel connection is setup via parallel or future prior to usage
of perm_rollEWS(), then the function is parallelised.

Usage

perm_rollEWS(
data,
metrics,
winsize = 50,
variate = c("uni", "multi"),
perm.meth = "arima",
iter = 500

)

Arguments

data A dataframe where the first column is an equally spaced time vector and the
remainder column are the time series to be assessed. If a two column dataframe
is provided, and variate = "uni", uniEWS() is called, whereas if number of
columns exceeds two & variate = "multi", then multiEWS() is called.

metrics String vector of early warning signal metrics to be assessed. For variate
= "uni" these include: "ar1", "cv", "SD", "acf", "rr", "dr", "skew" and
"kurt". For variate = "multi", pptions include: "meanSD", "maxSD", "meanAR",
"maxAR", "eigenMAF", "mafAR", "mafSD", "pcaAR", "pcaSD", "eigenCOV",
"maxCOV" and "mutINFO".

winsize Numeric value. Defines the window size of the rolling window as a percentage
of the time series length.

variate String. Is a "uni"variate or "multi"variate assessment to be made.

perm.meth String dictating the pseudo-randomisation technique to be used. Options in-
clude: "arima" (sampled from predictions of an ARIMA model), "red.noise"
(red noise process using data mean, variance and autocorrelation coef) or "sam-
ple" (sampled from observed data without replacement).

iter Numeric value. The number of permutations.

Value

A list containing up to two objects: EWS outputs through time (EWS), and an identifier string
(method).

24 perm_rollEWS

EWS$raw Dataframe of EWS measurements through time. Each metric’s evolution over
time is returned in individual columns.

EWS$cor Dataframe of Kendall Tau correlations and permuted p-values.

EWS$dimred.ts Dataframe containing the dimension reduction time series. Only returned if
variate = "multi".

Examples

data(simTransComms)

#Permute p value for a univariate
#time series using resampling

#(data trimmed for speed)
perm_uni <- perm_rollEWS(
data = simTransComms$community1[1:10,2:3],
winsize = 75,
variate = "uni",
metrics = c("ar1", "SD", "skew"),
perm.meth = "sample",
iter = 25)

#Permute p value for a multivariate
#community using a red.noise process

#if parallelisation desired,
#this can be achieved using the
#below code
cl <- parallel::makeCluster(2)

doParallel::registerDoParallel(cl)

perm_multi <- perm_rollEWS(
data = simTransComms$community1[1:10,2:7],
winsize = 75,
variate = "multi",
metrics = c("meanAR", "maxAR", "meanSD"),
perm.meth = "red.noise",
iter = 25)

parallel::stopCluster(cl)

plot.EWSmethods 25

plot.EWSmethods Plot an EWSmethods object

Description

A function for visualising the output of uniEWS or multiEWS using ggplot2 inspired figures.

Usage

S3 method for class 'EWSmethods'
plot(
x,
...,
y_lab = "Generic indicator name",
trait_lab = "Generic trait name",
trait_scale = 1000

)

Arguments

x An EWSmethods object created by uniEWS or multiEWS

... Additional arguments to pass to the plotting functions.

y_lab String label. Labels the abundance y axis.

trait_lab String label. If trait argument populated in uniEWS or multiEWS, & "trait"
supplied in metrics, labels the right side y axis which represents trait values
through time.

trait_scale Numeric value. Scales trait y axis relative to abundance y axis.

Value

A ggplot2 object.

Examples

data(simTransComms)

#Subset the third community prior to the transition

pre_simTransComms <- subset(simTransComms$community3,time < inflection_pt)

#Perform multivariate EWS assessments
roll_ews <- multiEWS(
data = pre_simTransComms[,2:7],
method = "rolling",
winsize = 50)

#Plot outcome

26 simTransComms

Not run:
plot(roll_ews)

End(Not run)

#Perform univariate EWS assessments on
#simulated data with traits

abundance_data <- data.frame(time = seq(1:50),
abundance = rnorm(50,mean = 20),
trait = rnorm(50,mean=1,sd=0.25))

trait_ews <- uniEWS(
data = abundance_data[,1:2],
metrics = c("ar1","SD","trait"),
method = "expanding",
trait = abundance_data[,3],
burn_in = 10)

#Plot outcome
Not run:
plot(trait_ews, y_lab = "Abundance",
trait_lab = "Trait value",
trait_scale = 10)

End(Not run)

simTransComms Three Simulated Transitioning Communities.

Description

A dataset containing three simulated five species communities stressed through a critical transition.

Usage

simTransComms

Format

A list of three dataframes with 301 rows and 7 variables each:

community_id the identity of the simulated community

time time index

spp_1 density of species 1

spp_2 density of species 1

spp_3 density of species 1

tuneII 27

spp_4 density of species 1

spp_5 density of species 1

inflection_pt the time index where transition occurs

Examples

data("simTransComms", package = "EWSmethods")

community_data <- simTransComms$community1

tuneII Information Imbalance Across Alphas

Description

Estimates the information imbalance of two hypothesised linked system measurements using dis-
tance ranks.

Usage

tuneII(columns, target, tau, alphas, k = 1, method = "euclidean")

Arguments

columns Numeric matrix of hypothesised driving variable measurements. If univariate,
call ‘embedTS(X)‘ prior to calling ‘II()‘.

target Numeric matrix of hypothesised response variable measurements. If univariate,
call ‘embedTS(Y)‘ prior to calling ‘II()‘.

tau Numeric. Time lag of information transfer between X and Y.

alphas Numeric vector. Range of X scaling parameters bewtween ‘0‘ & ‘1‘ inclusive.
If information imbalance is minimised at an ‘alpha‘ > 0, this may be indicative
of Granger causality.

k Numeric. Number of nearest neighbours when estimating ranks.

method String. Distance measure to be used - defaults to ‘euclidean‘ but see ‘?dist‘ for
options.

Value

A dataframe of alphas and the estimate information imbalance

Source

Del Tatto, V., Bueti, D. & Laio, A. (2024) Robust inference of causality in high-dimensional dynam-
ical processes from the Information Imbalance of distance ranks. PNAS 121 (19) e2317256121.

28 uniAR

Examples

#Load the multivariate simulated
#dataset `simTransComms`

data(simTransComms)

#Embed the spp_2 and spp_5 of the third community

embedX <- embed_ts(X = simTransComms$community3[,c("time","spp_2")],
E = 5, tau = 1)

embedY <- embed_ts(X = simTransComms$community3[,c("time","spp_5")],
E = 5, tau = 1)

alphas <- seq(from = 0, to = 1, by = 0.1)

#if parallelisation desired,
#this can be achieved using the
#below code
cl <- parallel::makeCluster(2)

doParallel::registerDoParallel(cl)

#Estimate the forward information imbalance
#between spp_2 and spp_5

egII_for <- tuneII(target = embedX[,-1], columns = embedY[,-1],
tau = 1, alphas = alphas, k = 5)

#Estimate the reverse information imbalance
#between spp_2 and spp_5

egII_rev <- tuneII(target = embedY[,-1], columns = embedX[,-1],
tau = 1, alphas = alphas, k = 5)

parallel::stopCluster(cl)

uniAR Univariate Jacobian Index Estimated From Univariate Autocorrela-
tion Matrix

uniEWS 29

Description

Estimate the dominant Jacobian eigenvalue of a univariate time series using autocorrelated stochas-
tic differential equations

Usage

uniAR(data, scale = TRUE, winsize = 50, p = 1, dt = 1)

Arguments

data Numeric matrix with time in first column and species abundance in the second

scale Boolean. Should data be scaled prior to estimating the Jacobian.

winsize Numeric. Defines the window size of the rolling window as a percentage of the
time series length.

p Numeric. Defines the model order. Defaults to ‘1‘.

dt Numeric An appropriate time step

Value

A dataframe where the first column is last time index of the window and the second column is the
estimated index value. A value <1.0 indicates stability, a value >1.0 indicates instability.

Examples

#Load the multivariate simulated
#dataset `simTransComms`

data(simTransComms)

#Subset the second community prior to the transition

pre_simTransComms <- subset(simTransComms$community2,time < inflection_pt)

#Estimate the univariate stability index for the first species in
#the second community

egarJ <- uniAR(data = pre_simTransComms[,2:3],
winsize = 25, dt = 1)

uniEWS Univariate Early Warning Signal Assessment

Description

A function for performing early warning signal (EWS) assessment on univariate time series. Both
rolling and expanding window methods of EWS assessment can be performed with the assessments
returned as a dataframe.

30 uniEWS

Usage

uniEWS(
data,
metrics,
method = c("expanding", "rolling"),
winsize = 50,
burn_in = 5,
threshold = 2,
tail.direction = "one.tailed",
trait = NULL

)

Arguments

data A dataframe where the first column is an equally spaced time vector and the
second column is the time series to be assessed.

metrics String vector of early warning signal metrics to be assessed. Options include:
"ar1", "cv", "SD", "acf", "rr", "dr", "skew", "kurt", and "trait" (only
available if method = "expanding").

method Single string of either "expanding" or "rolling". "expanding" calls com-
posite, expanding window EWS assessment. "rolling" calls typical, rolling
window EWS assessment.

winsize Numeric value. If method = "rolling", defines the window size of the rolling
window as a percentage of the time series length.

burn_in Numeric value. If method = "expanding", defines the number of data points to
’train’ signals prior to EWS assessment.

threshold Numeric value of either 1 or 2. Threshold*sigma is the value which, if the EWS
strength exceeds it, constitutes a "signal".

tail.direction String of either "one.tailed" or "two.tailed". "one.tailed" only indi-
cates a warning if positive threshold sigma exceeded. "two.tailed" indicates
a warning if positive OR negative threshold*sigma exceeded.

trait A vector of numeric trait values if desired. Can be NULL

Value

A list containing up to two objects: EWS outputs through time (EWS), and an identifier string
(method).

EWS$raw Dataframe of EWS measurements through time. If method = "expanding",
then each metric has been rbound into a single dataframe and extra columns are
provided indicating whether the threshold*sigma value has been exceeded (i.e.
"threshold.crossed"). If method = "rolling", then each metric’s evolution
over time is returned in individual columns.

EWS$cor Dataframe of Kendall Tau correlations. Only returned if method = "rolling".

uniJI 31

Examples

#A dummy dataset of a hedgerow bird population over
#25 years where both the number of individuals and
#the average bill length has been measured.

abundance_data <- data.frame(time = seq(1:25),
abundance = rnorm(25,mean = 20),
trait = rnorm(25,mean=1,sd=0.5))

#The early warning signal metrics to compute.

ews_metrics <- c("SD","ar1","skew")

#Rolling window early warning signal assessment of
#the bird abundance.

roll_ews <- uniEWS(
data = abundance_data[,1:2],
metrics = ews_metrics,
method = "rolling",
winsize = 50)

#Expanding window early warning signal assessment of
#the bird abundance (with plotting).

exp_ews <- uniEWS(
data = abundance_data[,1:2],
metrics = ews_metrics,
method = "expanding",
burn_in = 10)

#Expanding window early warning signal assessment of
#the bird abundance incorporating the trait
#information.

ews_metrics_trait <- c("SD","ar1","trait")

trait_exp_ews <- uniEWS(
data = abundance_data[,1:2],
metrics = ews_metrics_trait,
method = "expanding",
burn_in = 10,
trait = abundance_data$trait)

uniJI Univariate S-map Jacobian index function

Description

Calculate a stability metric from the s-map estimated Jacobian of a univariate time series

32 uniJI

Usage

uniJI(data, winsize = 50, theta_seq = NULL, E = 1, tau = NULL, scale = TRUE)

Arguments

data Numeric matrix with time in first column and species abundance in the second

winsize Numeric. Defines the window size of the rolling window as a percentage of the
time series length.

theta_seq Numeric vector of thetas (nonlinear tuning parameters) to estimate the Jacobian
over. If ‘NULL‘, a default sequence is provided.

E Numeric. The embedding dimension. Is suggested to be positive.

tau Numeric. The time-delay offset to use for time delay embedding. Suggested to
be positive here, but if not provided, is set to 10% the length of the time series.

scale Boolean. Should data be scaled prior to estimating the Jacobian.

Value

A dataframe where the first column is last time index of the window and the second column is the
estimated index value. A value <1.0 indicates stability, a value >1.0 indicates instability.

Source

Grziwotz, F., Chang, C.-W., Dakos, V., van Nes, E.H., Schwarzländer, M., Kamps, O., et al. (2023).
Anticipating the occurrence and type of critical transitions. Science Advances, 9.

Examples

#Load the multivariate simulated
#dataset `simTransComms`

data(simTransComms)

#Subset the second community prior to the transition

pre_simTransComms <- subset(simTransComms$community2,time < inflection_pt)

#Estimate the univariate stability index for the first species in
#the second community

egJI <- uniJI(data = pre_simTransComms[1:25,2:3],
winsize = 75, E = 3)

uni_smap_jacobian 33

uni_smap_jacobian Univariate S-map Inferred Jacobian

Description

Performs the S-map on a univariate time series to infer the Jacobian matrix at different points in
time across thetas.

Usage

uni_smap_jacobian(data, theta_seq = NULL, E = 1, tau = NULL, scale = TRUE)

Arguments

data Numeric matrix with time in first column and species abundance in the second

theta_seq Numeric vector of thetas (nonlinear tuning parameters) to estimate the Jacobian
over. If ‘NULL‘, a default sequence is provided.

E Numeric. The embedding dimension. Is suggested to be positive.

tau Numeric. The time-delay offset to use for time delay embedding. Suggested to
be positive here, but if not provided, is set to 10% the length of the time series.

scale Boolean. Should data be scaled prior to estimating the Jacobian.

Value

A list containing three objects:

smap_J Jacobian matrices across taus. It is recommended to average across these matri-
ces.

eigenJ Absolute maximum eigenvalue.

reJ Real component of dominant eigenvalue

imJ Imaginary component of dominant eigenvalue.

Source

Grziwotz, F., Chang, C.-W., Dakos, V., van Nes, E.H., Schwarzländer, M., Kamps, O., et al. (2023).
Anticipating the occurrence and type of critical transitions. Science Advances, 9.

Examples

#Load the multivariate simulated
#dataset `simTransComms`

data("simTransComms")

#Subset the second community prior to the transition

34 uni_smap_jacobian

pre_simTransComms <- subset(simTransComms$community2,time < inflection_pt)
winsize <- round(dim(pre_simTransComms)[1] * 50/100)

#Estimate the Jacobian for the first 50 timepoints of the
#second species using s-map
est_jac <- uni_smap_jacobian(pre_simTransComms[1:50,2:3])

Index

∗ datasets
CODrecovery, 2
simTransComms, 26

CODrecovery, 2
conda_clean, 3

default_weights_path, 4
deseason_ts, 4
detrend_ts, 6

embed_ts, 7
ewsnet_finetune, 7
ewsnet_init, 9
ewsnet_predict, 10
ewsnet_reset, 12

FI, 13

II, 14
imbalance_gain, 15

multi_smap_jacobian, 20
multiAR, 17
multiEWS, 18
multiJI, 19
mvi, 22

perm_rollEWS, 23
plot.EWSmethods, 25

simTransComms, 26

tuneII, 27

uni_smap_jacobian, 33
uniAR, 28
uniEWS, 29
uniJI, 31

35

	CODrecovery
	conda_clean
	default_weights_path
	deseason_ts
	detrend_ts
	embed_ts
	ewsnet_finetune
	ewsnet_init
	ewsnet_predict
	ewsnet_reset
	FI
	II
	imbalance_gain
	multiAR
	multiEWS
	multiJI
	multi_smap_jacobian
	mvi
	perm_rollEWS
	plot.EWSmethods
	simTransComms
	tuneII
	uniAR
	uniEWS
	uniJI
	uni_smap_jacobian
	Index

