
Package ‘EHR’
January 20, 2025

Version 0.4-11

Date 2022-12-15

Title Electronic Health Record (EHR) Data Processing and Analysis Tool

Maintainer Leena Choi <leena.choi@vanderbilt.edu>

Description Process and analyze electronic health record (EHR) data. The 'EHR'
package provides modules to perform diverse medication-related studies using
data from EHR databases. Especially, the package includes modules to perform
pharmacokinetic/pharmacodynamic (PK/PD) analyses using EHRs, as outlined in
Choi, Beck, McNeer, Weeks, Williams, James, Niu, Abou-Khalil, Birdwell, Roden,
Stein, Bejan, Denny, and Van Driest (2020) <doi:10.1002/cpt.1787>. Additional
modules will be added in future. In addition, this package provides various
functions useful to perform Phenome Wide Association Study (PheWAS) to explore
associations between drug exposure and phenotypes obtained from EHR data, as
outlined in Choi, Carroll, Beck, Mosley, Roden, Denny, and Van Driest (2018)
<doi:10.1093/bioinformatics/bty306>.

Depends R (>= 2.10)

License GPL (>= 3)

URL https://choileena.github.io/

Imports stats, utils, data.table, methods, lubridate, pkdata

Suggests glmnet, logistf, medExtractR (>= 0.4.1), knitr, rmarkdown,
ggplot2, markdown

NeedsCompilation no

RoxygenNote 7.1.1

VignetteBuilder knitr

Author Leena Choi [aut, cre] (<https://orcid.org/0000-0002-2544-7090>),
Cole Beck [aut] (<https://orcid.org/0000-0002-6849-6255>),
Hannah Weeks [aut] (<https://orcid.org/0000-0002-0262-6790>),
Elizabeth McNeer [aut],
Nathan James [aut] (<https://orcid.org/0000-0001-7079-9151>),
Michael Williams [aut]

Repository CRAN

Date/Publication 2022-12-19 18:20:02 UTC

1

https://doi.org/10.1002/cpt.1787
https://doi.org/10.1093/bioinformatics/bty306
https://choileena.github.io/
https://orcid.org/0000-0002-2544-7090
https://orcid.org/0000-0002-6849-6255
https://orcid.org/0000-0002-0262-6790
https://orcid.org/0000-0001-7079-9151

2 Contents

Contents
EHR-package . 3
addLastDose . 4
analysisPheWAS . 5
buildDose . 7
collapseDose . 9
dataTransformation . 10
dd . 10
dd.baseline . 11
dd.baseline.small . 11
dd.small . 12
extractMed . 12
freqNum . 13
idCrosswalk . 14
lam_metadata . 15
lam_mxr_parsed . 16
Logistf . 17
makeDose . 18
parseCLAMP . 19
parseMedEx . 20
parseMedExtractR . 21
parseMedXN . 22
processLastDose . 23
pullFakeId . 24
pullRealId . 25
readTransform . 26
run_Build_PK_IV . 26
run_Build_PK_Oral . 30
run_Demo . 31
run_DrugLevel . 33
run_Labs . 35
run_MedStrI . 36
run_MedStrII . 39
stdzDose . 40
stdzDoseChange . 41
stdzDoseSchedule . 41
stdzDuration . 42
stdzFreq . 42
stdzRoute . 43
stdzStrength . 43
tac_lab . 44
tac_metadata . 44
tac_mxr_parsed . 45
zeroOneTable . 46

Index 47

EHR-package 3

EHR-package Electronic Health Record (EHR) Data Processing and Analysis Tool

Description

The ‘EHR‘ package provides modules to perform diverse medication-related studies using data
from EHR databases.

Details

Package functionality:

• Process and analyze Electronic Health Record (EHR) data.

• Implement modules to perform diverse medication-related studies using data from EHR databases.
Especially, the package includes modules to perform pharmacokinetic/pharmacodynamic (PK/PD)
analyses using EHRs, as outlined in Choi et al. (2020).

• Implement three statistical methods for Phenome Wide Association Study (PheWAS). Con-
tingency tables for many binary outcomes (e.g., phenotypes) and a binary covariate (e.g., drug
exposure) can be efficiently generated by zeroOneTable, and three commonly used statistical
methods to analyze data for PheWAS are implement by analysisPheWAS.

Author(s)

Maintainer: Leena Choi <leena.choi@vanderbilt.edu> (ORCID)

Authors:

• Cole Beck <cole.beck@vumc.org> (ORCID)

• Hannah Weeks <hannah.l.weeks@vanderbilt.edu> (ORCID)

• Elizabeth McNeer <elizabeth.mcneer@vumc.org>

• Nathan James <nathan.t.james@vanderbilt.edu> (ORCID)

• Michael Williams <michael.l.williams@vanderbilt.edu>

References

1. Development of a system for postmarketing population pharmacokinetic and pharmacody-
namic studies using real-world data from electronic health records.
Choi L, Beck C, McNeer E, Weeks HL, Williams ML, James NT, Niu X, Abou-Khalil BW,
Birdwell KA, Roden DM, Stein CM, Bejan CA, Denny JC, Van Driest SL.
Clin Pharmacol Ther. 2020 Apr;107(4):934-943. doi: 10.1002/cpt.1787.

2. Evaluating statistical approaches to leverage large clinical datasets for uncovering therapeutic
and adverse medication effects.
Choi L, Carroll RJ, Beck C, Mosley JD, Roden DM, Denny JC, Van Driest SL.
Bioinformatics. 2018 Sep 1;34(17):2988-2996. doi: 10.1093/bioinformatics/bty306.

https://orcid.org/0000-0002-2544-7090
https://orcid.org/0000-0002-6849-6255
https://orcid.org/0000-0002-0262-6790
https://orcid.org/0000-0001-7079-9151

4 addLastDose

See Also

Useful links:

• https://choileena.github.io/

addLastDose Add Lastdose Data

Description

Add lastdose data to data set from the buildDose process.

Usage

addLastDose(buildData, lastdoseData)

Arguments

buildData data.frame, output of buildDose function.

lastdoseData data.frame with columns filename, ld_start, lastdose, raw_time, time_type

Details

Lastdose is a datetime string associated with dose data. Information on time of last dose can be
extracted within the extractMed function (i.e., medExtractR) using the argument lastdose=TRUE.
Raw extracted times should first be processed using the processLastDose function to convert to
datetime format before providing to addLastDose. This function then combines the processed last
dose times with output from the buildDose process by file name to pair last dose times with dosing
regimens based on position. Alternatively, the user can provide their own table of lastdose data. In
this case, with position information absent, the lastdose data should be restricted to one unique last
dose time per unique patient ID-date identifier.

In the case where lastdoseData is output from processLastDose, it is possible to have more than
one extracted last dose time. In this case, rules are applied to determine which time should be kept.
First, we give preference to an explicit time expression (e.g., "10:30pm") over a duration expression
(e.g., "14 hour level"). Then, we pair last dose times with drug regimens based on minimum distance
between last dose time start position and drug name start position.

See EHR Vignette for Extract-Med and Pro-Med-NLP for details.

Value

a data.frame with the ‘lastdose’ column added.

https://choileena.github.io/

analysisPheWAS 5

Examples

Get build data
data(tac_mxr_parsed)
don't combine lastdose at this stage
tac_build <- buildDose(tac_mxr_parsed, preserve = 'lastdose')
Get processed last dose data
tac_mxr <- read.csv(system.file("examples", "tac_mxr.csv", package = "EHR"))
data(tac_metadata)
data(tac_lab)
ld_data <- processLastDose(tac_mxr, tac_metadata, tac_lab)

addLastDose(tac_build, ld_data)

analysisPheWAS Statistical Analysis for PheWAS

Description

Implement three commonly used statistical methods to analyze data for Phenome Wide Association
Study (PheWAS)

Usage

analysisPheWAS(
method = c("firth", "glm", "lr"),
adjust = c("PS", "demo", "PS.demo", "none"),
Exposure,
PS,
demographics,
phenotypes,
data

)

Arguments

method define the statistical analysis method from ’firth’, ’glm’, and ’lr’. ’firth’: Firth’s
penalized-likelihood logistic regression; ’glm’: logistic regression with Wald
test, ’lr’: logistic regression with likelihood ratio test.

adjust define the adjustment method from ’PS’,’demo’,’PS.demo’, and ’none’. ’PS’:
adjustment of PS only; ’demo’: adjustment of demographics only; ’PS.demo’:
adjustment of PS and demographics; ’none’: no adjustment.

Exposure define the variable name of exposure variable.
PS define the variable name of propensity score.
demographics define the list of demographic variables.
phenotypes define the list of phenotypes that need to be analyzed.
data define the data.

6 analysisPheWAS

Details

Implements three commonly used statistical methods to analyze the associations between exposure
(e.g., drug exposure, genotypes) and various phenotypes in PheWAS. Firth’s penalized-likelihood
logistic regression is the default method to avoid the problem of separation in logistic regression,
which is often a problem when analyzing sparse binary outcomes and exposure. Logistic regression
with likelihood ratio test and conventional logistic regression with Wald test can be also performed.

Value

estimate the estimate of log odds ratio.

stdError the standard error.

statistic the test statistic.

pvalue the p-value.

Author(s)

Leena Choi <leena.choi@vanderbilt.edu> and Cole Beck <cole.beck@vumc.org>

Examples

use small datasets to run this example
data(dataPheWASsmall)
make dd.base with subset of covariates from baseline data (dd.baseline.small)
or select covariates with upper code as shown below
upper.code.list <- unique(sub("[.][^.]*(.).*", "", colnames(dd.baseline.small)))
upper.code.list <- intersect(upper.code.list, colnames(dd.baseline.small))
dd.base <- dd.baseline.small[, upper.code.list]
perform regularized logistic regression to obtain propensity score (PS)
to adjust for potential confounders at baseline
phenos <- setdiff(colnames(dd.base), c('id', 'exposure'))
data.x <- as.matrix(dd.base[, phenos])
glmnet.fit <- glmnet::cv.glmnet(x=data.x, y=dd.base[,'exposure'],

family="binomial", standardize=TRUE,
alpha=0.1)

dd.base$PS <- c(predict(glmnet.fit, data.x, s='lambda.min'))
data.ps <- dd.base[,c('id', 'PS')]
dd.all.ps <- merge(data.ps, dd.small, by='id')
demographics <- c('age', 'race', 'gender')
phenotypeList <- setdiff(colnames(dd.small), c('id','exposure','age','race','gender'))
run with a subset of phenotypeList to get quicker results
phenotypeList.sub <- sample(phenotypeList, 5)
results.sub <- analysisPheWAS(method='firth', adjust='PS', Exposure='exposure',

PS='PS', demographics=demographics,
phenotypes=phenotypeList.sub, data=dd.all.ps)

run with the full list of phenotype outcomes (i.e., phenotypeList)

results <- analysisPheWAS(method='firth', adjust='PS',Exposure='exposure',
PS='PS', demographics=demographics,
phenotypes=phenotypeList, data=dd.all.ps)

buildDose 7

buildDose Combine Dose Data

Description

Output from parse process is taken and converted into a wide format, grouping drug entity informa-
tion together based on various steps and rules.

Usage

buildDose(
dat,
dn = NULL,
preserve = NULL,
dist_method,
na_penalty,
neg_penalty,
greedy_threshold,
checkForRare = FALSE

)

Arguments

dat data.table object from the output of parseMedExtractR, parseMedXN, parseMedEx,
or parseCLAMP

dn Regular expression specifying drug name(s) of interest.

preserve Column names to include in output, whose values should not be combined with
other rows. If present, dosechange is always preserved.

dist_method Distance method to use for calculating distance of various paths. Alternatively
set the ‘ehr.dist_method’ option, which defaults to ‘minEntEnd’.

na_penalty Penalty for matching extracted entities with NA. Alternatively set the
‘ehr.na_penalty’ option, which defaults to 32.

neg_penalty Penalty for negative distances between frequency/intake time and dose amounts.
Alternatively set the ‘ehr.neg_penalty’ option, which defaults to 0.5.

greedy_threshold

Threshold to use greedy matching; increasing this value too high could lead to
the algorithm taking a long time to finish. Alternatively set the
‘ehr.greedy_threshold’ option, which defaults to 1e8.

checkForRare Indicate if rare values for each entity should be found and displayed.

Details

The buildDose function takes as its main input (dat), a data.table object that is the output of a
parse process function (parseMedExtractR, parseMedXN, parseMedEx, or parseCLAMP). Broadly,
the parsed extractions are grouped together to form wide, more complete drug regimen information.

8 buildDose

This reformatting facilitates calculation of dose given intake and daily dose in the collapseDose
process.

The process of creating this output is broken down into multiple steps:

1. Removing rows for any drugs not of interest. Drugs of interest are specified with the dn
argument.

2. Determining whether extractions are "simple" (only one drug mention and at most one ex-
traction per entity) or complex. Complex cases can be more straightforward if they contain at
most one extraction per entity, or require a pairing algorithm to determine the best pairing if
there are multiple extractions for one or more entities.

3. Drug entities are anchored by drug name mention within the parse process. For complex
cases, drug entities are further grouped together anchored at each strength (and dose with
medExtractR) extraction.

4. For strength groups with multiple extractions for at least one entity, these groups go through a
path searching algorithm, which computes the cost for each path (based on a chosen distance
method) and chooses the path with the lowest cost.

5. The chosen paths for each strength group are returned as the final pairings. If route is unique
within a strength group, it is standardized and added to all entries for that strength group.

The user can specify additional arguments including:

• dist_method: The distance method is the metric used to determine which entity path is the
most likely to be correct based on minimum cost.

• na_penalty: NA penalties are incurred when extractions are paired with nothing (i.e., an NA),
requiring that entities be sufficiently far apart from one another before being left unpaired.

• neg_penalty: When working with dose amount (DA) and frequency/intake time (FIT), it is
much more common for the ordering to be DA followed by FIT. Thus, when we observe FIT
followed by DA, we apply a negative penalty to make such pairings less likely.

• greedy threshold: When there are many extractions from a clinical note, the number of
possible combinations for paths can get exponentially large, particularly when the medication
extraction natural language processing system is incorrect. The greedy threshold puts an upper
bound on the number of entity pairings to prevent the function from stalling in such cases.

If none of the optional arguments are specified, then the buildDose process uses the default option
values specified in the EHR package documentation. See EHR Vignette for Extract-Med and Pro-
Med-NLP as well as Dose Building Using Example Vanderbilt EHR Data for details. For additional
details, see McNeer, et al. 2020.

Value

A data.frame object that contains columns for filename (of the clinical note, inherited from the parse
output object dat), drugname, strength, dose, route, freq, duration, and drugname_start.

Examples

data(lam_mxr_parsed)

buildDose(lam_mxr_parsed)

collapseDose 9

collapseDose Collapse Dose Data

Description

Splits drug data and calls makeDose to collapse at the note and date level.

Usage

collapseDose(x, noteMetaData, naFreq = "most", ...)

Arguments

x data.frame containing the output of buildDose, or the output of addLastDose
if last dose information is being incorporated.

noteMetaData data.frame containing identifying meta data for each note, including patient ID,
date of the note, and note ID. Column names should be set to ‘filename’, ‘pid’,
‘date’, ‘note’. Date should have format YYYY-MM-DD.

naFreq Expression used to replace missing frequencies with, or by default use the most
common.

... drug formulations to split by

Details

If different formulations of the drug (e.g., extended release) exist, they can be separated using a
regular expression (e.g., ‘xr|er’). This function will call makeDose on parsed and paired medication
data to calculate dose intake and daily dose and remove redundancies at the note and date level.

See EHR Vignette for Extract-Med and Pro-Med-NLP as well as Dose Building Using Example
Vanderbilt EHR Data for details.

Value

A list containing two dataframes, one with the note level and one with the date level collapsed data.

Examples

data(lam_mxr_parsed)
data(lam_metadata)

lam_build_out <- buildDose(lam_mxr_parsed)

lam_collapsed <- collapseDose(lam_build_out, lam_metadata, naFreq = 'most', 'xr|er')
lam_collapsed$note # Note level collapsing
lam_collapsed$date # Date level collapsing

10 dd

dataTransformation Data Transformation

Description

Convenience function for making small modifications to a data.frame.

Usage

dataTransformation(x, select, rename, modify)

Arguments

x a data.frame

select columns to select

rename character vector with names for all columns

modify list of expressions used to transform data set

Value

The modified data.frame

dd dd

Description

Simulated outcome data example from Phenome Wide Association Study (PheWAS) that examines
associations between drug exposure and various phenotypes at follow-up after the drug exposure.
The dataset includes 1505 variables: subject identification number (’id’), drug exposure (’expo-
sure’), 3 demographic variables (’age’, ’race’, ’gender’), and 1500 phenotypes.

Usage

data(dataPheWAS, package = 'EHR')

Format

A data frame with 10000 observations on 1505 variables.

Examples

data(dataPheWAS)

dd.baseline 11

dd.baseline dd.baseline

Description

Simulated baseline data example from a Phenome Wide Association Study (PheWAS) obtained at
baseline before drug exposure. The dataset includes 1505 variables: subject identification num-
ber (’id’), drug exposure (’exposure’), 3 demographic variables (’age’, ’race’, ’gender’), and 1500
phenotypes.

Usage

data(dataPheWAS, package = 'EHR')

Format

A data frame with 10000 observations on 1505 variables.

Examples

data(dataPheWAS)

dd.baseline.small dd.baseline.small

Description

A smaller subset of baseline data example, dd.baseline. The dataset includes 55 variables: subject
identification number (’id’), drug exposure (’exposure’), 3 demographic variables (’age’, ’race’,
’gender’), and 50 phenotypes.

Usage

data(dataPheWASsmall, package = 'EHR')

Format

A data frame with 2000 observations on 55 variables.

Examples

data(dataPheWASsmall)

12 extractMed

dd.small dd.small

Description

A smaller subset of outcome data example, ’dd’. The dataset includes 55 variables: subject identifi-
cation number (’id’), drug exposure (’exposure’), 3 demographic variables (’age’, ’race’, ’gender’),
and 50 phenotypes.

Usage

data(dataPheWASsmall, package = 'EHR')

Format

A data frame with 2000 observations on 55 variables.

Examples

data(dataPheWASsmall)

extractMed Extract medication information from clinical notes

Description

This function is an interface to the medExtractR function within the medExtractR package, and
allows drug dosing information to be extracted from free-text sources, e.g., clinical notes.

Usage

extractMed(note_fn, drugnames, drgunit, windowlength, max_edit_dist = 0, ...)

Arguments

note_fn File name(s) for the text file(s) containing the clinical notes. Can be a character
string for an individual note, or a vector or list of file names for multiple notes.

drugnames Vector of drug names for which dosing information should be extracted. Can
include various forms (e.g., generic, brand name) as well as abbreviations.

drgunit Unit of the drug being extracted, e.g., ’mg’
windowlength Length of the search window (in characters) around the drug name in which to

search for dosing entities

max_edit_dist Maximum edit distance allowed when attempting to extract drugnames. Allows
for capturing misspelled drug name information.

... Additional arguments to medExtractR, for example lastdose=TRUE to extract
time of last dose (see medExtractR package documentation for details)

freqNum 13

Details

Medication information, including dosing data, is often stored in free-text sources such as clini-
cal notes. The extractMed function serves as a convenient wrapper for the medExtractR pack-
age, a natural language processing system written in R for extracting medication data. Within
extractMed, the medExtractR function identifies dosing data for drug(s) of interest, specified by
the drugnames argument, using rule-based and dictionary-based approaches. Relevant dosing en-
tities include medication strength (identified using the unit argument), dose amount, dose given
intake, intake time or frequency of dose, dose change keywords (e.g., ’increase’ or ’decrease’), and
time of last dose. After applying medExtractR to extract drug dosing information, extractMed
appends the file name to results to ensure they are appropriately labeled.

See EHR Vignette for for Extract-Med and Pro-Med-NLP. For more details, see Weeks, et al. 2020.

Value

A data.frame with the extracted dosing information, labeled with file name as an identifier
Sample output:

filename entity expr pos
note_file1.txt DoseChange decrease 66:74
note_file1.txt DrugName Prograf 78:85
note_file1.txt Strength 2 mg 86:90
note_file1.txt DoseAmt 1 91:92
note_file1.txt Frequency bid 101:104
note_file1.txt LastDose 2100 121:125

Examples

tac_fn <- list(system.file("examples", "tacpid1_2008-06-26_note1_1.txt", package = "EHR"),
system.file("examples", "tacpid1_2008-06-26_note2_1.txt", package = "EHR"),
system.file("examples", "tacpid1_2008-12-16_note3_1.txt", package = "EHR"))

extractMed(tac_fn,
drugnames = c("tacrolimus", "prograf", "tac", "tacro", "fk", "fk506"),
drgunit = "mg",
windowlength = 60,
max_edit_dist = 2,
lastdose=TRUE)

freqNum Convert Character Frequency to Numeric

Description

This function converts the frequency entity to numeric.

14 idCrosswalk

Usage

freqNum(x)

Arguments

x character vector of extracted frequency values

Value

numeric vector

Examples

f <- stdzFreq(c('in the morning', 'four times a day', 'with meals'))
freqNum(f)

idCrosswalk Create ID Crosswalk

Description

Link ID columns from multiple data sets. De-identified columns are created to make a crosswalk.

Usage

idCrosswalk(data, idcols, visit.id = "subject_id", uniq.id = "subject_uid")

Arguments

data list of data.frames

idcols list of character vectors, indicating ID columns found in each data set given in
‘data’

visit.id character sting indicating visit-level ID variable (default is "subject_id")

uniq.id character sting indicating subject-level ID variable (default is "subject_uid")

Details

‘visit.id’ and ‘uniq.id’ may occur multiple times, but should have a one-to-one linkage defined by
at least one of the input data sets. A new visit number is generated for each repeated ‘uniq.id’.

Value

crosswalk of ID columns and their de-identified versions

lam_metadata 15

Examples

demo_data <- data.frame(subj_id=c(4.1,4.2,5.1,6.1),
pat_id=c(14872,14872,24308,37143),
gender=c(1,1,0,1),
weight=c(34,42,28,63),
height=c(142,148,120,167))

conc_data <- data.frame(subj_id=rep((4:6)+0.1,each=5),
event=rep(1:5,times=3),
conc.level=15*exp(-1*rep(1:5,times=3))+rnorm(15,0,0.1))

data <- list(demo_data, conc_data)
idcols <- list(c('subj_id', 'pat_id'), 'subj_id')
idCrosswalk(data, idcols, visit.id='subj_id', uniq.id='pat_id')

lam_metadata Example of Metadata for Lamotrigine Data

Description

An example of the metadata needed for the processLastDose, makeDose, and collapseDose func-
tions.

Usage

data(lam_metadata, package = 'EHR')

Format

A data frame with 5 observations on the following variables.

filename A character vector, filename for the clinical note

pid A character vector, patient ID associated with the filename

date A character vector, date associated with the filename

note A character vector, note ID associated with the filename

Examples

data(lam_metadata)

16 lam_mxr_parsed

lam_mxr_parsed Example of Lamotrigine Output from ‘parseMedExtractR‘

Description

The output after running parseMedExtractR on 4 example clinical notes.

Usage

data(lam_mxr_parsed, package = 'EHR')

Format

A data frame with 10 observations on the following variables.

filename A character vector, filename for the clinical note

drugname A character vector, drug name extracted from the clinical note along with start and stop
positions

strength A character vector, strengths extracted from the clinical note along with start and stop
positions

dose A character vector, dose amounts extracted from the clinical note along with start and stop
positions

route A character vector, routes extracted from the clinical note along with start and stop positions

freq A character vector, frequencies extracted from the clinical note along with start and stop po-
sitions

dosestr A character vector, dose intakes extracted from the clinical note along with start and stop
positions

dosechange A character vector, dose change keywords extracted from the clinical note along with
start and stop positions

lastdose A character vector, last dose times extracted from the clinical note along with start and
stop positions

Examples

data(lam_mxr_parsed)

Logistf 17

Logistf Firth’s penalized-likelihood logistic regression with more decimal
places of p-value than logistf function in the R package ‘logistf’

Description

Adapted from logistf in the R package ‘logistf’, this is the same as logistf except that it provides
more decimal places of p-value that would be useful for Genome-Wide Association Study (GWAS)
or Phenome Wide Association Study (PheWAS).

Usage

Logistf(
formula = attr(data, "formula"),
data = sys.parent(),
pl = TRUE,
alpha = 0.05,
control,
plcontrol,
firth = TRUE,
init,
weights,
plconf = NULL,
dataout = TRUE,
...

)

Arguments

formula a formula object, with the response on the left of the operator, and the model
terms on the right. The response must be a vector with 0 and 1 or FALSE and
TRUE for the outcome, where the higher value (1 or TRUE) is modeled. It is
possible to include contrasts, interactions, nested effects, cubic or polynomial
splines and all S features as well, e.g. Y ~ X1*X2 + ns(X3, df=4). From version
1.10, you may also include offset() terms.

data a data.frame where the variables named in the formula can be found, i. e. the
variables containing the binary response and the covariates.

pl specifies if confidence intervals and tests should be based on the profile penal-
ized log likelihood (pl=TRUE, the default) or on the Wald method (pl=FALSE).

alpha the significance level (1-α the confidence level, 0.05 as default).

control Controls Newton-Raphson iteration. Default is
control=logistf.control(maxstep, maxit, maxhs, lconv, gconv, xconv)

plcontrol Controls Newton-Raphson iteration for the estimation of the profile likelihood
confidence intervals. Default is
plcontrol=logistpl.control(maxstep, maxit, maxhs, lconv, xconv, ortho,
pr)

18 makeDose

firth use of Firth’s penalized maximum likelihood (firth=TRUE, default) or the stan-
dard maximum likelihood method (firth=FALSE) for the logistic regression.
Note that by specifying pl=TRUE and firth=FALSE (and probably a lower num-
ber of iterations) one obtains profile likelihood confidence intervals for maxi-
mum likelihood logistic regression parameters.

init specifies the initial values of the coefficients for the fitting algorithm.

weights specifies case weights. Each line of the input data set is multiplied by the corre-
sponding element of weights.

plconf specifies the variables (as vector of their indices) for which profile likelihood
confidence intervals should be computed. Default is to compute for all variables.

dataout If TRUE, copies the data set to the output object.

... Further arguments to be passed to logistf.

Value

same as logistf except for providing more decimal places of p-value.

Author(s)

Leena Choi <leena.choi@vanderbilt.edu> and Cole Beck <cole.beck@vumc.org>

References

same as those provided in the R package ‘logistf’.

Examples

data(dataPheWAS)
fit <- Logistf(X264.3 ~ exposure + age + race + gender, data=dd)
summary(fit)

makeDose Make Dose Data

Description

Takes parsed and paired medication data, calculates dose intake and daily dose, and removes redun-
dant information at the note and date level.

Usage

makeDose(x, noteMetaData, naFreq = "most")

parseCLAMP 19

Arguments

x data.frame containing the output of buildDose, or the output of addLastDose
if last dose information is being incorporated.

noteMetaData data.frame containing identifying meta data for each note, including patient ID,
date of the note, and note ID. Column names should be set to ‘filename’, ‘pid’,
‘date’, ‘note’. Date should have format YYYY-MM-DD.

naFreq Replacing missing frequencies with this value, or by default the most common
value across the entire set in x.

Details

This function standardizes frequency, route, and duration entities. Dose amount, strength, and
frequency entities are converted to numeric. Rows with only drug name and/or route are removed.
If there are drug name changes in adjacent rows (e.g., from a generic to brand name), these rows
are collapsed into one row if there are no conflicts. Missing strengths, dose amounts, frequencies,
and routes are borrowed or imputed using various rules (see McNeer et al., 2020 for details). Dose
given intake and daily dose are calculated. Redundancies are removed at the date and note level. If
time of last dose is being used and it is unique within the level of collapsing, it is borrowed across
all rows.

Value

A list containing two dataframes, one with the note level and one with the date level collapsed data.

Examples

data(lam_mxr_parsed)
data(lam_metadata)

lam_build_out <- buildDose(lam_mxr_parsed)

lam_collapsed <- makeDose(lam_build_out, lam_metadata)
lam_collapsed[[1]] # Note level collapsing
lam_collapsed[[2]] # Date level collapsing

parseCLAMP Parse CLAMP NLP Output

Description

Takes files with the raw medication extraction output generated by the CLAMP natural language
processing system and converts it into a standardized format.

Usage

parseCLAMP(filename)

20 parseMedEx

Arguments

filename File name for a single file containing CLAMP output.

Details

Output from different medication extraction systems is formatted in different ways. In order to
be able to process the extracted information, we first need to convert the output from different
systems into a standardized format. Extracted expressions for various drug entities (e.g., drug name,
strength, frequency, etc.) each receive their own column formatted as "extracted expression::start
position::stop position". If multiple expressions are extracted for the same entity, they will be
separated by backticks.

CLAMP output files anchor extractions to a specific drug name extraction through semantic rela-
tions.

See EHR Vignette for Extract-Med and Pro-Med-NLP as well as Dose Building Using Example
Vanderbilt EHR Data for details.

Value

A data.table object with columns for filename, drugname, strength, dose, route, and freq. The
filename contains the file name corresponding to the clinical note. Each of the entity columns are
of the format "extracted expression::start position::stop position".

parseMedEx Parse MedEx NLP Output

Description

Takes files with the raw medication extraction output generated by the MedEx natural language
processing system and converts it into a standardized format.

Usage

parseMedEx(filename)

Arguments

filename File name for a single file containing MedEx output.

Details

Output from different medication extraction systems is formatted in different ways. In order to
be able to process the extracted information, we first need to convert the output from different
systems into a standardized format. Extracted expressions for various drug entities (e.g., drug name,
strength, frequency, etc.) each receive their own column formatted as "extracted expression::start
position::stop position". If multiple expressions are extracted for the same entity, they will be
separated by backticks.

parseMedExtractR 21

MedEx output files anchor extractions to a specific drug name extraction.

See EHR Vignette for Extract-Med and Pro-Med-NLP as well as Dose Building Using Example
Vanderbilt EHR Data for details.

Value

A data.table object with columns for filename, drugname, strength, dose, route, and freq. The
filename contains the file name corresponding to the clinical note. Each of the entity columns are
of the format "extracted expression::start position::stop position".

parseMedExtractR Parse medExtractR NLP Output

Description

Takes files with the raw medication extraction output generated by the medExtractR natural lan-
guage processing system and converts it into a standardized format.

Usage

parseMedExtractR(filename)

Arguments

filename File name for a single file containing medExtractR output.

Details

Output from different medication extraction systems is formatted in different ways. In order to
be able to process the extracted information, we first need to convert the output from different
systems into a standardized format. Extracted expressions for various drug entities (e.g., drug name,
strength, frequency, etc.) each receive their own column formatted as "extracted expression::start
position::stop position". If multiple expressions are extracted for the same entity, they will be
separated by backticks.

The medExtractR system returns extractions in a long table format, indicating the entity, extracted
expression, and start:stop position of the extraction. To perform this initial parsing, entities are
paired with the closest preceding drug name. The one exception to this is the dose change entity,
which can occur before the drug name (see Weeks, et al. 2020 for details).

See EHR Vignette for Extract-Med and Pro-Med-NLP as well as Dose Building Using Example
Vanderbilt EHR Data for details.

Value

A data.table object with columns for filename, drugname, strength, dose, route, freq, dosestr,
dosechange and lastdose. The filename contains the file name corresponding to the clinical note.
Each of the entity columns are of the format "extracted expression::start position::stop position".

22 parseMedXN

Examples

mxr_output <- system.file("examples", "lam_mxr.csv", package = "EHR")
mxr_parsed <- parseMedExtractR(mxr_output)
mxr_parsed

parseMedXN Parse MedXN NLP Output

Description

Takes files with the raw medication extraction output generated by the MedXN natural language
processing system and converts it into a standardized format.

Usage

parseMedXN(filename, begText = "^[R0-9]+_[0-9-]+_[0-9]+_")

Arguments

filename File name for single file containing MedXN output.

begText A regular expression that would indicate the beginning of a new observation
(i.e., extracted clinical note).

Details

Output from different medication extraction systems is formatted in different ways. In order to
be able to process the extracted information, we first need to convert the output from different
systems into a standardized format. Extracted expressions for various drug entities (e.g., drug name,
strength, frequency, etc.) each receive their own column formatted as "extracted expression::start
position::stop position". If multiple expressions are extracted for the same entity, they will be
separated by backticks.

MedXN output files anchor extractions to a specific drug name extraction.

In MedXN output files, the results from multiple clinical notes can be combined into a single output
file. The beginning of some lines of the output file can indicate when output for a new observa-
tion (or new clinical note) begins. The user should specify the argument begText to be a regular
expression used to identify the lines where output for a new clinical note begins.

See EHR Vignette for Extract-Med and Pro-Med-NLP as well as Dose Building Using Example
Vanderbilt EHR Data for details.

Value

A data.table object with columns for filename, drugname, strength, dose, route, freq, and duration.
The filename contains the file name corresponding to the clinical note. Each of the entity columns
are of the format "extracted expression::start position::stop position".

processLastDose 23

Examples

mxn_output <- system.file("examples", "lam_medxn.csv", package = "EHR")
mxn_parsed <- parseMedXN(mxn_output, begText = "^ID[0-9]+_[0-9-]+_")
mxn_parsed

processLastDose Process and standardize extracted last dose times

Description

This function takes last dose times extracted using the medExtractR system and processes the
times into standardized datetime objects using recorded lab data where necessary. The raw output
from extractMed is filtered to just the LastDose extractions. Time expressions are standardized into
HH:MM:SS format based on what category they fall into (e.g., a time represented with AM/PM,
24-hour military time, etc.). When the last dose time is after 12pm, it is assumed to have been taken
one day previous to the note’s date. For any duration extractions (e.g. "14 hour level"), the last dose
time is calculated from the labtime by extracting the appropriate number of hours. The final dataset
is returned with last dose time formatted into a POSIXct variable.

Usage

processLastDose(mxrData, noteMetaData, labData)

Arguments

mxrData data.frame containing output from the medExtractR system

noteMetaData data.frame with meta data (pid (patient ID) and date) for the file names con-
tained within mxrData

labData data.frame that contains lab dates and times associated with the file names within
mxrData. Must contain columns pid and date, as well as labtime. The date
column must be in the same format as date in noteMetaData, and labtime
must be a POSIXct

Details

See EHR Vignette for Extract-Med and Pro-Med-NLP for details.

Value

data.frame with identifying information (e.g., filename, etc) as well as processed and standardized
last dose times as a POSIXct column

24 pullFakeId

Examples

tac_mxr <- read.csv(system.file("examples", "tac_mxr.csv", package = "EHR"))
data(tac_metadata)
data(tac_lab)

processLastDose(mxrData = tac_mxr, noteMetaData = tac_metadata, labData = tac_lab)

pullFakeId Pull Fake/Mod ID

Description

Replace IDs with de-identified version pulled from a crosswalk.

Usage

pullFakeId(
dat,
xwalk,
firstCols = NULL,
orderBy = NULL,
uniq.id = "subject_uid"

)

Arguments

dat a data.frame

xwalk a data.frame providing linkage for each ID, e.g. output from idCrosswalk

firstCols name of columns to put at front of output data set

orderBy name of columns used to reorder output data set

uniq.id character string indicating subject-level id variable (default is "subject_uid")

Value

The modified data.frame

Examples

demo_data <- data.frame(subj_id=c(4.1,4.2,5.1,6.1),
pat_id=c(14872,14872,24308,37143),
gender=c(1,1,0,1),
weight=c(34,42,28,63),
height=c(142,148,120,167))

crosswalk w/ same format as idCrosswalk() output
xwalk <- data.frame(subj_id=c(4.1,4.2,5.1,6.1),

pullRealId 25

pat_id=c(14872,14872,24308,37143),
mod_visit=c(1,2,1,1),
mod_id=c(1,1,2,3),
mod_id_visit=c(1.1,1.2,2.1,3.1))

demo_data_deident <- pullFakeId(demo_data, xwalk,
firstCols = c('mod_id','mod_id_visit','mod_visit'),
uniq.id='pat_id')

pullRealId Pull Real ID

Description

Replace de-identified IDs with identified version pulled from a crosswalk.

Usage

pullRealId(dat, xwalk = NULL, remove.mod.id = FALSE)

Arguments

dat a data.frame

xwalk a data.frame providing linkage for each ID, e.g. output from idCrosswalk; if
NULL, the crosswalk will be pulled from the ‘pkxwalk’ option, or otherwise the
unmodified data.frame.

remove.mod.id logical, should the de-identified IDs – mod_id, mod_visit, mod_id_visit – be
removed (default=FALSE)

Value

The modified data.frame

Examples

demo_data_deident <- data.frame(mod_id=c(1,1,2,3),
mod_id_visit=c(1.1,1.2,2.1,3.1),
mod_visit=c(1,2,1,1),
gender=c(1,1,0,1),
weight=c(34,42,28,63),
height=c(142,148,120,167))

crosswalk w/ same format as idCrosswalk() output
xwalk <- data.frame(subj_id=c(4.1,4.2,5.1,6.1),

pat_id=c(14872,14872,24308,37143),
mod_visit=c(1,2,1,1),
mod_id=c(1,1,2,3),
mod_id_visit=c(1.1,1.2,2.1,3.1))

26 run_Build_PK_IV

pullRealId(demo_data_deident, xwalk)
pullRealId(demo_data_deident, xwalk, remove.mod.id=TRUE)

readTransform Read and Transform

Description

Convenience function for reading in a CSV file, and making small modifications to a data.frame.

Usage

readTransform(file, ...)

Arguments

file filename of a CSV file

... additional information passed to dataTransformation

Details

If read.csv needs additional arguments (or the file is in a different format), the user should load
the data first, then directly call dataTransformation.

Value

The modified data.frame

run_Build_PK_IV Build-PK-IV Module

Description

This module builds PK data for intravenously (IV) administered medications.

run_Build_PK_IV 27

Usage

run_Build_PK_IV(
conc,
conc.columns = list(),
dose,
dose.columns = list(),
censor = NULL,
censor.columns = list(),
demo.list = NULL,
demo.columns = list(),
lab.list = NULL,
lab.columns = list(),
dosePriorWindow = 7,
labPriorWindow = 7,
postWindow = NA,
pk.vars = NULL,
drugname = NULL,
check.path = NULL,
missdemo_fn = "-missing-demo",
faildupbol_fn = "DuplicateBolus-",
date.format = "%m/%d/%y %H:%M:%S",
date.tz = "America/Chicago",
isStrict = FALSE

)

Arguments

conc concentration data, the output of run_DrugLevel, a filename (CSV, RData,
RDS), or a correctly formatted data.frame

conc.columns a named list that should specify columns in concentration data; ‘id’, ‘datetime’,
‘druglevel’ are required. ‘idvisit’ may also be specified; ‘idvisit’ can be used
when there are multiple visits (i.e., several occasions) for the same subject.
‘datetime’ is date and time for concentration measurement, which can refer to a
single date-time variable (datetime = ‘date_time’) or two variables holding date
and time separately (e.g., datetime = c(‘Date’, ‘Time’)).

dose dose data, the output of run_MedStrI, a filename (CSV, RData, RDS), or a
correctly formatted data.frame

dose.columns a named list that should specify columns in dose data; ‘id’ is required. ‘in-
fuseDatetime’ and ‘infuseDose’ should be set if infusion dose data is present.
‘infuseTimeExact’ may also be specified for infusion data – this variable repre-
sents an precise time, if for example the ‘infuseDatetime’ variable is rounded.
‘bolusDatetime’ and ‘bolusDose’ should be set if bolus dose data is present.
A generic ‘date’ variable may be provided, agnostic to either infusion or bolus
dosing. ‘gap’ and ‘weight’ column names may also be set. Any of the date-
time variables can be specified as a single date-time variable (infuseDatetime =
‘date_time’) or two variables holding date and time separately (e.g., infuseDate-
time = c(‘Date’, ‘Time’)).

28 run_Build_PK_IV

censor censoring information, if available; this will censor concentration and dose data
for dates occuring after the censor datetime variable.

censor.columns a named list that should specify columns in censoring data; ‘id’, and ‘datetime’
are required. ‘datetime’ is the date and time when data should be censored. This
can refer to a single date-time variable (datetime = ‘date_time’) or two variables
holding date and time separately (e.g., datetime = c(‘Date’, ‘Time’)).

demo.list demographic information, if available; the output from run_Demo or a correctly
formatted data.frame

demo.columns a named list that should specify columns in demographic data; ‘id’ is required.
‘weight’ and ‘idvisit’ may also be used to specify columns for weight or the
unique idvisit. Any other columns present in the demographic data are treated
as covariates.

lab.list lab data, if available; the output from run_Labs or a correctly formatted list

lab.columns a named list that should specify columns in lab data; ‘id’, and ‘datetime’ are
required. ‘datetime’ is the date and time when the lab data was obtained, which
can refer to a single date-time variable (datetime = ‘date_time’) or two variables
holding date and time separately (e.g., datetime = c(‘Date’, ‘Time’)). Any other
columns present in lab data are treated as lab values.

dosePriorWindow

Dose data is merged with drug level data. This value sets the time frame window
with the number of days prior to the first drug level data; defaults to 7.

labPriorWindow Lab data is merged with drug level data. This value sets the time frame window
with the number of days prior to the first drug level data; defaults to 7.

postWindow Data is merged with drug level data. This postWindow can set the end time for
the drug level data, being the number of days after the first drug level data. The
default (NA) will use the date of the last drug level data.

pk.vars variables to include in the returned PK data. The variable ‘date’ is a special case;
when included, it maps the ‘time’ offset to its original date-time. Other named
variables will be merged from the concentration data set. For example, rather
than being separate data sets, labs or demographics may already be present in
the concentration data. These columns should be named here.

drugname drug of interest, included in filename of check files. The default (NULL) will
produce filenames without drugname included.

check.path path to ‘check’ directory, where check files are created. The default (NULL)
will not produce any check files.

missdemo_fn filename for checking NA frequency among demographic data

faildupbol_fn filename for duplicate bolus data

date.format output format for ‘date’ variable

date.tz output time zone for ‘date’ variable

isStrict logical; when TRUE dose amount totals are strictly summed rather than repeated
hourly until stopped

run_Build_PK_IV 29

Details

See EHR Vignette for Structured Data.

Regarding the ‘gap’ variable in the dose dataset, if ‘gap’ is specified in ‘dose.columns’, it allows
a continuous infusion given when there are missing records between infusion dosing records. For
example, suppose that ‘gap’ = 60 is defined (which is typical gap size when infusion dosing is
supposed to be recorded hourly for inpatients) and time between two records (i.e., gap) are greater
than 1 hour (i.e., missing records). If the gap between the two records is less or equal to twice of the
gap (i.e., 2*60 = 120 min), a continuous infusion is assumed until the 2nd dose record; otherwise,
the first infusion is assumed to be stopped (i.e., add zero doses) after 60 min (i.e., equal to the gap
size) and a new infusion (the 2nd record) starts at its recorded time.

Value

PK data set

Examples

make fake data
set.seed(6543)

build_date <- function(x) format(seq(x, length.out=5, by="1 hour"), "%Y-%m-%d %H:%M")
dates <- unlist(lapply(rep(Sys.time(),3), build_date))

plconc <- data.frame(mod_id = rep(1:3,each=5),
mod_id_visit = rep(1:3,each=5)+0.1,
event = rep(1:5,times=3),
conc.level = 15*exp(-1*rep(1:5,times=3))+rnorm(15,0,0.1),
date.time = as.POSIXct(dates))

ivdose <- data.frame(mod_id = 1:3,
date.dose = substr(dates[seq(1,15,by=5)],1,10),
infuse.time.real = NA, infuse.time = NA, infuse.dose = NA,
bolus.time = as.POSIXct(dates[seq(1,15,by=5)])-300,
bolus.dose = 90,
maxint = 0L,
weight = 45)

run_Build_PK_IV(conc = plconc,
conc.columns = list(id = 'mod_id', datetime = 'date.time',

druglevel = 'conc.level', idvisit = 'mod_id_visit'),
dose = ivdose,
dose.columns = list(id = 'mod_id', date = 'date.dose',

bolusDatetime = 'bolus.time', bolusDose = 'bolus.dose',
gap = 'maxint', weight = 'weight'),

pk.vars = 'date')

30 run_Build_PK_Oral

run_Build_PK_Oral Build-PK-Oral Module

Description

This module builds PK data for orally administered medications.

Usage

run_Build_PK_Oral(
x,
idCol = "id",
dtCol = "dt",
doseCol = "dose",
concCol = "conc",
ldCol = NULL,
first_interval_hours = 336,
imputeClosest = NULL

)

Arguments

x a data.frame or file saved as either CSV, RData, or RDS

idCol data.frame id column name

dtCol data.frame date column name

doseCol dose column name

concCol concentration column name

ldCol last-dose time column name
first_interval_hours

number of hours before the first concentration to start time=0; the default is 336
hours = 14 days

imputeClosest columns to impute missing data with next observation propagated backward;
this is in addition to all covariates receving imputation using last observation
carried forward

Details

See EHR Vignette for Build-PK-Oral.

Value

data.frame

run_Demo 31

Examples

Data Generating Function
mkdat <- function() {

npat <- 3
visits <- floor(runif(npat, min=2, max=6))
id <- rep(1:npat, visits)
dt_samp <- as.Date(sort(sample(700, sum(visits))), origin = '2019-01-01')
tm_samp <- as.POSIXct(paste(dt_samp, '10:00:00'), tz = 'UTC')
dt <- tm_samp + rnorm(sum(visits), 0, 1*60*60)
dose_morn <- sample(c(2.5,5,7.5,10), sum(visits), replace = TRUE)
conc <- round(rnorm(sum(visits), 1.5*dose_morn, 1),1)
ld <- dt - sample(10:16, sum(visits), replace = TRUE) * 3600
ld[rnorm(sum(visits)) < .3] <- NA
age <- rep(sample(40:75, npat), visits)
gender <- rep(sample(0:1, npat, replace=TRUE), visits)
weight <- rep(round(rnorm(npat, 180, 20)),visits)
hgb <- rep(rnorm(npat, 10, 2), visits)
data.frame(id, dt, dose_morn, conc, ld, age, gender, weight, hgb)

}

Make raw data
set.seed(30)
dat <- mkdat()

#Process data without last-dose times
run_Build_PK_Oral(x = dat,

idCol = "id",
dtCol = "dt",
doseCol = "dose_morn",
concCol = "conc",
ldCol = NULL,
first_interval_hours = 336,
imputeClosest = NULL)

#Process data with last-dose times
run_Build_PK_Oral(x = dat, doseCol = "dose_morn", ldCol = "ld")

run_Demo Run Demographic Data

Description

This module will load and modify demographic data.

Usage

run_Demo(demo.path, demo.columns = list(), toexclude, demo.mod.list)

32 run_Demo

Arguments

demo.path filename of demographic file (CSV, RData, RDS) or data.frame

demo.columns a named list that should specify columns in demo data; ‘id’, is required.

toexclude expression that should evaluate to a logical, indicating if the observation should
be excluded

demo.mod.list list of expressions, giving modifications to make

Details

See EHR Vignette for Structured Data.

Value

list with two components

demo demographic data

exclude vector of excluded visit IDs

Examples

set.seed(2525)
dateSeq <- seq(as.Date('2019/01/01'), as.Date('2020/01/01'), by="day")
demo <- data.frame(mod_id_visit = 1:10,

weight.lbs = rnorm(10,160,20),
age = rnorm(10, 50, 10),
enroll.date = sample(dateSeq, 10))

tmpfile <- paste0(tempfile(), '.rds')
saveRDS(demo, file = tmpfile)

exclusion functions
exclude_wt <- function(x) x < 150
exclude_age <- function(x) x > 60
ind.risk <- function(wt, age) wt>170 & age>55
exclude_enroll <- function(x) x < as.Date('2019/04/01')

make demographic data that:
(1) excludes ids with weight.lbs < 150, age > 60, or enroll.date before 2019/04/01
(2) creates new 'highrisk' variable for subjects with weight.lbs>170 and age>55
out <- run_Demo(demo.path = tmpfile, demo.columns = list(id = 'mod_id_visit'),

toexclude = expression(
exclude_wt(weight.lbs)|exclude_age(age)|exclude_enroll(enroll.date)

),
demo.mod.list = list(highrisk = expression(ind.risk(weight.lbs, age))))

out

run_DrugLevel 33

run_DrugLevel Run Drug Level Data

Description

This module will load and modify drug-level data.

Usage

run_DrugLevel(
conc.path,
conc.columns = list(),
conc.select,
conc.rename,
conc.mod.list = NULL,
samp.path = NULL,
samp.columns = list(),
samp.mod.list = NULL,
check.path = NULL,
failmiss_fn = "MissingConcDate-",
multsets_fn = "multipleSetsConc-",
faildup_fn = "DuplicateConc-",
drugname = NULL,
LLOQ = NA,
demo.list = NULL,
demo.columns = list()

)

Arguments

conc.path filename of concentration data (CSV, RData, RDS), or data.frame

conc.columns a named list that should specify columns in concentration data. ‘id’ and ‘conc’
are required. ‘idvisit’ may also be specified. If linking with sampling data,
‘samplinkid’ is required. Otherwise ‘datetime’ is required. This is the date
and time when blood samples were obtained. This can refer to a single date-
time variable (datetime = ‘date_time’) or two variables holding date and time
separately (e.g., datetime = c(‘Date’, ‘Time’)).

conc.select columns to select from concentration data

conc.rename new column names for concentration data

conc.mod.list list of expressions, giving modifications to make

samp.path filename of data with sampling time (CSV, RData, RDS), or data.frame

samp.columns a named list that should specify columns in sampling data. ‘conclinkid’ and
‘datetime’ are required to link sampling data to concentration data. ‘conclinkid’
should match the id variable provided as ‘samplinkid’ in the ‘conc.columns’
argument. ‘datetime’ is the date and time when blood samples were obtained.

34 run_DrugLevel

This can refer to a single date-time variable (datetime = ‘date_time’) or two
variables holding date and time separately (e.g., datetime = c(‘Date’, ‘Time’)).

samp.mod.list list of expressions, giving modifications to make

check.path path to ‘check’ directory, where check files are created. The default (NULL)
will not produce any check files.

failmiss_fn filename for data missing concentration date

multsets_fn filename for data with multiple concentration sets

faildup_fn filename for data with duplicate concentration observations

drugname drug of interest, included in filename of check files. The default (NULL) will
produce filenames without drugname included.

LLOQ lower limit of concentration values; values below this are invalid

demo.list demographic information; if available, concentration records must have a valid
demo record

demo.columns a named list that should specify columns in demographic data; ‘id’, is required.
If ‘idvisit’ is present in the concentration data, then it is required here too.

Details

See EHR Vignette for Structured Data.

Value

drug-level data set

Examples

concentrations
conc_data <- data.frame(mod_id = rep(1:3,each=4),

mod_visit = rep(c(2,1,1),each=4),
mod_id_visit = as.numeric(paste(rep(1:3,each=4),

rep(c(2,1,1),each=4), sep=".")),
samp = rep(1:4,times=3),
drug_calc_conc=15*exp(-1*rep(1:4,times=3))+rnorm(12,0,0.1))

sample times
build_date <- function(x) format(seq(x, length.out=4, by="1 hour"), "%Y-%m-%d %H:%M")
dates <- unlist(lapply(rep(Sys.time(),3), build_date))

samp_data <- data.frame(mod_id = rep(1:3,each=4),
mod_visit = rep(c(2,1,1),each=4),
mod_id_visit = as.numeric(paste(rep(1:3,each=4),

rep(c(2,1,1),each=4), sep=".")),
samp = rep(1:4,times=3),
Sample.Collection.Date.and.Time = dates)

run_DrugLevel(
conc.path = conc_data,
conc.columns = list(

run_Labs 35

id = 'mod_id', idvisit = 'mod_id_visit', samplinkid = 'mod_id_event', conc = 'conc.level'
),
conc.select = c('mod_id','mod_id_visit','samp','drug_calc_conc'),
conc.rename = c(drug_calc_conc= 'conc.level', samp='event'),
conc.mod.list = list(mod_id_event = expression(paste(mod_id_visit, event, sep = "_"))),
samp.path = samp_data,
samp.columns = list(conclinkid = 'mod_id_event', datetime = 'Sample.Collection.Date.and.Time'),
samp.mod.list = list(mod_id_event = expression(paste(mod_id_visit, samp, sep = "_"))),
drugname = 'drugnm',
LLOQ = 0.05

)

minimal example with data in required format
conc_data <- conc_data[,c('mod_id','mod_id_visit','samp','drug_calc_conc')]
conc_data[,'mod_id_event'] <- paste(conc_data[,'mod_id_visit'], conc_data[,'samp'], sep = "_")
names(conc_data)[3:4] <- c('event','conc.level')
samp_data[,'mod_id_event'] <- paste(samp_data[,'mod_id_visit'], samp_data[,'samp'], sep = "_")
conc_samp_link <- match(conc_data[,'mod_id_event'], samp_data[,'mod_id_event'])
conc_date <- samp_data[conc_samp_link, 'Sample.Collection.Date.and.Time']
conc_data[,'date.time'] <- as.POSIXct(conc_date)
run_DrugLevel(conc_data, conc.columns = list(

id = 'mod_id', idvisit = 'mod_id_visit', datetime = 'date.time', conc = 'conc.level'
))

run_Labs Run Lab Data

Description

This module will load and modify laboratory data.

Usage

run_Labs(lab.path, lab.select, lab.mod.list)

Arguments

lab.path filename of a lab file (CSV, RData, RDS), or data.frame

lab.select columns to select

lab.mod.list list of expressions giving modifications to make; passed to dataTransformation

Details

See EHR Vignette for Structured Data.

Value

lab data set

36 run_MedStrI

Examples

lab_data <- data.frame(mod_id=rep(1:3,each=3),
date=rep(c("01/12/17","05/05/18","11/28/16"),each=3),
time=rep(c("1:30","2:30","3:30"),3),
creat=rnorm(9,0.5,0.05))

run_Labs(lab_data, lab.mod.list=list(log_creat=expression(log(creat))))

run_MedStrI Run Str Data I

Description

This module will load and modify structured intravenous (IV) infusion and bolus medication data.

Usage

run_MedStrI(
mar.path,
mar.columns = list(),
medGivenReq = FALSE,
flow.path = NULL,
flow.columns = list(),
medchk.path = NULL,
demo.list = NULL,
demo.columns = list(),
missing.wgt.path = NULL,
wgt.columns = list(),
check.path = NULL,
failflow_fn = "FailFlow",
failnounit_fn = "NoUnit",
failunit_fn = "Unit",
failnowgt_fn = "NoWgt",
censor_date_fn = "CensorTime",
infusion.unit = "mcg/kg/hr",
bolus.unit = "mcg",
bol.rate.thresh = Inf,
rateunit = "mcg/hr",
ratewgtunit = "mcg/kg/hr",
weightunit = "kg",
drugname = NULL

)

Arguments

mar.path filename of MAR data (CSV, RData, RDS), or data.frame

run_MedStrI 37

mar.columns a named list that should specify columns in MAR data; ‘id’, ‘datetime’ and
‘dose’ are required. ‘drug’, ‘weight’, ‘given’ may also be specified. ‘datetime’
is date and time for data measurement, which can refer to a single date-time vari-
able (datetime = ‘date_time’) or two variables holding date and time separately
(e.g., datetime = c(‘Date’, ‘Time’)). ‘dose’ can also be given as a single variable
or two variables. If given as a single column, the column’s values should con-
tain dose and units such as ‘25 mcg’. If given as two column names, the dose
column should come before the unit column (e.g., dose = c(‘doseamt’, ‘unit’)).
‘drug’ can provide list of acceptable drug names. If ‘drug’ is present, the ‘med-
chk.path’ argument should also be provided. The ‘given’ is a variable that flags
whether the medication (inpatient) was given. When it is given, values shoule
be “Given”; should be used in conjunction with the ‘medGivenReq’ argument.

medGivenReq if TRUE, values in ‘given’ column in MAR data should equal “Given”; if this is
FALSE (the default), NA values are also acceptable.

flow.path filename of flow data (CSV, RData, RDS), or data.frame

flow.columns a named list that should specify columns in flow data; ‘id’, ‘datetime’, ‘finalu-
nits’, ‘unit’, ‘rate’, ‘weight’ are required. ‘idvisit’ may also be specified. ‘date-
time’ is date and time for data measurement, which can refer to a single date-
time variable (datetime = ‘date_time’) or two variables holding date and time
separately (e.g., datetime = c(‘Date’, ‘Time’)).

medchk.path filename containing data set (CSV, RData, RDS), or data.frame; should have the
column ‘medname’ with list of acceptable drug names (e.g., brand and generic
name, abbreviations) to subset drugs of interest using ‘drug’ column in MAR
data. This argument can be used when MAR data contains different drugs that
should be excluded.

demo.list demographic information; if available, the output from ‘run_Demo‘ or a cor-
rectly formatted data.frame, which can be used to impute weight when missing

demo.columns a named list that should specify columns in demographic data; ‘id’, ‘datetime’,
and ‘weight’ are required. ‘datetime’ is the date and time when the demographic
data were obtained, which can refer to a single date-time variable (datetime =
‘date_time’) or two variables holding date and time separately (e.g., datetime =
c(‘Date’, ‘Time’)).

missing.wgt.path

filename containing additional weight data (CSV, RData, RDS), or data.frame.
The variables in this file should be defined in the ‘wgt.columns’ argument.

wgt.columns a named list that should specify columns in additional weight data; ‘id’, ‘date-
time’, and ‘weight’ are required. ‘datetime’ is date and time for weight measure-
ment, which can refer to a single date-time variable (datetime = ‘date_time’)
or two variables holding date and time separately (e.g., datetime = c(‘Date’,
‘Time’)).

check.path path to ‘check’ directory, where check files are created. The default (NULL)
will not produce any check files.

failflow_fn filename for duplicate flow data with rate zero

failnounit_fn filename for MAR data with missing unit

failunit_fn filename for MAR data with invalid unit

38 run_MedStrI

failnowgt_fn filename for infusion data with missing weight where unit indicates weight is
required

censor_date_fn filename containing censor times created with invalid dose data

infusion.unit acceptable unit for infusion data

bolus.unit acceptable unit for bolus data
bol.rate.thresh

upper limit for bolus rate; values above this are invalid

rateunit acceptable unit for hourly rate; defaults to ‘mcg/hr’

ratewgtunit acceptable unit for hourly rate by weight; defaults to ‘mcg/kg/hr’

weightunit acceptable unit for weight; defaults to ‘kg’

drugname drug of interest, included in filename of check files. The default (NULL) will
produce filenames without drugname included.

Details

See EHR Vignette for Structured Data.

Value

structured data set

Examples

flow data for 'Fakedrug1'
flow <- data.frame(mod_id=c(1,1,2,2,2),

mod_id_visit=c(46723,46723,84935,84935,84935),
record.date=c("07/05/2019 5:25","07/05/2019 6:01",

"09/04/2020 3:21", "09/04/2020 4:39",
"09/04/2020 5:32"),

Final.Weight=c(6.75,6.75,4.5,4.5,4.5),
Final.Rate=c(rep("1 mcg/kg/hr",2),

rep("0.5 mcg/kg/hr",3)),
Final.Units=c("3.375","6.5",

"2.25","2.25","2.25"))
flow[,'Perform.Date'] <- pkdata::parse_dates(flow[,'record.date'])
flow[,'unit'] <- sub('.*[]', '', flow[,'Final.Rate'])
flow[,'rate'] <- as.numeric(sub('([0-9.]+).*', '\\1', flow[,'Final.Rate']))

mar data for 4 fake drugs
mar <- data.frame(mod_id=rep(1,5),

Date=rep("2019-07-05",5),
Time=c("07:12","07:31","08:47","09:16","10:22"),
`med:mDrug`=c("Fakedrug2","Fakedrug1","Fakedrug2",

"Fakedrug3","Fakedrug4"),
`med:dosage`=c("30 mg","0.5 mcg","1 mg",

"20 mg","3 mcg/kg/min"),
`med:route`=rep("IV",5),
`med:given`=rep("Given",5),
check.names=FALSE)

run_MedStrII 39

medcheck file for drug of interest ('Fakedrug1')
medcheck <- data.frame(medname="Fakedrug1",freq=4672)

run_MedStrI(mar.path = mar,
mar.columns = list(id = 'mod_id', datetime = c('Date','Time'),

dose = 'med:dosage', drug = 'med:mDrug', given = 'med:given'),
flow.path = flow,
flow.columns = list(id = 'mod_id', datetime = 'Perform.Date',

finalunits = 'Final.Units', unit = 'unit',
rate = 'rate', weight = 'Final.Weight'),

medchk.path = medcheck,
check.path = tempdir(),
drugname = 'fakedrg1')

run_MedStrII Run Structured E-Prescription Data

Description

This module will load and modify structured e-prescription data.

Usage

run_MedStrII(file, dat.columns = list())

Arguments

file filename of prescription data (CSV, RData, RDS), or data.frame

dat.columns a named list that should specify columns in data; ‘id’, ‘dose’, ‘freq’, ‘date’, and
‘str’ are required. ‘desc’ may also be specified.

Details

See EHR Vignette for Structured Data.

Value

str data set

Examples

erx_data <- data.frame(GRID=paste0("ID",c(1,1,2,2,2,2)),
MED_NAME=c("fakedrug","fakedrug","fakedrug",

"Brandname","fakedrug","fakedrug"),
RX_DOSE=c(1,2,1,'2 tabs',1,'1+1.5+1'),
FREQUENCY=c(rep("bid",3),"qam","bid",

"brkfst,lunch,dinner"),

40 stdzDose

ENTRY_DATE=c("2018-02-15","2018-03-14","2017-07-01",
"2017-07-01","2017-09-15","2017-11-01"),

STRENGTH_AMOUNT=c("100","100","200",
"100mg","100","100"),

DESCRIPTION=c("fakedrug 100 mg tablet","fakedrug 100 mg tablet",
"fakedrug 200 mg tablet (also known as brandname)",
"Brandname 100mg tablet", "fakedrug 100 mg tablet",
"fakedrug 100 mg tablet"))

run_MedStrII(erx_data, list(id = 'GRID', dose = 'RX_DOSE', freq = 'FREQUENCY',
date = 'ENTRY_DATE', str = 'STRENGTH_AMOUNT', desc = 'DESCRIPTION'))

stdzDose Standardize Dose Entity

Description

This function standardizes the dose entity.

Usage

stdzDose(x)

Arguments

x character vector of extracted dose values

Details

Some dose strings may include multiple values and additional interpretation may be needed. For
example ‘2-1’ likely indicates a dose of 2 followed by a dose of 1. Currently it would be converted
to the average of 1.5.

Value

numeric vector

Examples

stdzDose(c('one tablet', '1/2 pill', '1-3 tabs'))

stdzDoseChange 41

stdzDoseChange Standardize Dose Change Entity

Description

This function standardizes the dose change entity.

Usage

stdzDoseChange(x)

Arguments

x character vector of extracted dose change values

Value

character vector

Examples

stdzDoseChange(c('decreasing','dropped','increased'))

stdzDoseSchedule Standardize Dose Schedule Entity

Description

This function standardizes the dose schedule entity.

Usage

stdzDoseSchedule(x)

Arguments

x character vector of extracted dose schedule values

Value

character vector

Examples

stdzDoseSchedule(c('tapered','weaned','TAPER'))

42 stdzFreq

stdzDuration Standardize Duration Entity

Description

This function standardizes the duration entity.

Usage

stdzDuration(x)

Arguments

x character vector of extracted duration values

Value

character vector

Examples

stdzDuration(c('1 month', 'three days', 'two-weeks'))

stdzFreq Standardize Frequency Entity

Description

This function standardizes the frequency entity.

Usage

stdzFreq(x)

Arguments

x character vector of extracted frequency values

Value

character vector

Examples

stdzFreq(c('in the morning', 'four times a day', 'with meals'))

stdzRoute 43

stdzRoute Standardize Route Entity

Description

This function standardizes the route entity.

Usage

stdzRoute(x)

Arguments

x character vector of extracted route values

Value

character vector

Examples

stdzRoute(c('oral', 'po', 'subcut'))

stdzStrength Standardize Strength Entity

Description

This function standardizes the strength entity.

Usage

stdzStrength(str, freq)

Arguments

str character vector of extracted strength values

freq character vector of extracted frequency values

Details

Some strength strings may include multiple values and additional interpretation may be needed. For
example ‘2-1’ likely indicates a strength of 2 followed by a strength of 1. Thus a single element may
need to be standarized into two elements. This can only happen if the frequency entity is missing
or in agreement (‘bid’ for example). See the ‘addl_data’ attribute of the returned vector.

44 tac_metadata

Value

numeric vector

Examples

stdzStrength(c('1.5', '1/2', '1/1/1'))
stdzStrength(c('1.5', '1/2', '1/1/1'), c('am', 'daily', NA))
stdzStrength(c('1.5', '1/2', '1/1/1'), FALSE)

tac_lab Example of Lab Time Data for Tacrolimus

Description

An example dataset used in processLastDose that contains lab time data. This dataset should have
one row per patient ID-date pair, and contain the time a lab was performed as a datetime variable.

Usage

data(tac_lab, package = 'EHR')

Format

A data frame with 2 observations on the following variables.

pid A character vector, patient ID associated with the lab value

date A character vector, date associated with the lab value

labtime A POSIXct vector, datetime at which the lab was performed formatted as YYYY-MM-DD
HH:MM:SS

Examples

data(tac_lab)

tac_metadata Example of Metadata for Tacrolimus Data

Description

An example of the metadata needed for the processLastDose, makeDose, and collapseDose func-
tions.

Usage

data(tac_metadata, package = 'EHR')

tac_mxr_parsed 45

Format

A data frame with 5 observations on the following variables.

filename A character vector, filename for the clinical note
pid A character vector, patient ID associated with the filename
date A character vector, date associated with the filename
note A character vector, note ID associated with the filename

Examples

data(tac_metadata)

tac_mxr_parsed Example of Tacrolimus Output from ‘parseMedExtractR‘

Description

The output after running parseMedExtractR on 3 example clinical notes.

Usage

data(tac_mxr_parsed, package = 'EHR')

Format

A data frame with 7 observations on the following variables.

filename A character vector, filename for the clinical note
drugname A character vector, drug name extracted from the clinical note along with start and stop

positions
strength A character vector, strengths extracted from the clinical note along with start and stop

positions
dose A character vector, dose amounts extracted from the clinical note along with start and stop

positions
route A character vector, routes extracted from the clinical note along with start and stop positions
freq A character vector, frequencies extracted from the clinical note along with start and stop po-

sitions
dosestr A character vector, dose intakes extracted from the clinical note along with start and stop

positions
dosechange A character vector, dose change keywords extracted from the clinical note along with

start and stop positions
lastdose A character vector, last dose times extracted from the clinical note along with start and

stop positions

Examples

data(tac_mxr_parsed)

46 zeroOneTable

zeroOneTable Make Zero One Contingency Tables

Description

Make contingency tables for many binary outcomes and a binary covariate

Usage

zeroOneTable(EXPOSURE, phenotype)

Arguments

EXPOSURE binary covariate (e.g., exposure).

phenotype binary outcome (e.g., phenotype).

Details

Generates frequency and contingency tables for many binary outcomes (e.g., large number of phe-
notypes) and a binary covariate (e.g., drug exposure, genotypes) more efficiently.

Value

t00 frequency for non-exposed group and non-case outcome.

t01 frequency for non-exposed group and case outcome.

t10 frequency for exposed group and non-case outcome.

t11 frequency for exposed group and case outcome.

Author(s)

Leena Choi <leena.choi@vanderbilt.edu> and Cole Beck <cole.beck@vumc.org>

Examples

full example data
data(dataPheWAS)
demo.covariates <- c('id','exposure','age','race','gender')
phenotypeList <- setdiff(colnames(dd), demo.covariates)
tablePhenotype <- matrix(NA, ncol=4, nrow=length(phenotypeList),
dimnames=list(phenotypeList, c("n.nocase.nonexp", "n.case.nonexp",
"n.nocase.exp", "n.case.exp")))
for(i in seq_along(phenotypeList)) {

tablePhenotype[i,] <- zeroOneTable(dd[, 'exposure'], dd[, phenotypeList[i]])
}

Index

∗ EHR
EHR-package, 3

∗ PheWAS
EHR-package, 3

∗ datasets
dd, 10
dd.baseline, 11
dd.baseline.small, 11
dd.small, 12
lam_metadata, 15
lam_mxr_parsed, 16
tac_lab, 44
tac_metadata, 44
tac_mxr_parsed, 45

∗ process
EHR-package, 3

addLastDose, 4, 9, 19
analysisPheWAS, 3, 5

buildDose, 4, 7, 9, 19

collapseDose, 8, 9, 15, 44

dataTransformation, 10, 26, 35
dd, 10
dd.baseline, 11
dd.baseline.small, 11
dd.small, 12

EHR (EHR-package), 3
EHR-package, 3
extractMed, 4, 12, 23

freqNum, 13

idCrosswalk, 14, 24, 25

lam_metadata, 15
lam_mxr_parsed, 16
Logistf, 17

makeDose, 9, 15, 18, 44
medExtractR, 4, 12, 13, 23

parseCLAMP, 7, 19
parseMedEx, 7, 20
parseMedExtractR, 7, 16, 21, 45
parseMedXN, 7, 22
processLastDose, 4, 15, 23, 44
pullFakeId, 24
pullRealId, 25

read.csv, 26
readTransform, 26
run_Build_PK_IV, 26
run_Build_PK_Oral, 30
run_Demo, 28, 31
run_DrugLevel, 27, 33
run_Labs, 28, 35
run_MedStrI, 27, 36
run_MedStrII, 39

stdzDose, 40
stdzDoseChange, 41
stdzDoseSchedule, 41
stdzDuration, 42
stdzFreq, 42
stdzRoute, 43
stdzStrength, 43

tac_lab, 44
tac_metadata, 44
tac_mxr_parsed, 45

zeroOneTable, 3, 46

47

	EHR-package
	addLastDose
	analysisPheWAS
	buildDose
	collapseDose
	dataTransformation
	dd
	dd.baseline
	dd.baseline.small
	dd.small
	extractMed
	freqNum
	idCrosswalk
	lam_metadata
	lam_mxr_parsed
	Logistf
	makeDose
	parseCLAMP
	parseMedEx
	parseMedExtractR
	parseMedXN
	processLastDose
	pullFakeId
	pullRealId
	readTransform
	run_Build_PK_IV
	run_Build_PK_Oral
	run_Demo
	run_DrugLevel
	run_Labs
	run_MedStrI
	run_MedStrII
	stdzDose
	stdzDoseChange
	stdzDoseSchedule
	stdzDuration
	stdzFreq
	stdzRoute
	stdzStrength
	tac_lab
	tac_metadata
	tac_mxr_parsed
	zeroOneTable
	Index

