
Package ‘EQL’
January 20, 2025

Version 1.0-1

Date 2009-06-18

Title Extended-Quasi-Likelihood-Function (EQL)

Depends ttutils(>= 0.1-0)

Imports lattice(>= 0.17-17)

Author Thorn Thaler <thorn.thaler@thothal.com>

Maintainer Thorn Thaler <thorn.thaler@thothal.com>

Description Computation of the EQL for a given family of variance
functions, Saddlepoint-approximations and related auxiliary
functions (e.g. Hermite polynomials).

License GPL-2

Repository CRAN

Date/Publication 2019-08-30 13:04:27 UTC

NeedsCompilation no

Contents

EQL-package . 2
approximation . 3
cumulants . 4
edgeworth . 8
eql . 10
hermite . 14
saddlepoint . 16
varianceFamily . 17

Index 20

1

2 EQL-package

EQL-package Extended Quasi-Likelihood Function (EQL)

Description

The package EQL contains functions for

• computation of the EQL for a given family of variance functions

• Edgeworth approximations

• Saddlepoint approximations

• related auxiliary functions (e.g. Hermite polynomials)

See section ‘Index’ for a list of exported functions. Section ‘Internals’ lists the internal functions of
the package, which are not exported but may be referenced by EQL:::.functionName.

Details

Version: 1.0-0
Date: 2009-06-18
Depends: ttutils(>= 0.1-0)
Imports: lattice(>= 0.17-17)
License: GPL-2
Built: R 2.8.1; ; 2009-06-22 15:24:08; unix

Index

approximation : Approximation class
cumulants : Cumulant class for the saddlepoint approximation
edgeworth : Edgeworth approximation
eql : Maximization of the EQL function for a particular

: variance family for a given set of parameters
extBinomialVarianceFamily : Extended binomial variance family (V (µ) = µk(1− µ)l)
gammaCumulants : Cumulant functions of the Gamma distribution
gaussianCumulants : Cumulant functions of the normal distribution
hermite : Hermite polynomials
inverseGaussianCumulants : Cumulant functions of the inverse-gaussian distribution
powerVarianceFamily : Power variance family (V (µ) = µθ)
saddlepoint : Saddlepoint approximation
varianceFamily : Variance family class

approximation 3

Internals

.eql : Computes a single EQL value
.getFactor : Calculates the normalizing factor for the saddlepoint approximation
.missingFormals : Check if a list contains all the arguments of a particular function

Author(s)

Thorn Thaler <thorn.thaler@thothal.com>

Maintainer: Thorn Thaler <thorn.thaler@thothal.com>

See Also

ttutils

approximation An Approximation Class

Description

An object of class approximation stores the approximation nodes together with the approximation
itself. Some meta information is saved as well.

Usage

approximation(y, approx, n,
type = c("standardized", "mean", "sum"),
approx.type = c("Edgeworth", "Saddlepoint"))

S3 method for class 'approximation'
plot(x, do.annotate = TRUE, ...)

Arguments

y a numeric vector or array giving the approximation nodes.

approx a numeric vector or array giving the approximated values at y.

n a positive integer giving the number of i.i.d. random variables in the sum.

type a character string giving the type of approximation, i.e. which kind of sum is
to be approximated. Must be one of (“standardized”, “mean”, “sum”), repre-
senting the shifted and scaled sum, the weighted sum and the raw sum. Can be
abbreviated.

approx.type a character string giving the approximation routine used. Must be one of of
(“Edgeworth”, “Saddlepoint”) and can be abbreviated.

4 cumulants

x an approximation object.
do.annotate logical. If TRUE (the default) the value of the argument n is added to the plot.
... other parameters to be passed through to the plotting function. Giving a named

argument for any of
• main

• sub

• type

• xlab

• ylab

overrides the default values in plot.approximation.

Value

An object of class approximation contains the following components:

y a numeric vector of values at which the approximation is evaluated (the approx-
imation nodes).

approx a numeric vector containing the approximated values at the approximation nodes
y.

type a character string giving the type of sum considered, i.e. one of (“standardized”,
“mean”, “sum”).

n a positive integer giving the number of i.i.d. random variables in the sum.
approx.type a character string giving the type of approximation.

Author(s)

Thorn Thaler

See Also

edgeworth, saddlepoint

cumulants Cumulants Class For Saddlepoint Approximations

Description

A cumulants object contains all the cumulant functions that are needed to calculate the saddlepoint
approximation.

The predefined functions

• gammaCumulants,
• gaussianCumulants and
• inverseGaussianCumulants

compute the cumulant functions for the normal, gamma and inverse gaussian distribution, respec-
tively.

cumulants 5

Usage

cumulants(saddlef, cgf = NULL, kappa2f = NULL, rho3f = NULL,
rho4f = NULL, cgf.deriv = NULL,
domain = interval(-Inf, Inf), ...)

gammaCumulants(shape, scale)
gaussianCumulants(mu, sigma2)
inverseGaussianCumulants(lambda, nu)

S3 method for class 'cumulants'
check(object, ...)

Arguments

saddlef the saddlepoint function. Corresponds to the inverse of the first derivative of the
cumulant generating function (CGF).

cgf, cgf.deriv cgf is the cumulant generating function. If NULL (the default), it will be derived
from cgf.deriv (the generic derivative function of the cgf).

kappa2f the variance function. If NULL (the default), it will be derived from the function
cgf.deriv.

rho3f, rho4f the 3rd and the 4th standardized cumulant function, respectively. If NULL (the
default), the functions will be derived from cgf.deriv if supplied. If neither the
cumulants nor cgf.deriv are supplied, a warning will be displayed and a flag
is set in the output. In this case, saddlepoint approximations cannot make use of
the correction term (see saddlepoint for further details).

domain an object of type interval giving the domain of the random variable. Will be
needed to calculate the normalizing factor. See interval for further informa-
tion.

... additional parameters to be passed to the cumulant functions, respectively func-
tion check. See section ‘Details’ for further information.

shape, scale shape and scale parameter for the gamma distribution.

mu, sigma2 mean and variance parameter for the normal distribution.

lambda, nu parameters for the inverse Gaussian distribution.

object an object to be tested whether or not it meets the formal requirements.

Details

Basically, there are two ways to specify the cumulant functions using cumulants. The first one is
to specify each of the following functions seperately:

• cgf

• kappa2f

• rho3f

• rho4f

6 cumulants

Since the functions may (and probably will) depend on some additional parameters, it is necessary
to include these parameters in the respective argument lists. Thus, these additional parameters must
be passed to cumulants as named parameters as well. To be more specific, if one of the above
functions has an extra parameter z, say, the particular value of z must be passed to the function
cumulants as well (see the example). In any case, the first argument of the cumulant functions
must be the value at which the particular function will be evaluated.

The other way to specify the cumulant functions is to specify the generic derivative of the CGF
cgf.deriv. Its first argument must be the order of the derivative and its second the value at which
it should be evaluated, followed by supplementary arguments. cgf.deriv must be capable to return
the CGF itself, which corresponds to the zeroth derivative.

The function cumulants performs a basic check to test if all needed additional parameters are
supplied and displays a warning if there are extra arguments in the cumulant functions, which are
not specified.

The generic function check for the class cumulants tests if

• an object has the same fields as an cumulants object and

• the cumulant functions are properly vectorized, i.e. if they return a vector whenever the argu-
ment is a vector.

Value

cumulants returns an object of class cumulants containing the following components:

K the cumulant function.

mu.inv the saddlepoint function.

kappa2 the variance function.

rho3, rho4 the 3rd and the 4th standardized cumulant functions.

domain an interval giving the domain of the random variable.

extra.params extra parameter passed to cumulants, typically parameters of the underlying
distribution.

type character string equating either to “explicit” or “implicit” indicating whether
the cumulant functions were passed explicitly or were derived from the generic
derivative of the CGF.

missing logical. If TRUE, the 3rd and/or the 4th cumulant function were not defined.

gammaCumulants, gaussianCumulants and inverseGaussianCumulants return a cumulants ob-
ject representing the cumulant functions of the particular distribution.

Note

If it happens that one of the cumulant functions f, say, does not need any extra arguments while the
others do, one have to define these extra arguments for f nonetheless. The reason is that cumulants
passes any additional arguments to all defined cumulant functions and it would end up in an error,
if a function is not capable of dealing with additional arguments.

Hence, it is good practice to define all cumulant functions for the same set of arguments, needed or
not. An alternative is to add ... to the argument list in order to absorb any additional arguments.

cumulants 7

The functions must be capable of handling vector input properly.

Supplementary arguments must not be named similar to the arguments of cumulants (especially
any abbreviation must be avoided), for the argument matching may match an argument (thought to
be an extra argument for one of the cumulant function) to an argument of cumulants. The same
problem may arise, if additional cumulant function parameters are not named.

Author(s)

Thorn Thaler

References

Reid, N. (1991). Approximations and Asymptotics. Statistical Theory and Modelling, London:
Chapman and Hall.

See Also

edgeworth, saddlepoint

Examples

Define cumulant functions for the normal distribution

saddlef <- function(x, mu, sigma2) (x-mu)/sigma2
cgf <- function(x, mu, sigma2) mu*x+sigma2*x^2/2

Not run:

cgf, saddlef, kappa2, rho3 and rho4 must have the same argument lists!
Functions are _not_ properly vectorized!
kappa2 <- function(x, sigma2) sigma2
rho3 <- function(x) 0
rho4 <- function(x) 0

cc <- cumulants(saddlef, cgf, kappa2, rho3, rho4, mu=0, sigma2=1)

check(cc) # FALSE

End(Not run)

kappa2 <- function(x, mu, sigma2)
rep(sigma2, length(x))

rho3 <- function(x, mu, sigma2) # or function(x, ...)
rep(0, length(x))

rho4 <- function(x, mu, sigma2) # or function(x, ...)
rep(0, length(x))

cc <- cumulants(saddlef, cgf, kappa2, rho3, rho4, mu=0, sigma2=1)

cc$K(1:2) # 0.5 2
cc$kappa2(1:2) # 1 1

8 edgeworth

cc$mu.inv(1:2) # 1 2
cc$rho3(1:2) # 0 0
cc$rho4(1:2) # 0 0

check(cc) # TRUE

The same using the generic derivative of the cgf

K.deriv <- function(n, x, mu, sigma2) {
if (n <= 2) {
switch(n + 1,

return(mu * x + sigma2 * x ^ 2 / 2), # n == 0
return(mu + sigma2 * x), # n == 1
return(rep(sigma2, length(x)))) # n == 2

} else {
return(rep(0, length(x))) # n >= 3

}
}

cc <- cumulants(saddlef, cgf.deriv=K.deriv, mu=0, sigma2=1)

cc$K(1:2) # 0.5 2
cc$kappa2(1:2) # 1 1
cc$mu.inv(1:2) # 1 2
cc$rho3(1:2) # 0 0
cc$rho4(1:2) # 0 0

check(cc) # TRUE

The same using a predefined function
cc <- gaussianCumulants(0, 1)

cc$K(1:2) # 0.5 2
cc$kappa2(1:2) # 1 1
cc$mu.inv(1:2) # 1 2
cc$rho3(1:2) # 0 0
cc$rho4(1:2) # 0 0

check(cc) # TRUE

edgeworth Edgeworth Approximation

Description

Computes the Edgeworth expansion of either the standardized mean, the mean or the sum of i.i.d.
random variables.

edgeworth 9

Usage

edgeworth(x, n, rho3, rho4, mu, sigma2, deg=3,
type = c("standardized", "mean", "sum"))

Arguments

x a numeric vector or array giving the values at which the approximation should
be evaluated.

n a positive integer giving the number of i.i.d. random variables in the sum.

rho3 a numeric value giving the standardized 3rd cumulant. May be missing if deg
<= 1.

rho4 a numeric value giving the standardized 4th cumulant. May be missing if deg
<= 2.

mu a numeric value giving the mean.
May be missing if type = "standardized", since it is only needed for transfor-
mation purposes.

sigma2 a positive numeric value giving the variance.
May be missing if type= "standardized".

deg an integer value giving the order of the approximation:

• deg=1: corresponds to a normal approximation
• deg=2: takes 3rd cumulant into account
• deg=3: allows for the 4th cumulant as well. The default value is 3.

type determines which sum should be approximated. Must be one of (“standardized”,
“mean”, “sum”), representing the shifted and scaled sum, the weighted sum and
the raw sum. Can be abbreviated.

Details

The Edgeworth approximation (EA) for the density of the standardized mean Z = Sn−nµ√
nσ2

, where

• Sn = Y1 + . . .+ Yn denotes the sum of i.i.d. random variables,

• µ denotes the expected value of Yi,

• σ2 denotes the variance of Yi

is given by:

fZ(s) = φ(s)[1 +
ρ3
6
√
n
H3(s) +

ρ4
24n

H4(s) +
ρ23
72n

H6(s)],

with φ denoting the density of the standard normal distribution and ρ3 and ρ4 denoting the 3rd and
the 4th standardized cumulants of Yi respectively. Hn(x) denotes the nth Hermite polynomial (see
hermite for details).

The EA for the mean and the sum can be obtained by applying the transformation theorem for
densities. In this case, the expected value mu and the variance sigma2 must be given to allow for an
appropriate transformation.

10 eql

Value

edgeworth returns an object of the class approximation. See approximation for further details.

Author(s)

Thorn Thaler

References

Reid, N. (1991). Approximations and Asymptotics. Statistical Theory and Modelling, London:
Chapman and Hall.

See Also

approximation,hermite,saddlepoint

Examples

Approximation of the mean of n iid Chi-squared(2) variables

n <- 10
df <- 2
mu <- df
sigma2 <- 2*df
rho3 <- sqrt(8/df)
rho4 <- 12/df
x <- seq(max(df-3*sqrt(2*df/n),0), df+3*sqrt(2*df/n), length=1000)
ea <- edgeworth(x, n, rho3, rho4, mu, sigma2, type="mean")
plot(ea, lwd=2)

Mean of n Chi-squared(2) variables is n*Chi-squared(n*2) distributed
lines(x, n*dchisq(n*x, df=n*mu), col=2)

eql The Extended Quasi-Likelihood Function

Description

Computes the Extended Quasi Likelihood (EQL) function for a given set of variance functions from
a particular variance family.

Usage

eql(formula, param.space, family = powerVarianceFamily(),
phi.method = c("pearson", "mean.dev"), include.model = TRUE,
smooth.grid = 10, do.smooth = dim(family) == 1,
verbose = 1, ...)

eql 11

S3 method for class 'eql'
plot(x, do.points = (dim(x) == 1 && sum(!x$is.smoothed) <= 20),

do.ci = TRUE, alpha = 0.95, do.bw = TRUE,
show.max = TRUE, ...)

Arguments

formula an object of class formula (or one that can be coerced to that class): a symbolic
description of the model to be used to determine the parameters of the variance
function.

param.space a list of parameters for which the EQL value should be evaluated. If provided as
a named list, the names must equal the names of the parameters defined by the
variance family.

family an object of class varianceFamily giving a parameterized family of variance
functions. See varianceFamily for further details.

phi.method a character string giving the name of the method used to estimate the dispersion
parameter ϕ. Must be one of (“pearson”, “mean.dev”) representing the estima-
tion of ϕ by the mean Pearson’s statistic or by the mean deviance, respectively.

include.model logical. If TRUE (the default) the final model is included in the output.

x an object of class eql.

do.smooth, smooth.grid
do.smooth is a logical value and smooth.grid is an integer value giving the
number of nodes for the smoothing process. If do.smooth is TRUE, smoothing
is carried out by cubic splines on an equidistant grid with an amount of nodes
equals to smooth.grid between two adjacent EQL values. Smoothing is cur-
rently only available for one-dimensional variance families, i.e. families that
depend only on one parameter.

verbose the amount of feedback requested: ‘0’ or FALSE means no feedback, ‘1’ or TRUE
means some feedback (the default), and ‘2’ means to show all available feed-
back. For the default setting, a progress bar will be displayed to give a rough
estimation of the remaining calculation time. Full feedback prints the EQL value
for each parameter combination.

... further arguments to be passed to the glm routine and the plotting routine, re-
spectively.

do.points, show.max
logical. If do.points is TRUE, the computed EQL values are marked in the plot.
If show.max is TRUE, the maximum of the EQL function is emphasized in the
plot.

do.ci, alpha do.ci is a logical value, if TRUE a α confidence interval (respectively confidence
ellipsoid) is added to the plot.

do.bw logical. If TRUE (the default) a “black and white” plot is produced, otherwise
colours are used.

12 eql

Details

The EQL function as defined by Nelder and Pregibon (see ‘References’) is given by:

Q+
θ (y, µ) = −1

2
log[2πϕVθ(y)]−

1

2ϕ
Dθ(y, µ),

where Dθ() and Vθ() denote the deviance function and the variance function, respectively, deter-
mined by the particular choice of the variance family.

The goal is to maximize the EQL function over µ and the not necessarily one-dimensional space of
parameters θ. The function eql takes a particular finite set of candidate parameters and computes
the corresponding EQL value for each of these parameters and returns the maximum EQL value
for the given set. That implies that the function is only capable of capturing local maxima. If the
maximum occurs at the boundary of the set, the set of parameters may be badly chosen and one
should consider a larger set with the found maximum as an interior point.

The plot function is an important tool to investigate the structure of the EQL function. Confidence
intervals and confidence ellipsoids give an idea of plausible parameter values for the variance func-
tion. The contour plot used for two-dimensional variance families is generated using the package
lattice, which in turn relies on so called trellis plots. Hence, for two-dimensional families the
plot function does not only generate the plot, but also returns the plot object to allow for further
modifications of the plot. This is not true for one-dimensional variance models, which are plotted
using the R standard graphical engine.

For large parameter sets the computation may take a long time. If no feedback is chosen, the
function seems to be hung up, because the function does not provide any textual feedback while
computing. Hence, a minimal feedback (including a progress bar) should be chosen to have an idea
of the remaining calculation time.

An explicitely given deviance function speeds up calculation. A rather large amount of the total
calculation time is used to determine the numerical values of the integral in the deviance function.

Value

eql returns an object of class eql, which contains the following components:

eql a numerical vector with the computed eql values for the given set of parameter
values. For one-dimensional variance families (i.e. those families with only
one parameter), a smoothing operation can be performed to obtain intermediate
values.

param a data.frame containing the values of the parameters at which the eql function
was evaluated.

eql.max the maximum value of the eql function in the considered range.

param.max a data.frame containing the values of the parameters at which the maximum is
obtained.

dim an integer value giving the dimension of the parameters in the underlying vari-
ance family.

smooth a logical value indicating whether a smoothing operation was performed.

is.smoothed a vector of logical values of the same length as eql indicating if the particular
EQL value was obtained by smoothing or was calculated directly.

eql 13

smooth.grid an integer value giving the number of points used in the smoothing process or
NULL if no smoothing was performed.

model if include.model is TRUE, the GLM for which the maximum EQL value was
archieved, NULL otherwise.

Note

The EQL for variance functions with Vθ(0) = 0 becomes infinite. Hence, if there are exact zeros
in the data, one should provide a variance family, which do not equate to zero at the origin. Nelder
and Pregibon propose some adjustment of V (y) at the origin, which leads to a modified variance
function.

The predefined families powerVarianceFamily and extBinomialVarianceFamily are, however,
not capable of dealing with exact zeros, for there is no general mechanism to modify the variance
function for all possible values of the particular variance family.

The confidence interval for one-dimensional variance families is not calculated exactly, but depends
on the amount of EQL values available. Hence, if one is interested in a confidence interval, one
should allow for smoothing.

The function eql does not use a direct maximization routine, but rather do a simple maximation
over a finite set. Hence, all obtained values including confidence intervals and confidence ellipsoids
have a “local flavour” and should not be regarded as global solutions.

The confidence bounds are determined rather empirically and do heavily depend on the amount of
parameter values under consideration.

Author(s)

Thorn Thaler

References

Nelder, J.A. and Pregibon, D. (1987). An extended quasi-likelihood function. Biometrika, 74,
221–232.

See Also

varianceFamily, glm

Examples

Power Variance Family
Data from Box and Cox (1964)
x <- (-1:1)
y <- c(674,370,292,338,266,210,170,118,90,1414,1198,634,1022,620,438,

442,332,220,3636,3184,2000,1568,1070,566,1140,884,360)
yarn.raw <- data.frame(expand.grid(x3=x, x2=x, x1=x), cycles=y)
yarn <- data.frame(x1=yarn.raw$x1, x2=yarn.raw$x2, x3=yarn.raw$x3,

cycles=yarn.raw$cycles)
attach(yarn)

ps.power <- list(theta=seq(1, 4, length = 20))

14 hermite

eq.power <- eql(cycles~x1+x2+x3, param.space=ps.power,
family=powerVarianceFamily("log"), smooth.grid=500)

plot(eq.power)

Not run:
Extended Binomial Variance Family
Data from McCullagh & Nelder: GLM, p. 329
(zeros replaced by 'NA')

site <- rep(1:9, each=10)
variety <- rep(1:10, 9)
resp <- c(0.05,NA,NA,0.10,0.25,0.05,0.50,1.30,1.50,1.50,

NA,0.05,0.05,0.30,0.75,0.30,3,7.50,1,12.70,1.25,1.25,
2.50,16.60,2.50,2.50,NA,20,37.50,26.25,2.50,0.50,0.01,
3,2.50,0.01,25,55,5,40,5.50,1,6,1.10,2.50,8,16.50,
29.50,20,43.50,1,5,5,5,5,5,10,5,50,75,5,0.10,5,5,
50,10,50,25,50,75,5,10,5,5,25,75,50,75,75,75,17.50,
25,42.50,50,37.50,95,62.50,95,95,95) / 100

ps.binomial <- list(seq(1, 2.2, length=32), seq(1, 3, length=32))
eq.binomial <- eql(resp~site*variety, param.space=ps.binomial,

family=extBinomialVarianceFamily())
plot(eq.binomial)

End(Not run)

hermite Hermite Polynomials

Description

Computes the Hermite polynomial Hn(x).

Usage

hermite(x, n, prob = TRUE)

Arguments

x a numeric vector or array giving the values at which the Hermite polynomial
should be evaluated.

n an integer vector or array giving the degrees of the Hermite polynomials. If
length(x) != 1, n must be either of the same length as x or a single value.

prob logical. If TRUE (the default) the probabilistic version of the Hermite polynomial
is evaluated, otherwise the physicists’ Hermite polynomials are used. See the
‘Details’ section below for further information.

hermite 15

Details

The Hermite polynomials are given by:

• Hn+1(x) = xHn(x) − nHn−1(x), with H0(x) = 1 and H1(x) = x, (Probabilists’ version
HPr

n (x))

• Hn+1(x) = 2xHn(x)− 2nHn−1(x), with H0(x) = 1 and H1(x) = 2x. (Physicists’ version
HPh

n (x))

and the relationship between the two versions is given by

HPh
n (x) = 2n/2HPr

n (
√
2x).

The term ‘probabilistic’ is motivated by the fact that in this case the Hermite polynomial Hn(x) can
be as well defined by

Hn(x) = (−1)n
1

φ(x)
φ(n)(x),

where φ(x) denotes the density function of the standard normal distribution and φ(k)(x) denotes
the kth derivative of φ(x) with respect to x.

If the argument n is a vector it must be of the same length as the argument x or the length of the
argument x must be equal to one. The Hermite polynomials are then evaluated either at xi with
degree ni or at x with degree ni, respectively.

Value

the Hermite polynomial (either the probabilists’ or the physicists’ version) evaluated at x.

Author(s)

Thorn Thaler

References

Fedoryuk, M.V. (2001). Hermite polynomials. Encyclopaedia of Mathematics, Kluwer Academic
Publishers.

Examples

2^(3/2)*hermite(sqrt(2)*5, 3) # = 940
hermite(5, 3, FALSE) # = 940
hermite(2:4, 1:3) # H_1(2), H_2(3), H_3(4)
hermite(2:4, 2) # H_2(2), H_2(3), H_2(4)
hermite(2, 1:3) # H_1(2), H_2(2), H_3(2)
Not run:
hermite(1:3, 1:4) # Error!

End(Not run)

16 saddlepoint

saddlepoint Saddlepoint Approximation

Description

Computes the (normalized) saddlepoint approximation of the mean of n i.i.d. random variables.

Usage

saddlepoint(x, n, cumulants, correct = TRUE, normalize = FALSE)

Arguments

x a numeric vector or array with the values at which the approximation should be
evaluated.

n a positive integer giving the number of i.i.d. random variables in the sum.

cumulants a cumulants object giving the cumulant functions and the saddlepoint function.
See cumulants for further information.

correct logical. If TRUE (the default) the correction term involving the 3rd and the 4th
standardized cumulant functions is included.

normalize logical. If TRUE the renormalized version of the saddlepoint approximation is
calculated. The renormalized version does neither make use of the 3rd nor of
the 4th cumulant function so setting correct=TRUE will result in a warning. The
default is FALSE.

Details

The saddlepoint approximation (SA) for the density of the mean Z = Sn/n of i.i.d. random vari-
ables Yi with Sn =

∑n
i=1 Yi is given by:

fZ(z) ≈ c

√
n

2πK ′′
Y (s)

exp{n[KY (s)− sz]},

where c is an appropriatly chosen correction term, which is based on higher cumulants. The function
KY (·) denotes the cumulant generating function and s denotes the saddlepoint which is the solution
of the saddlepoint function:

K ′(s) = z.

For the renormalized version of the SA one chooses c such that fZ(z) integrates to one, otherwise
it includes the 3rd and the 4th standardized cumulant.

The saddlepoint approximation is an improved version of the Edgeworth approximation and makes
use of ‘exponential tilted’ densities. The weakness of the Edgeworth method lies in the approxima-
tion in the tails of the density. Thus, the saddlepoint approximation embed the original density in
the “conjugate exponential family” with parameter θ. The mean of the embeded density depends
on θ which allows for evaluating the Edgeworth approximation at the mean, where it is known to
give reasonable results.

varianceFamily 17

Value

saddlepoint returns an object of class approximation. See function approximation for further
details.

Author(s)

Thorn Thaler

References

Reid, N. (1991). Approximations and Asymptotics. Statistical Theory and Modelling, London:
Chapman and Hall.

See Also

approximation, cumulants, edgeworth

Examples

Saddlepoint approximation for the density of the mean of n Gamma
variables with shape=1 and scale=1
n <- 10
shape <- scale <- 1
x <- seq(0, 3, length=1000)
sp <- saddlepoint(x, n, gammaCumulants(shape, scale))
plot(sp, lwd=2)

Mean of n Gamma(1,1) variables is n*Gamma(n,1) distributed
lines(x, n*dgamma(n*x, shape=n*shape, scale=scale), col=2)

varianceFamily Variance Family Class For The EQL-Method

Description

varianceFamily provides a class for a parameterized family of variance functions to be used with
eql.

The predefined functions powerVarianceFamily and extBinomialVarianceFamily compute the
variance family defined by the parametric variance functions Vθ(µ) = µθ and Vk,l(µ) = µk(1−µ)l,
respectively.

Usage

varianceFamily(varf, devf = NULL, link = "log", initf = NULL,
validmuf = NULL, name = "default")

powerVarianceFamily(link = "log")
extBinomialVarianceFamily(link = "logit")

18 varianceFamily

Arguments

varf the parameterized variance function.

devf the deviance function. If NULL (the default) it will be determined numerically
from the variance function varf.

link the link function.

initf a function returning an object of class expression. The expression object
should give a sequence of initializing commands for the glm routine such as
setting the starting values. If NULL (the default), a very rudimentary initialize
function is chosen, which may not be appropriate. See family for further de-
tails.

validmuf a function giving TRUE if its argument is a valid value for µ and FALSE otherwise.
If NULL (the default), all µ are supposed to be valid.

name a character string giving the name of the variance family.

Details

The purpose of the function varianceFamily is to provide a convenient way to specify families of
variance functions. An extended glm family object for a particular choice of a parameter vector
can be obtained via the class member family.

The minimal specification for a varianceFamily object is the variance function Vθ(µ) with θ de-
scribing the vector of family parameters. If not given explicitly, the deviance function is determined
numerically.

The family parameter of powerVarianceFamily is ‘theta’, while the names of the parameters of
extBinomialVarianceFamily are ‘k’ and ‘l’.

Value

varianceFamily returns an object of class varianceFamily containing the following components:

family a function which computes an extFamily object, which is an extension of the
family object known from classical glm. extFamily inherits from class family
and contains an additional field holding the value of the particular parameters at
which the family was evaluated.

name a character string giving the name of the variance family.

params a list of the parameters of the variance family.

type.dev a character string. Equals either “explicit” or “numerical” depending on how the
deviance function was determined.

Note

Those arguments passed to varianceFunction that are functions, are supposed to accept the vari-
ance family’s parameter as an argument. The idea is that any of these functions may give different
results for different values of the family’s parameters. Even if any of these functions do not depend
on these parameters, they must be contained in the function’s argument list.

varianceFamily 19

Author(s)

Thorn Thaler

References

Nelder, J.A. and Pregibon, D. (1987). An Extended Quasi-Likelihood Function. Biometrika, 74,
221–232.

See Also

family, eql

Examples

The extended binomial variance family
(the deviance is determined numerically)

init does not depend on k and l but it must accept
these parameters anyways
init <- function(k, l) {

return(expression({
mustart <- (weights * y + 0.5)/(weights + 1)
n <- rep.int(1, nobs)}))

}
validmuf <- function(mu, k, l) {

return(all(mu > 0) && all(mu < 1))
}
varf <- function(y, k, l) y^k*(1-y)^l
suppressWarnings(vf <- varianceFamily(varf=varf, link="log", initf=init,

validmuf=validmuf,
name="Extended-Binomial-Family"))

vf$family(1,1) # corresponds to binomial()

y <- runif(10, 0, 1)
mu <- runif(10, 0, 1)

all.equal(vf$family(1,1)$dev.resids(y,mu,1), # TRUE
binomial()$dev.resids(y,mu,1))

Index

∗ package
EQL-package, 2

approximation, 2, 3, 10, 17

check.cumulants (cumulants), 4
cumulants, 2, 4, 16, 17

edgeworth, 2, 4, 7, 8, 17
EQL (EQL-package), 2
eql, 2, 10, 17, 19
EQL-package, 2
extBinomialVarianceFamily, 2, 13
extBinomialVarianceFamily

(varianceFamily), 17

family, 18, 19

gammaCumulants, 2
gammaCumulants (cumulants), 4
gaussianCumulants, 2
gaussianCumulants (cumulants), 4
glm, 11, 13, 18

hermite, 2, 9, 10, 14

interval, 5
inverseGaussianCumulants, 2
inverseGaussianCumulants (cumulants), 4

plot.approximation (approximation), 3
plot.eql (eql), 10
powerVarianceFamily, 2, 13
powerVarianceFamily (varianceFamily), 17

saddlepoint, 2, 4, 5, 7, 10, 16

ttutils, 3

varianceFamily, 2, 11, 13, 17

20

	EQL-package
	approximation
	cumulants
	edgeworth
	eql
	hermite
	saddlepoint
	varianceFamily
	Index

