
Package ‘ETLUtils’
January 20, 2025

Maintainer Jan Wijffels <jwijffels@bnosac.be>

License GPL-2

Title Utility Functions to Execute Standard Extract/Transform/Load
Operations (using Package 'ff') on Large Data

Type Package

LazyLoad yes

Author Jan Wijffels

Description Provides functions to facilitate the use of the 'ff' package
in interaction with big data in 'SQL' databases (e.g. in 'Oracle', 'MySQL',
'PostgreSQL', 'Hive') by allowing easy importing directly into 'ffdf' objects
using 'DBI', 'RODBC' and 'RJDBC'. Also contains some basic utility functions to
do fast left outer join merging based on 'match', factorisation of data and a
basic function for re-coding vectors.

Version 1.5

URL https://github.com/jwijffels/ETLUtils

Depends ff (>= 4.0.0)

Imports bit (>= 4.0.0)

Suggests RSQLite, zoo, DBI, RODBC, RJDBC

RoxygenNote 7.1.0

NeedsCompilation no

Repository CRAN

Date/Publication 2020-08-03 09:42:08 UTC

Contents
ETLUtils-package . 2
factorise . 2
matchmerge . 3
naLOCFPlusone . 6
read.dbi.ffdf . 7

1

https://github.com/jwijffels/ETLUtils

2 factorise

read.jdbc.ffdf . 9
read.odbc.ffdf . 12
recoder . 14
renameColumns . 15
write.dbi.ffdf . 15
write.jdbc.ffdf . 17
write.odbc.ffdf . 19

Index 21

ETLUtils-package Extra utility functions to execute standard ETL operations on large
data

Description

Provides functions to load bigdata (e.g. from Oracle) directly into ffdf objects using DBI and
some utility functions like recoding and matchmerge which does fast left outer join merging based
on match.

Author(s)

Jan Wijffels <jwijffels@bnosac.be>

Examples

See the specified functions in the package

factorise Put character vectors, columns of a data.frame or list elements as fac-
tor

Description

Put character vectors, columns of a data.frame or list elements as factor if they are character strings
or optionally if they are logicals

Usage

factorise(x, logicals = FALSE, ...)

Default S3 method:
factorise(x, logicals = FALSE, ...)

S3 method for class 'character'
factorise(x, logicals = FALSE, ...)

matchmerge 3

S3 method for class 'data.frame'
factorise(x, logicals = FALSE, ...)

S3 method for class 'list'
factorise(x, logicals = FALSE, ...)

Arguments

x a character vector, a data.frame or a list

logicals logical indicating if logical vectors should also be converted to factors. Defaults
to FALSE.

... optional arguments passed on to the methods

Value

The updated x vector/data.frame or list where the character vectors or optionally logical elements
are converted to factors

See Also

as.factor, factor

Examples

x <- data.frame(x = 1:4, y = LETTERS[1:4], b = c(TRUE, FALSE, NA, TRUE), stringsAsFactors=FALSE)
str(factorise(x))
str(factorise(x, logicals = TRUE))
str(factorise(list(a = LETTERS, b = 1:10, c = pi, d = list(x = x))))

matchmerge Merge two data frames (fast) by common columns by performing a left
(outer) join or an inner join.

Description

Merge two data frames (fast) by common columns by performing a left (outer) join or an inner join.
The data frames are merged on the columns given by by.x and by.y. Columns can be specified only
by name. This differs from the merge function from the base package in that merging is done based
on 1 column key only. If more than one column is supplied in by.x and by.y, these columns will be
concatenated together to form 1 key which will be used to match. Alternatively, by.x and by.y can
be 2 vectors of length NROW(x) which will be used as keys.

4 matchmerge

Usage

matchmerge(
x,
y,
by.x,
by.y,
all.x = FALSE,
by.iskey = FALSE,
suffix = ".y",
add.columns = colnames(y),
check.duplicates = TRUE,
trace = FALSE

)

Arguments

x the left hand side data frame to merge

y the right hand side data frame to merge
or a vector in which case you always need to supply by.y as a vector, make sure
by.iskey is set to TRUE and provide in add.columns the column name for which
y will be relabelled to in the joined data frame (see the example).

by.x either the name of 1 column in x or a character vector of length NROW(x) which
will be used as key to merge the 2 data frames

by.y either the name of 1 column in y or a character vector of length NROW(x) which
will be used as key to merge the 2 data frames. Duplicate values in by.y are not
allowed.

all.x logical, if TRUE, then extra rows will be added to the output, one for each row
in x that has no matching row in y. These rows will have NAs in those columns
that are usually filled with values from y. The default is FALSE, so that only
rows with data from both x and y are included in the output. The default value
corresponds to an inner join. If TRUE is supplied, this corresponds to a left
(outer) join.

by.iskey Logical, indicating that the by.x and the by.y inputs are vectors of length NROW(x)
and NROW(y) instead of column names in x and y. If this is FALSE, the input
columns will be pasted together to create a key to merge upon. Otherwise, the
function will use the by.x and by.y vectors directly as matching key. Defaults to
FALSE indicating the by.x and by.y are column names in x and y.

suffix a character string to be used for duplicate column names in x and y to make the
y columns unique.

add.columns character vector of column names in y to merge to the x data frame. Defaults to
all columns in y.

check.duplicates

checks if by.y contains duplicates which is not allowed. Defaults to TRUE.

trace logical, indicating to print some informative messages about the progress

matchmerge 5

Details

The rows in the right hand side data frame that match on the specific key are extracted, and joined
together with the left hand side data frame.

Merging is done based on the match function on the key value. This makes the function a lot faster
when compared to applying merge, especially for large data frames (see the example). And also the
memory consumption is a lot smaller.

In SQL database terminology, the default value of all.x = FALSE gives a natural join, a special case
of an inner join. Specifying all.x = FALSE gives a left (outer) join. Right (outer) join or (full) outer
join are not provided in this function.

Value

data frame with x joined with y based on the supplied columns. The output columns are the columns
in x followed by the extra columns in y.

See Also

cbind, match, merge

Examples

left <- data.frame(idlhs = c(1:4, 3:5), a = LETTERS[1:7], stringsAsFactors = FALSE)
right <- data.frame(idrhs = c(1:4), b = LETTERS[8:11], stringsAsFactors = FALSE)
Inner join
matchmerge(x=left, y=right, by.x = "idlhs", by.y = "idrhs")

Left outer join in 2 ways
matchmerge(x=left, y=right, by.x = "idlhs", by.y = "idrhs", all.x=TRUE)
matchmerge(x=left, y=right, by.x = left$idlhs, by.y = right$idrhs, all.x=TRUE, by.iskey=TRUE)

Show usage when y is just a vector instead of a data.frame
matchmerge(x=left, y=right$b, by.x = left$idlhs, by.y = right$idrhs, all.x=TRUE,
by.iskey=TRUE, add.columns="b.renamed")

Show speedup difference with merge
Not run:
size <- 100000
dimension <- seq(Sys.Date(), Sys.Date()+10, by = "day")
left <- data.frame(date = rep(dimension, size), sales = rnorm(size))
right <- data.frame(date = dimension, feature = dimension-7, feature = dimension-14)
dim(left)
dim(right)
print(system.time(merge(left, right, by.x="date", by.y="date", all.x=TRUE, all.y=FALSE)))
print(system.time(matchmerge(left, right, by.x="date", by.y="date", all.x=TRUE, by.iskey=FALSE)))

End(Not run)
Show example usage
products <- expand.grid(product = c("Pepsi", "Coca Cola"), type = c("Can","Bottle"),

6 naLOCFPlusone

size = c("6Ml","8Ml"), distributor = c("Distri X","Distri Y"), salesperson = c("Mr X","Mr Y"),
stringsAsFactors=FALSE)
products <- products[!duplicated(products[, c("product","type","size")]),]
products$key <- paste(products$product, products$type, products$size, sep=".")
sales <- expand.grid(item = unique(products$key), sales = rnorm(10000, mean = 100))
str(products)
str(sales)
info <- matchmerge(x=sales, y=products,

by.x=sales$item, by.y=products$key, all.x=TRUE, by.iskey=TRUE,
add.columns=c("size","distributor"), check.duplicates=FALSE)

str(info)
tapply(info$sales, info$distributor, FUN=sum)

naLOCFPlusone Performs NA replacement by last observation carried forward but adds
1 to the last observation carried forward.

Description

Performs NA replacement by last observation carried forward but adds 1 to the last observation
carried forward.

Usage

naLOCFPlusone(x)

Arguments

x a numeric vector

Value

a vector where NA’s are replaced with the LOCF + 1

See Also

na.locf

Examples

require(zoo)
x <- c(2,NA,NA,4,5,2,NA)
naLOCFPlusone(x)

read.dbi.ffdf 7

read.dbi.ffdf Read data from a DBI connection into an ffdf.

Description

Read data from a DBI connection into an ffdf. This can for example be used to import large
datasets from Oracle, SQLite, MySQL, PostgreSQL, Hive or other SQL databases into R.

Usage

read.dbi.ffdf(
query = NULL,
dbConnect.args = list(drv = NULL, dbname = NULL, username = "", password = ""),
dbSendQuery.args = list(),
dbFetch.args = list(),
x = NULL,
nrows = -1,
first.rows = NULL,
next.rows = NULL,
levels = NULL,
appendLevels = TRUE,
asffdf_args = list(),
BATCHBYTES = getOption("ffbatchbytes"),
VERBOSE = FALSE,
colClasses = NULL,
transFUN = NULL,
...

)

Arguments

query the SQL query to execute on the DBI connection

dbConnect.args a list of arguments to pass to DBI’s dbConnect (like drv, dbname, username,
password). See the examples.

dbSendQuery.args

a list containing database-specific parameters which will be passed to to pass to
dbSendQuery. Defaults to an empty list.

dbFetch.args a list containing optional database-specific parameters which will be passed to
to pass to dbFetch. Defaults to an empty list.

x NULL or an optional ffdf object to which the read records are appended. See
documentation in read.table.ffdf for more details and the example below.

nrows Number of rows to read from the query resultset. Default value of -1 reads in all
rows.

first.rows chunk size (rows) to read for first chunk from the query resultset

8 read.dbi.ffdf

next.rows chunk size (rows) to read sequentially for subsequent chunks from the query
resultset. Currently, this must be specified.

levels optional specification of factor levels. A list with as names the names the
columns of the data.frame fetched in the first.rows, containing levels of the fac-
tors.

appendLevels logical. A vector of permissions to expand levels for factor columns. See docu-
mentation in read.table.ffdf for more details.

asffdf_args further arguments passed to as.ffdf (ignored if ’x’ gives an ffdf object)

BATCHBYTES integer: bytes allowed for the size of the data.frame storing the result of reading
one chunk. See documentation in read.table.ffdf for more details.

VERBOSE logical: TRUE to verbose timings for each processed chunk (default FALSE).

colClasses See documentation in read.table.ffdf

transFUN function applied to the data frame after each chunk is retreived by dbFetch

... optional parameters passed on to transFUN

Details

Opens up the DBI connection using DBI::dbConnect, sends the query using DBI::dbSendQuery
and DBI::dbFetch-es the results in batches of next.rows rows. Heavily borrowed from read.table.ffdf

Value

An ffdf object unless the query returns zero records in which case the function will return the
data.frame returned by dbFetch and possibly transFUN.

See Also

read.table.ffdf, read.odbc.ffdf

Examples

require(ff)

##
Example query using data in sqlite
##
require(RSQLite)
dbfile <- system.file("smalldb.sqlite3", package="ETLUtils")
drv <- dbDriver("SQLite")
query <- "select * from testdata limit 10000"
x <- read.dbi.ffdf(query = query, dbConnect.args = list(drv = drv, dbname = dbfile),
first.rows = 100, next.rows = 1000, VERBOSE=TRUE)
class(x)
x[1:10,]

show it is the same as getting the data directly using RSQLite
apart from characters which are factors in ffdf objects
directly <- dbGetQuery(dbConnect(drv = drv, dbname = dbfile), query)

read.jdbc.ffdf 9

directly <- as.data.frame(as.list(directly), stringsAsFactors=TRUE)
all.equal(x[,], directly)

show how to use the transFUN argument to transform the data before saving into the ffdf
and shows the use of the levels argument
query <- "select * from testdata limit 10"
x <- read.dbi.ffdf(query = query, dbConnect.args = list(drv = drv, dbname = dbfile),
first.rows = 100, next.rows = 1000, VERBOSE=TRUE, levels = list(a = rev(LETTERS)),
transFUN = function(x, subtractdays){
x$b <- as.Date(x$b)
x$b.subtractdaysago <- x$b - subtractdays
x
}, subtractdays=7)
class(x)
x[1:10,]
remark that the levels of column a are reversed due to specifying the levels argument correctly
levels(x$a)

show how to append data to an existing ffdf object
transformexample <- function(x, subtractdays){
x$b <- as.Date(x$b)
x$b.subtractdaysago <- x$b - subtractdays
x
}
dim(x)
x[,]
combined <- read.dbi.ffdf(query = query,
dbConnect.args = list(drv = drv, dbname = dbfile),
first.rows = 100, next.rows = 1000, x = x, VERBOSE=TRUE,
transFUN = transformexample, subtractdays=1000)

dim(combined)
combined[,]

##
Example query using ROracle. Do try this at home with some larger data :)
##
Not run:
require(ROracle)
query <- "select OWNER, TABLE_NAME, TABLESPACE_NAME, NUM_ROWS, LAST_ANALYZED from all_all_tables"
x <- read.dbi.ffdf(query=query,
dbConnect.args = list(drv = dbDriver("Oracle"),
user = "YourUser", password = "YourPassword", dbname = "Mydatabase"),
first.rows = 100, next.rows = 50000, nrows = -1, VERBOSE=TRUE)

End(Not run)

read.jdbc.ffdf Read data from a JDBC connection into an ffdf.

10 read.jdbc.ffdf

Description

Read data from a JDBC connection into an ffdf. This can for example be used to import large
datasets from Oracle, SQLite, MySQL, PostgreSQL, Hive or other SQL databases into R.

Usage

read.jdbc.ffdf(
query = NULL,
dbConnect.args = list(drv = NULL, dbname = NULL, username = "", password = ""),
dbSendQuery.args = list(),
dbFetch.args = list(),
x = NULL,
nrows = -1,
first.rows = NULL,
next.rows = NULL,
levels = NULL,
appendLevels = TRUE,
asffdf_args = list(),
BATCHBYTES = getOption("ffbatchbytes"),
VERBOSE = FALSE,
colClasses = NULL,
transFUN = NULL,
...

)

Arguments

query the SQL query to execute on the JDBC connection

dbConnect.args a list of arguments to pass to JDBC’s RJDBC::dbConnect (like drv, dbname,
username, password). See the examples.

dbSendQuery.args

a list containing database-specific parameters which will be passed to to pass to
RJDBC::dbSendQuery. Defaults to an empty list.

dbFetch.args a list containing optional database-specific parameters which will be passed to
to pass to RJDBC::dbFetch. Defaults to an empty list.

x NULL or an optional ffdf object to which the read records are appended. See
documentation in read.table.ffdf for more details and the example below.

nrows Number of rows to read from the query resultset. Default value of -1 reads in all
rows.

first.rows chunk size (rows) to read for first chunk from the query resultset

next.rows chunk size (rows) to read sequentially for subsequent chunks from the query
resultset. Currently, this must be specified.

levels optional specification of factor levels. A list with as names the names the
columns of the data.frame fetched in the first.rows, containing levels of the fac-
tors.

read.jdbc.ffdf 11

appendLevels logical. A vector of permissions to expand levels for factor columns. See docu-
mentation in read.table.ffdf for more details.

asffdf_args further arguments passed to as.ffdf (ignored if ’x’ gives an ffdf object)

BATCHBYTES integer: bytes allowed for the size of the data.frame storing the result of reading
one chunk. See documentation in read.table.ffdf for more details.

VERBOSE logical: TRUE to verbose timings for each processed chunk (default FALSE).

colClasses See documentation in read.table.ffdf

transFUN function applied to the data frame after each chunk is retreived by RJDBC::dbFetch

... optional parameters passed on to transFUN

Details

Opens up the JDBC connection using RJDBC::dbConnect, sends the query using RJDBC::dbSendQuery
and RJDBC::dbFetch-es the results in batches of next.rows rows. Heavily borrowed from read.table.ffdf

Value

An ffdf object unless the query returns zero records in which case the function will return the
data.frame returned by RJDBC::dbFetch and possibly transFUN.

See Also

read.table.ffdf, read.jdbc.ffdf

Examples

Not run:
require(ff)

##
Example query using data in sqlite
##
require(RSQLite)
dbfile <- system.file("smalldb.sqlite3", package="ETLUtils")
drv <- JDBC(driverClass = "org.sqlite.JDBC", classPath = "/usr/local/lib/sqlite-jdbc-3.7.2.jar")
query <- "select * from testdata limit 10000"
x <- read.jdbc.ffdf(query = query,
dbConnect.args = list(drv = drv, url = sprintf("jdbc:sqlite:%s", dbfile)),
first.rows = 100, next.rows = 1000, VERBOSE=TRUE)

class(x)
x[1:10,]

End(Not run)

12 read.odbc.ffdf

read.odbc.ffdf Read data from a ODBC connection into an ffdf.

Description

Read data from a ODBC connection into an ffdf. This can for example be used to import large
datasets from Oracle, SQLite, MySQL, PostgreSQL, Hive or other SQL databases into R.

Usage

read.odbc.ffdf(
query = NULL,
odbcConnect.args = list(dsn = NULL, uid = "", pwd = ""),
odbcDriverConnect.args = list(connection = ""),
odbcQuery.args = list(),
sqlGetResults.args = list(),
x = NULL,
nrows = -1,
first.rows = NULL,
next.rows = NULL,
levels = NULL,
appendLevels = TRUE,
asffdf_args = list(),
BATCHBYTES = getOption("ffbatchbytes"),
VERBOSE = FALSE,
colClasses = NULL,
transFUN = NULL,
...

)

Arguments

query the SQL query to execute on the ODBC connection
odbcConnect.args

a list of arguments to pass to ODBC’s odbcConnect (like dsn, uid, pwd). See
the examples.

odbcDriverConnect.args

a list of arguments to pass to ODBC’s odbcDriverConnect (like connection).
If you want to connect using odbcDriverConnect instead of odbcConnect.

odbcQuery.args a list of arguments to pass to ODBC’s odbcQuery, like rows_at_time. Defaults
to an empty list.

sqlGetResults.args

a list containing optional parameters which will be passed to sqlGetResults.
Defaults to an empty list. The max parameter will be overwritten with first.rows
and next.rows when importing in batches.

read.odbc.ffdf 13

x NULL or an optional ffdf object to which the read records are appended. See
documentation in read.table.ffdf for more details and the example below.

nrows Number of rows to read from the query resultset. Default value of -1 reads in all
rows.

first.rows chunk size (rows) to read for first chunk from the query resultset

next.rows chunk size (rows) to read sequentially for subsequent chunks from the query
resultset. Currently, this must be specified.

levels optional specification of factor levels. A list with as names the names the
columns of the data.frame fetched in the first.rows, containing levels of the fac-
tors.

appendLevels logical. A vector of permissions to expand levels for factor columns. See docu-
mentation in read.table.ffdf for more details.

asffdf_args further arguments passed to as.ffdf (ignored if ’x’ gives an ffdf object)

BATCHBYTES integer: bytes allowed for the size of the data.frame storing the result of reading
one chunk. See documentation in read.table.ffdf for more details.

VERBOSE logical: TRUE to verbose timings for each processed chunk (default FALSE).

colClasses See documentation in read.table.ffdf

transFUN function applied to the data frame after each chunk is retreived by sqlGetResults

... optional parameters passed on to transFUN

Details

Opens up the ODBC connection using RODBC::odbcConnect or RODBC::odbcDriverConnect,
sends the query using RODBC::odbcQuery and retrieves the results in batches of next.rows rows
using RODBC::sqlGetResults. Heavily borrowed from read.table.ffdf

Value

An ffdf object unless the query returns zero records in which case the function will return the
data.frame returned by sqlGetResults and possibly transFUN.

See Also

read.table.ffdf, read.dbi.ffdf

Examples

##
Using the sqlite database (smalldb.sqlite3) in the /inst folder of the package
set up the sqlite ODBC driver (www.stats.ox.ac.uk/pub/bdr/RODBC-manual.pd)
and call it 'smalltestsqlitedb'
##
Not run:
require(RODBC)
x <- read.odbc.ffdf(
query = "select * from testdata limit 10000",
odbcConnect.args = list(

14 recoder

dsn="smalltestsqlitedb", uid = "", pwd = "",
believeNRows = FALSE, rows_at_time = 1),

nrows = -1,
first.rows = 100, next.rows = 1000, VERBOSE = TRUE)

End(Not run)

recoder Recodes the values of a character vector

Description

Recodes the values of a character vector

Usage

recoder(x, from = c(), to = c())

Arguments

x character vector

from character vector with old values

to character vector with new values

Value

x where from values are recoded to the supplied to values

See Also

match

Examples

recoder(x=append(LETTERS, NA, 5), from = c("A","B"), to = c("a.123","b.123"))

renameColumns 15

renameColumns Renames variables in a data frame.

Description

Renames variables in a data frame.

Usage

renameColumns(x, from = "", to = "")

Arguments

x data frame to be modified.

from character vector containing the current names of each variable to be renamed.

to character vector containing the new names of each variable to be renamed.

Value

The updated data frame x where the variables listed in from are renamed to the corresponding to
column names.

See Also

colnames, recoder

Examples

x <- data.frame(x = 1:4, y = LETTERS[1:4])
renameColumns(x, from = c("x","y"), to = c("digits","letters"))

write.dbi.ffdf Write ffdf data to a database table by using a DBI connection.

Description

Write ffdf data to a database table by using a DBI connection. This can for example be used
to store large ffdf datasets from R in Oracle, SQLite, MySQL, PostgreSQL, Hive or other SQL
databases.
Mark that for very large datasets, these SQL databases might have tools to speed up by bulk loading.
You might also consider that as an alternative to using this procedure.

16 write.dbi.ffdf

Usage

write.dbi.ffdf(
x,
name,
dbConnect.args = list(drv = NULL, dbname = NULL, username = "", password = ""),
RECORDBYTES = sum(.rambytes[vmode(x)]),
BATCHBYTES = getOption("ffbatchbytes"),
by = NULL,
VERBOSE = FALSE,
...

)

Arguments

x the ffdf to write to the database

name character string with the name of the table to store the data in. Passed on to
dbWriteTable.

dbConnect.args a list of arguments to pass to DBI’s dbConnect (like drv, dbname, username,
password). See the examples.

RECORDBYTES optional integer scalar representing the bytes needed to process a single row of
the ffdf

BATCHBYTES integer: bytes allowed for the size of the data.frame storing the result of reading
one chunk. See documentation in read.table.ffdf for more details.

by integer passed on to chunk indicating to write to the database in chunks of this
size. Overwrites the behaviour of BATCHBYTES and RECORDBYTES.

VERBOSE logical: TRUE to verbose timings for each processed chunk (default FALSE).

... optional parameters passed on to dbWriteTable

Details

Opens up the DBI connection using DBI::dbConnect, writes data to the SQL table using DBI::dbWriteTable
by extracting the data in batches from the ffdf and appending them to the table.

Value

invisible()

See Also

dbWriteTable, chunk

Examples

require(ff)

##
Example query using data in sqlite

write.jdbc.ffdf 17

##
require(RSQLite)
dbfile <- system.file("smalldb.sqlite3", package="ETLUtils")
drv <- dbDriver("SQLite")
query <- "select * from testdata limit 10000"
x <- read.dbi.ffdf(query = query, dbConnect.args = list(drv = drv, dbname = dbfile),
first.rows = 100, next.rows = 1000, VERBOSE=TRUE)

copy db in package folder to temp folder as CRAN does not allow writing in package dirs
dbfile <- tempfile(fileext = ".sqlite3")
file.copy(from = system.file("smalldb.sqlite3", package="ETLUtils"), to = dbfile)
Sys.chmod(dbfile, mode = "777")
write.dbi.ffdf(x = x, name = "helloworld", row.names = FALSE, overwrite = TRUE,

dbConnect.args = list(drv = drv, dbname = dbfile),
by = 1000, VERBOSE=TRUE)

test <- read.dbi.ffdf(query = "select * from helloworld",
dbConnect.args = list(drv = drv, dbname = dbfile))

clean up for CRAN
file.remove(dbfile)
Not run:
require(ROracle)
write.dbi.ffdf(x = x, name = "hellooracle", row.names = FALSE, overwrite = TRUE,

dbConnect.args = list(drv = dbDriver("Oracle"),
user = "YourUser", password = "YourPassword", dbname = "Mydatabase"),

VERBOSE=TRUE)

End(Not run)

write.jdbc.ffdf Write ffdf data to a database table by using a JDBC connection.

Description

Write ffdf data to a database table by using a JDBC connection. This can for example be used
to store large ffdf datasets from R in Oracle, SQLite, MySQL, PostgreSQL, Hive or other SQL
databases.
Mark that for very large datasets, these SQL databases might have tools to speed up by bulk loading.
You might also consider that as an alternative to using this procedure.

Usage

write.jdbc.ffdf(
x,
name,
dbConnect.args = list(drv = NULL, dbname = NULL, username = "", password = ""),
RECORDBYTES = sum(.rambytes[vmode(x)]),
BATCHBYTES = getOption("ffbatchbytes"),
by = NULL,

18 write.jdbc.ffdf

VERBOSE = FALSE,
...

)

Arguments

x the ffdf to write to the database

name character string with the name of the table to store the data in. Passed on to
dbWriteTable.

dbConnect.args a list of arguments to pass to JDBC’s RJDBC::dbConnect (like drv, dbname,
username, password). See the examples.

RECORDBYTES optional integer scalar representing the bytes needed to process a single row of
the ffdf

BATCHBYTES integer: bytes allowed for the size of the data.frame storing the result of reading
one chunk. See documentation in read.table.ffdf for more details.

by integer passed on to chunk indicating to write to the database in chunks of this
size. Overwrites the behaviour of BATCHBYTES and RECORDBYTES.

VERBOSE logical: TRUE to verbose timings for each processed chunk (default FALSE).

... optional parameters passed on to dbWriteTable

Details

Opens up the JDBC connection using RJDBC::dbConnect, writes data to the SQL table using
RJDBC::dbWriteTable by extracting the data in batches from the ffdf and appending them to
the table.

Value

invisible()

See Also

JDBCConnection-methods, chunk

Examples

Not run:
require(ff)

##
Example query using data in sqlite
##
require(RJDBC)
dbfile <- system.file("smalldb.sqlite3", package="ETLUtils")
drv <- JDBC(driverClass = "org.sqlite.JDBC", classPath = "/usr/local/lib/sqlite-jdbc-3.7.2.jar")
query <- "select * from testdata limit 10000"
x <- read.jdbc.ffdf(query = query,
dbConnect.args = list(drv = drv, url = sprintf("jdbc:sqlite:%s", dbfile)),

write.odbc.ffdf 19

first.rows = 100, next.rows = 1000, VERBOSE=TRUE)

write.jdbc.ffdf(x = x, name = "helloworld", row.names = FALSE, overwrite = TRUE,
dbConnect.args = list(drv = drv, url = sprintf("jdbc:sqlite:%s", dbfile)),
by = 1000, VERBOSE=TRUE)

test <- read.jdbc.ffdf(query = "select * from helloworld",
dbConnect.args = list(drv = drv, url = sprintf("jdbc:sqlite:%s", dbfile)))

End(Not run)

write.odbc.ffdf Write ffdf data to a database table by using a ODBC connection.

Description

Write ffdf data to a database table by using a ODBC connection. This can for example be used
to store large ffdf datasets from R in Oracle, SQLite, MySQL, PostgreSQL, Hive or other SQL
databases.
Mark that for very large datasets, these SQL databases might have tools to speed up by bulk loading.
You might also consider that as an alternative to using this procedure.

Usage

write.odbc.ffdf(
x,
tablename,
odbcConnect.args = list(dsn = NULL, uid = "", pwd = ""),
RECORDBYTES = sum(.rambytes[vmode(x)]),
BATCHBYTES = getOption("ffbatchbytes"),
by = NULL,
VERBOSE = FALSE,
...

)

Arguments

x the ffdf to write to the database

tablename character string with the name of the table to store the data in. Passed on to
sqlSave.

odbcConnect.args

a list of arguments to pass to ODBC’s odbcConnect (like dsn, uid, pwd). See
the examples.

RECORDBYTES optional integer scalar representing the bytes needed to process a single row of
the ffdf

BATCHBYTES integer: bytes allowed for the size of the data.frame storing the result of reading
one chunk. See documentation in read.table.ffdf for more details.

20 write.odbc.ffdf

by integer passed on to chunk indicating to write to the database in chunks of this
size. Overwrites the behaviour of BATCHBYTES and RECORDBYTES.

VERBOSE logical: TRUE to verbose timings for each processed chunk (default FALSE).

... optional parameters passed on to sqlSave

Details

Opens up the ODBC connection using RODBC::odbcConnect, writes data to the SQL table using
RODBC::sqlSave by extracting the data in batches from the ffdf and appending them to the table.

Value

invisible()

See Also

sqlSave, chunk

Examples

##
Using the sqlite database (smalldb.sqlite3) in the /inst folder of the package
set up the sqlite ODBC driver (www.stats.ox.ac.uk/pub/bdr/RODBC-manual.pd)
and call it 'smalltestsqlitedb'
##
Not run:
require(RODBC)
x <- read.odbc.ffdf(

query = "select * from testdata limit 10000",
odbcConnect.args = list(
dsn="smalltestsqlitedb", uid = "", pwd = "",
believeNRows = FALSE, rows_at_time = 1),
nrows = -1,
first.rows = 100, next.rows = 1000, VERBOSE = TRUE)

write.odbc.ffdf(x = x, tablename = "testdata", rownames = FALSE, append = TRUE,
odbcConnect.args = list(
dsn="smalltestsqlitedb", uid = "", pwd = "",
believeNRows = FALSE, rows_at_time = 1),
by = 1000, VERBOSE=TRUE)

End(Not run)

Index

as.factor, 3
as.ffdf, 8, 11, 13

cbind, 5
chunk, 16, 18, 20
colnames, 15

dbConnect, 7, 16
dbFetch, 7, 8
dbSendQuery, 7
dbWriteTable, 16

ETLUtils (ETLUtils-package), 2
ETLUtils-package, 2

factor, 3
factorise, 2
ffdf, 7, 10, 12, 15–20

match, 5, 14
matchmerge, 3
merge, 5

na.locf, 6
naLOCFPlusone, 6

odbcConnect, 12, 19
odbcDriverConnect, 12
odbcQuery, 12

read.dbi.ffdf, 7, 13
read.jdbc.ffdf, 9, 11
read.odbc.ffdf, 8, 12
read.table.ffdf, 8, 11, 13, 16, 18, 19
recoder, 14, 15
renameColumns, 15

sqlGetResults, 12, 13
sqlSave, 19, 20

write.dbi.ffdf, 15
write.jdbc.ffdf, 17
write.odbc.ffdf, 19

21

	ETLUtils-package
	factorise
	matchmerge
	naLOCFPlusone
	read.dbi.ffdf
	read.jdbc.ffdf
	read.odbc.ffdf
	recoder
	renameColumns
	write.dbi.ffdf
	write.jdbc.ffdf
	write.odbc.ffdf
	Index

