
Package ‘DiscreteFDR’
January 20, 2025

Type Package

Title FDR Based Multiple Testing Procedures with Adaptation for
Discrete Tests

Version 2.1.0

Date 2024-12-14

Description Implementations of the multiple testing procedures for discrete
tests described in the paper Döhler, Durand and Roquain (2018) ``New FDR
bounds for discrete and heterogeneous tests'' <doi:10.1214/18-EJS1441>. The
main procedures of the paper (HSU and HSD), their adaptive counterparts
(AHSU and AHSD), and the HBR variant are available and are coded to take as
input the results of a test procedure from package 'DiscreteTests', or a set
of observed p-values and their discrete support under their nulls. A
shortcut function to obtain such p-values and supports is also provided,
along with a wrapper allowing to apply discrete procedures directly to data.

License GPL-3

Language en-US

Encoding UTF-8

Depends R (>= 3.00)

Imports Rcpp (>= 1.0.12), DiscreteTests (>= 0.2.1), lifecycle,
checkmate, DiscreteDatasets

LinkingTo Rcpp, RcppArmadillo

Suggests rmarkdown, knitr, R.rsp, kableExtra

VignetteBuilder knitr, R.rsp

URL https://github.com/DISOhda/DiscreteFDR

BugReports https://github.com/DISOhda/DiscreteFDR/issues

RoxygenNote 7.3.2

NeedsCompilation yes

Author Sebastian Döhler [aut, ctb] (<https://orcid.org/0000-0002-0321-6355>),
Florian Junge [aut, ctb, cre] (<https://orcid.org/0009-0001-6856-6938>),
Guillermo Durand [aut, ctb] (<https://orcid.org/0000-0003-4056-5631>),

1

https://doi.org/10.1214/18-EJS1441
https://github.com/DISOhda/DiscreteFDR
https://github.com/DISOhda/DiscreteFDR/issues
https://orcid.org/0000-0002-0321-6355
https://orcid.org/0009-0001-6856-6938
https://orcid.org/0000-0003-4056-5631

2 ADBH

Etienne Roquain [ctb],
Christina Kihn [ctb]

Maintainer Florian Junge <diso.fbmn@h-da.de>

Repository CRAN

Date/Publication 2024-12-14 14:50:02 UTC

Contents
ADBH . 2
DBH . 5
DBR . 8
DBY . 11
direct.discrete.BH . 13
discrete.BH . 15
DiscreteFDR . 18
fast.Discrete . 20
fisher.pvalues.support . 22
generate.pvalues . 24
hist.DiscreteFDR . 26
kernel . 27
plot.DiscreteFDR . 29
print.DiscreteFDR . 31
summary.DiscreteFDR . 32

Index 34

ADBH Wrapper Functions for the Adaptive Discrete Benjamini-Hochberg
Procedure

Description

ADBH() is a wrapper function of discrete.BH() for computing [AHSU] and [AHSD], which are
more powerful than [HSU] and [HSD], respectively. It simply passes its arguments to discrete.BH()
with fixed adaptive = TRUE and is computationally more demanding than DBH().

Usage

ADBH(test.results, ...)

Default S3 method:
ADBH(
test.results,
pCDFlist,
alpha = 0.05,
direction = "su",

ADBH 3

ret.crit.consts = FALSE,
select.threshold = 1,
pCDFlist.indices = NULL,
...

)

S3 method for class 'DiscreteTestResults'
ADBH(
test.results,
alpha = 0.05,
direction = "su",
ret.crit.consts = FALSE,
select.threshold = 1,
...

)

Arguments

test.results either a numeric vector with p-values or an R6 object of class DiscreteTestResults
from package DiscreteTests for which a discrete FDR procedure is to be per-
formed.

... further arguments to be passed to or from other methods. They are ignored here.

pCDFlist list of the supports of the CDFs of the p-values; each list item must be a numeric
vector, which is sorted in increasing order and whose last element equals 1.

alpha single real number strictly between 0 and 1 indicating the target FDR level.

direction single character string specifying whether to perform a step-up ("su"; the de-
fault) or step-down procedure ("sd").

ret.crit.consts

single boolean specifying whether critical constants are to be computed.

select.threshold

single real number strictly between 0 and 1 indicating the largest raw p-value
to be considered, i.e. only p-values below this threshold are considered and
the procedures are adjusted in order to take this selection effect into account; if
threshold = 1 (the default), all raw p-values are selected.

pCDFlist.indices

list of numeric vectors containing the test indices that indicate to which raw
p-value each unique support in pCDFlist belongs; ignored if the lengths of
test.results and pCDFlist are equal.

Details

Computing critical constants (ret.crit.consts = TRUE) requires considerably more execution time,
especially if the number of unique supports is large. We recommend that users should only have
them calculated when they need them, e.g. for illustrating the rejection set in a plot or other theo-
retical reasons.

4 ADBH

Value

A DiscreteFDR S3 class object whose elements are:

Rejected rejected raw p-values.

Indices indices of rejected hypotheses.

Num.rejected number of rejections.

Adjusted adjusted p-values (only for step-down direction).
Critical.constants

critical values (only exists if computations where performed with ret.crit.consts
= TRUE).

Data list with input data.

Data$Method character string describing the used algorithm, e.g. ’Discrete Benjamini-Hochberg
procedure (step-up)’

Data$Raw.pvalues

observed p-values.

Data$pCDFlist list of the p-value supports.

Data$FDR.level FDR level alpha.

Data$Data.name the respective variable names of the input data.

Select list with data related to p-value selection; only exists if select.threshold < 1.
Select$Threshold

p-value selection threshold (select.threshold).
Select$Effective.Thresholds

results of each p-value CDF evaluated at the selection threshold.

Select$Pvalues selected p-values that are ≤ selection threshold.

Select$Indices indices of p-values ≤ selection threshold.

Select$Scaled scaled selected p-values.

Select$Number number of selected p-values ≤ selection threshold.

References

Döhler, S., Durand, G., & Roquain, E. (2018). New FDR bounds for discrete and heterogeneous
tests. Electronic Journal of Statistics, 12(1), pp. 1867-1900. doi:10.1214/18EJS1441

See Also

discrete.BH(), DBH(), DBR(), DBY()

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2

https://doi.org/10.1214/18-EJS1441

DBH 5

df <- data.frame(X1, Y1, X2, Y2)
df

Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")
raw.pvalues <- test.result$get_pvalues()
pCDFlist <- test.result$get_pvalue_supports()

ADBH (step-up) without critical values; using test results object
ADBH.su.fast <- ADBH(test.result)
summary(ADBH.su.fast)

ADBH (step-down) without critical values; using extracted p-values
and supports
ADBH.sd.fast <- ADBH(raw.pvalues, pCDFlist, direction = "sd")
summary(ADBH.sd.fast)

ADBH (step-up) with critical values; using extracted p-values and supports
ADBH.su.crit <- ADBH(raw.pvalues, pCDFlist, ret.crit.consts = TRUE)
summary(ADBH.su.crit)

ADBH (step-down) with critical values; using test results object
ADBH.sd.crit <- ADBH(test.result, direction = "sd", ret.crit.consts = TRUE)
summary(ADBH.sd.crit)

DBH Wrapper Functions for the Discrete Benjamini-Hochberg Procedure

Description

DBH() is a wrapper function of discrete.BH() for computing [HSU] and [HSD]. It simply passes
its arguments to discrete.BH() with fixed adaptive = FALSE.

Usage

DBH(test.results, ...)

Default S3 method:
DBH(
test.results,
pCDFlist,
alpha = 0.05,
direction = "su",
ret.crit.consts = FALSE,
select.threshold = 1,
pCDFlist.indices = NULL,
...

)

6 DBH

S3 method for class 'DiscreteTestResults'
DBH(
test.results,
alpha = 0.05,
direction = "su",
ret.crit.consts = FALSE,
select.threshold = 1,
...

)

Arguments

test.results either a numeric vector with p-values or an R6 object of class DiscreteTestResults
from package DiscreteTests for which a discrete FDR procedure is to be per-
formed.

... further arguments to be passed to or from other methods. They are ignored here.

pCDFlist list of the supports of the CDFs of the p-values; each list item must be a numeric
vector, which is sorted in increasing order and whose last element equals 1.

alpha single real number strictly between 0 and 1 indicating the target FDR level.

direction single character string specifying whether to perform a step-up ("su"; the de-
fault) or step-down procedure ("sd").

ret.crit.consts

single boolean specifying whether critical constants are to be computed.
select.threshold

single real number strictly between 0 and 1 indicating the largest raw p-value
to be considered, i.e. only p-values below this threshold are considered and
the procedures are adjusted in order to take this selection effect into account; if
threshold = 1 (the default), all raw p-values are selected.

pCDFlist.indices

list of numeric vectors containing the test indices that indicate to which raw
p-value each unique support in pCDFlist belongs; ignored if the lengths of
test.results and pCDFlist are equal.

Details

Computing critical constants (ret.crit.consts = TRUE) requires considerably more execution time,
especially if the number of unique supports is large. We recommend that users should only have
them calculated when they need them, e.g. for illustrating the rejection set in a plot or other theo-
retical reasons.

Value

A DiscreteFDR S3 class object whose elements are:

Rejected rejected raw p-values.

Indices indices of rejected hypotheses.

DBH 7

Num.rejected number of rejections.

Adjusted adjusted p-values (only for step-down direction).
Critical.constants

critical values (only exists if computations where performed with ret.crit.consts
= TRUE).

Data list with input data.

Data$Method character string describing the used algorithm, e.g. ’Discrete Benjamini-Hochberg
procedure (step-up)’

Data$Raw.pvalues

observed p-values.

Data$pCDFlist list of the p-value supports.

Data$FDR.level FDR level alpha.

Data$Data.name the respective variable names of the input data.

Select list with data related to p-value selection; only exists if select.threshold < 1.
Select$Threshold

p-value selection threshold (select.threshold).
Select$Effective.Thresholds

results of each p-value CDF evaluated at the selection threshold.

Select$Pvalues selected p-values that are ≤ selection threshold.

Select$Indices indices of p-values ≤ selection threshold.

Select$Scaled scaled selected p-values.

Select$Number number of selected p-values ≤ selection threshold.

References

Döhler, S., Durand, G., & Roquain, E. (2018). New FDR bounds for discrete and heterogeneous
tests. Electronic Journal of Statistics, 12(1), pp. 1867-1900. doi:10.1214/18EJS1441

See Also

discrete.BH(), ADBH(), DBR(), DBY()

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")
raw.pvalues <- test.result$get_pvalues()

https://doi.org/10.1214/18-EJS1441

8 DBR

pCDFlist <- test.result$get_pvalue_supports()

DBH (step-up) without critical values; using test results object
DBH.su.fast <- DBH(test.result)
summary(DBH.su.fast)

DBH (step-down) without critical values; using extracted p-values
and supports
DBH.sd.fast <- DBH(raw.pvalues, pCDFlist, direction = "sd")
summary(DBH.sd.fast)

DBH (step-up) with critical values; using extracted p-values and supports
DBH.su.crit <- DBH(raw.pvalues, pCDFlist, ret.crit.consts = TRUE)
summary(DBH.su.crit)

DBH (step-down) with critical values; using test results object
DBH.sd.crit <- DBH(test.result, direction = "sd", ret.crit.consts = TRUE)
summary(DBH.sd.crit)

DBR The Discrete Blanchard-Roquain Procedure

Description

Applies the [HBR-λ] procedure, with or without computing the critical constants, to a set of p-
values and their respective discrete supports.

Usage

DBR(test.results, ...)

Default S3 method:
DBR(
test.results,
pCDFlist,
alpha = 0.05,
lambda = NULL,
ret.crit.consts = FALSE,
select.threshold = 1,
pCDFlist.indices = NULL,
...

)

S3 method for class 'DiscreteTestResults'
DBR(
test.results,
alpha = 0.05,

DBR 9

lambda = NULL,
ret.crit.consts = FALSE,
select.threshold = 1,
...

)

Arguments

test.results either a numeric vector with p-values or an R6 object of class DiscreteTestResults
from package DiscreteTests for which a discrete FDR procedure is to be per-
formed.

... further arguments to be passed to or from other methods. They are ignored here.

pCDFlist list of the supports of the CDFs of the p-values; each list item must be a numeric
vector, which is sorted in increasing order and whose last element equals 1.

alpha single real number strictly between 0 and 1 indicating the target FDR level.

lambda real number strictly between 0 and 1 specifying the DBR tuning parameter; if
lambda = NULL (the default), lambda is chosen to be equal to alpha.

ret.crit.consts

single boolean specifying whether critical constants are to be computed.
select.threshold

single real number strictly between 0 and 1 indicating the largest raw p-value
to be considered, i.e. only p-values below this threshold are considered and
the procedures are adjusted in order to take this selection effect into account; if
threshold = 1 (the default), all raw p-values are selected.

pCDFlist.indices

list of numeric vectors containing the test indices that indicate to which raw
p-value each unique support in pCDFlist belongs; ignored if the lengths of
test.results and pCDFlist are equal.

Details

[DBR-λ] is the discrete version of the [Blanchard-Roquain-λ] procedure (see References). The
authors of the latter suggest to take lambda = alpha (see their Proposition 17), which explains the
choice of the default value here.

Computing critical constants (ret.crit.consts = TRUE) requires considerably more execution time,
especially if the number of unique supports is large. We recommend that users should only have
them calculated when they need them, e.g. for illustrating the rejection set in a plot or other theo-
retical reasons.

Value

A DiscreteFDR S3 class object whose elements are:

Rejected rejected raw p-values.

Indices indices of rejected hypotheses.

Num.rejected number of rejections.

Adjusted adjusted p-values.

10 DBR

Critical.constants

critical values (only exists if computations where performed with ret.crit.consts
= TRUE).

Data list with input data.

Data$Method character string describing the used algorithm, e.g. ’Discrete Benjamini-Hochberg
procedure (step-up)’

Data$Raw.pvalues

observed p-values.

Data$pCDFlist list of the p-value supports.

Data$FDR.level FDR level alpha.
Data$DBR.Tuning

value of the tuning parameter lambda.

Data$Data.name the respective variable names of the input data.

Select list with data related to p-value selection; only exists if select.threshold < 1.
Select$Threshold

p-value selection threshold (select.threshold).
Select$Effective.Thresholds

results of each p-value CDF evaluated at the selection threshold.

Select$Pvalues selected p-values that are ≤ selection threshold.

Select$Indices indices of p-values ≤ selection threshold.

Select$Scaled scaled selected p-values.

Select$Number number of selected p-values ≤ selection threshold.

References

: G. Blanchard and E. Roquain (2009). Adaptive false discovery rate control under independence
and dependence. Journal of Machine Learning Research, 10, pp. 2837-2871. doi:10.48550/
arXiv.0707.0536

See Also

discrete.BH(), DBH(), ADBH(), DBY()

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")

https://doi.org/10.48550/arXiv.0707.0536
https://doi.org/10.48550/arXiv.0707.0536

DBY 11

raw.pvalues <- test.result$get_pvalues()
pCDFlist <- test.result$get_pvalue_supports()

DBR without critical values; using test results object
DBR.fast <- DBR(test.result)
summary(DBR.fast)

DBR with critical values; using extracted p-values and supports
DBR.crit <- DBR(raw.pvalues, pCDFlist, ret.crit.consts = TRUE)
summary(DBR.crit)

DBY The Discrete Benjamini-Yekutieli Procedure

Description

Applies the Discrete Benjamini-Yekutieli procedure, with or without computing the critical con-
stants, to a set of p-values and their respective discrete supports.

Usage

DBY(test.results, ...)

Default S3 method:
DBY(
test.results,
pCDFlist,
alpha = 0.05,
ret.crit.consts = FALSE,
select.threshold = 1,
pCDFlist.indices = NULL,
...

)

S3 method for class 'DiscreteTestResults'
DBY(
test.results,
alpha = 0.05,
ret.crit.consts = FALSE,
select.threshold = 1,
...

)

Arguments

test.results either a numeric vector with p-values or an R6 object of class DiscreteTestResults
from package DiscreteTests for which a discrete FDR procedure is to be per-
formed.

12 DBY

... further arguments to be passed to or from other methods. They are ignored here.

pCDFlist list of the supports of the CDFs of the p-values; each list item must be a numeric
vector, which is sorted in increasing order and whose last element equals 1.

alpha single real number strictly between 0 and 1 indicating the target FDR level.
ret.crit.consts

single boolean specifying whether critical constants are to be computed.
select.threshold

single real number strictly between 0 and 1 indicating the largest raw p-value
to be considered, i.e. only p-values below this threshold are considered and
the procedures are adjusted in order to take this selection effect into account; if
threshold = 1 (the default), all raw p-values are selected.

pCDFlist.indices

list of numeric vectors containing the test indices that indicate to which raw
p-value each unique support in pCDFlist belongs; ignored if the lengths of
test.results and pCDFlist are equal.

Details

Computing critical constants (ret.crit.consts = TRUE) requires considerably more execution time,
especially if the number of unique supports is large. We recommend that users should only have
them calculated when they need them, e.g. for illustrating the rejection set in a plot or other theo-
retical reasons.

Value

A DiscreteFDR S3 class object whose elements are:

Rejected rejected raw p-values.

Indices indices of rejected hypotheses.

Num.rejected number of rejections.

Adjusted adjusted p-values (only for step-down direction).
Critical.constants

critical values (only exists if computations where performed with ret.crit.consts
= TRUE).

Data list with input data.

Data$Method character string describing the used algorithm, e.g. ’Discrete Benjamini-Hochberg
procedure (step-up)’

Data$Raw.pvalues

observed p-values.

Data$pCDFlist list of the p-value supports.

Data$FDR.level FDR level alpha.

Data$Data.name the respective variable names of the input data.

Select list with data related to p-value selection; only exists if select.threshold < 1.
Select$Threshold

p-value selection threshold (select.threshold).

direct.discrete.BH 13

Select$Effective.Thresholds

results of each p-value CDF evaluated at the selection threshold.

Select$Pvalues selected p-values that are ≤ selection threshold.

Select$Indices indices of p-values ≤ selection threshold.

Select$Scaled scaled selected p-values.

Select$Number number of selected p-values ≤ selection threshold.

References

Döhler, S. (2018). A discrete modification of the Benjamini–Yekutieli procedure. Econometrics
and Statistics, 5, pp. 137-147. doi:10.1016/j.ecosta.2016.12.002

See Also

discrete.BH(), DBH(), ADBH(), DBR()

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")
raw.pvalues <- test.result$get_pvalues()
pCDFlist <- test.result$get_pvalue_supports()

DBY without critical values; using test results object
DBY.fast <- DBY(test.result)
summary(DBY.fast)

DBY with critical values; using extracted p-values and supports
DBY.crit <- DBY(raw.pvalues, pCDFlist, ret.crit.consts = TRUE)
summary(DBY.crit)

direct.discrete.BH Direct Application of Multiple Testing Procedures to Dataset

Description

Apply the [HSU], [HSD], [AHSU] or [AHSD] procedure, with or without computing the critical
constants, to a data set of 2x2 contingency tables using Fisher’s exact tests which may have to be
transformed before computing p-values.

https://doi.org/10.1016/j.ecosta.2016.12.002

14 direct.discrete.BH

Usage

direct.discrete.BH(
dat,
test.fun,
test.args = NULL,
alpha = 0.05,
direction = "su",
adaptive = FALSE,
ret.crit.consts = FALSE,
select.threshold = 1,
preprocess.fun = NULL,
preprocess.args = NULL

)

Arguments

dat input data; must be suitable for the first parameter of the provided preprocess.fun
function or, if preprocess.fun is NULL, for the first parameter of the test.fun
function.

test.fun function from package DiscreteTests, i.e. one whose name ends with *_test_pv
and which performs hypothesis tests and provides an object with p-values and
their support sets; can be specified by a single character string (which is auto-
matically checked for being a suitable function from that package and may be
abbreviated) or a single function object.

test.args optional named list with arguments for test.fun; the names of the list fields
must match the test function’s parameter names. The first parameter of the test
function (i.e. the data) MUST NOT be included!

alpha single real number strictly between 0 and 1 indicating the target FDR level.

direction single character string specifying whether to perform a step-up ("su"; the de-
fault) or step-down procedure ("sd").

adaptive single boolean specifying whether to conduct an adaptive procedure or not.

ret.crit.consts

single boolean specifying whether critical constants are to be computed.

select.threshold

single real number strictly between 0 and 1 indicating the largest raw p-value
to be considered, i.e. only p-values below this threshold are considered and
the procedures are adjusted in order to take this selection effect into account; if
threshold = 1 (the default), all raw p-values are selected.

preprocess.fun optional function for pre-processing the input data; its result must be suitable
for the first parameter of the test.fun function.

preprocess.args

optional named list with arguments for preprocess.fun; the names of the list
fields must match the pre-processing function’s parameter names. The first pa-
rameter of the test function (i.e. the data) MUST NOT be included!

discrete.BH 15

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

DBH.su <- direct.discrete.BH(df, "fisher", direction = "su")
summary(DBH.su)

DBH.sd <- direct.discrete.BH(df, "fisher", direction = "sd")
DBH.sd$Adjusted
summary(DBH.sd)

ADBH.su <- direct.discrete.BH(df, "fisher", direction = "su",
adaptive = TRUE)

summary(ADBH.su)

ADBH.sd <- direct.discrete.BH(df, "fisher", direction = "sd",
adaptive = TRUE)

ADBH.sd$Adjusted
summary(ADBH.sd)

discrete.BH The Discrete Benjamini-Hochberg Procedure

Description

Applies the [HSU], [HSD], [AHSU] and [AHSD] procedures at a given FDR level, with or without
computing the critical constants, to a set of p-values and their respective discrete supports.

Usage

discrete.BH(test.results, ...)

Default S3 method:
discrete.BH(

test.results,
pCDFlist,
alpha = 0.05,
direction = "su",
adaptive = FALSE,
ret.crit.consts = FALSE,
select.threshold = 1,

16 discrete.BH

pCDFlist.indices = NULL,
...

)

S3 method for class 'DiscreteTestResults'
discrete.BH(
test.results,
alpha = 0.05,
direction = "su",
adaptive = FALSE,
ret.crit.consts = FALSE,
select.threshold = 1,
...

)

Arguments

test.results either a numeric vector with p-values or an R6 object of class DiscreteTestResults
from package DiscreteTests for which a discrete FDR procedure is to be per-
formed.

... further arguments to be passed to or from other methods. They are ignored here.
pCDFlist list of the supports of the CDFs of the p-values; each list item must be a numeric

vector, which is sorted in increasing order and whose last element equals 1.
alpha single real number strictly between 0 and 1 indicating the target FDR level.
direction single character string specifying whether to perform a step-up ("su"; the de-

fault) or step-down procedure ("sd").
adaptive single boolean specifying whether to conduct an adaptive procedure or not.
ret.crit.consts

single boolean specifying whether critical constants are to be computed.
select.threshold

single real number strictly between 0 and 1 indicating the largest raw p-value
to be considered, i.e. only p-values below this threshold are considered and
the procedures are adjusted in order to take this selection effect into account; if
threshold = 1 (the default), all raw p-values are selected.

pCDFlist.indices

list of numeric vectors containing the test indices that indicate to which raw
p-value each unique support in pCDFlist belongs; ignored if the lengths of
test.results and pCDFlist are equal.

Details

The adaptive variants [AHSU] and [AHSD], which are executed via adaptive = TRUE, are often
slightly more powerful than [HSU] and [HSD], respectively. But they are also computationally
more demanding.

Computing critical constants (ret.crit.consts = TRUE) requires considerably more execution time,
especially if the number of unique supports is large. We recommend that users should only have
them calculated when they need them, e.g. for illustrating the rejection set in a plot or other theo-
retical reasons.

discrete.BH 17

Value

A DiscreteFDR S3 class object whose elements are:

Rejected rejected raw p-values.

Indices indices of rejected hypotheses.

Num.rejected number of rejections.

Adjusted adjusted p-values (only for step-down direction).
Critical.constants

critical values (only exists if computations where performed with ret.crit.consts
= TRUE).

Data list with input data.

Data$Method character string describing the used algorithm, e.g. ’Discrete Benjamini-Hochberg
procedure (step-up)’

Data$Raw.pvalues

observed p-values.

Data$pCDFlist list of the p-value supports.

Data$FDR.level FDR level alpha.

Data$Data.name the respective variable names of the input data.

Select list with data related to p-value selection; only exists if select.threshold < 1.
Select$Threshold

p-value selection threshold (select.threshold).
Select$Effective.Thresholds

results of each p-value CDF evaluated at the selection threshold.

Select$Pvalues selected p-values that are ≤ selection threshold.

Select$Indices indices of p-values ≤ selection threshold.

Select$Scaled scaled selected p-values.

Select$Number number of selected p-values ≤ selection threshold.

References

Döhler, S., Durand, G., & Roquain, E. (2018). New FDR bounds for discrete and heterogeneous
tests. Electronic Journal of Statistics, 12(1), pp. 1867-1900. doi:10.1214/18EJS1441

See Also

DBH(), ADBH(), DBR(), DBY()

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2

https://doi.org/10.1214/18-EJS1441

18 DiscreteFDR

df <- data.frame(X1, Y1, X2, Y2)
df

Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")
raw.pvalues <- test.result$get_pvalues()
pCDFlist <- test.result$get_pvalue_supports()

DBH (step-up) without critical values; using test results object
DBH.su.fast <- discrete.BH(test.result)
summary(DBH.su.fast)

DBH (step-down) without critical values; using extracted p-values
and supports
DBH.sd.fast <- discrete.BH(raw.pvalues, pCDFlist, direction = "sd")
summary(DBH.sd.fast)

DBH (step-up) with critical values; using extracted p-values and supports
DBH.su.crit <- discrete.BH(raw.pvalues, pCDFlist, ret.crit.consts = TRUE)
summary(DBH.su.crit)

DBH (step-down) with critical values; using test results object
DBH.sd.crit <- discrete.BH(test.result, direction = "sd",

ret.crit.consts = TRUE)
summary(DBH.sd.crit)

ADBH (step-up) without critical values; using test results object
ADBH.su.fast <- discrete.BH(test.result, adaptive = TRUE)
summary(ADBH.su.fast)

ADBH (step-down) without critical values; using extracted p-values
and supports
ADBH.sd.fast <- discrete.BH(raw.pvalues, pCDFlist, direction = "sd",

adaptive = TRUE)
summary(ADBH.sd.fast)

ADBH (step-up) with critical values; using extracted p-values and supports
ADBH.su.crit <- discrete.BH(raw.pvalues, pCDFlist, adaptive = TRUE,

ret.crit.consts = TRUE)
summary(ADBH.su.crit)

ADBH (step-down) with critical values; using test results object
ADBH.sd.crit <- discrete.BH(test.result, direction = "sd", adaptive = TRUE,

ret.crit.consts = TRUE)
summary(ADBH.sd.crit)

DiscreteFDR FDR-based Multiple Testing Procedures with Adaptation for Discrete
Tests

DiscreteFDR 19

Description

This package implements the [HSU], [HSD], [AHSU], [AHSD] and [HBR-λ] procedures for dis-
crete tests (see References).

Details

The functions are reorganized from the reference paper in the following way. discrete.BH() (for
Discrete Benjamini-Hochberg) implements [HSU], [HSD], [AHSU] and [AHSD], while DBR() (for
Discrete Blanchard-Roquain) implements [HBR-λ]. DBH() and ADBH() are wrapper functions for
discrete.BH() to access [HSU] and [HSD], as well as [AHSU] and [AHSD] directly.

This package is part of a package family to which the DiscreteDatasets and DiscreteTests
packages also belong. The latter allows to compute p-values and their respective supports for vari-
ous tests. The objects that contain these results can be used directly by the discrete.BH(), DBH(),
ADBH() and DBR() functions. Alternatively, these functions also accept a vector of raw observed
p-values and a list of the respective discrete supports of the CDFs of the p-values.

Note: The former function fisher.pvalues.support(), which allows to compute such p-values
and supports in the framework of a Fisher’s exact test, is now deprecated and should not be used
anymore. It has been replaced by generate.pvalues().

The same applies for the function fast.Discrete(), which is a wrapper for fisher.pvalues.support()
and discrete.BH() and allows to apply discrete procedures directly to a data set of contingency
tables and perform data preprocessing before p-values are computed. It is also now deprecated and
has been replaced by direct.discrete.BH(), but for more flexibility, users may employ pipes,
e.g.
data |>
DiscreteDatasets::reconstruct_*(<args>) |>
DiscreteTests::*.test.pv(<args>) |>
discrete.BH(<args>).

Author(s)

Maintainer: Florian Junge <diso.fbmn@h-da.de> (ORCID) [contributor]

Authors:

• Sebastian Döhler <sebastian.doehler@h-da.de> (ORCID) [contributor]

• Guillermo Durand (ORCID) [contributor]

Other contributors:

• Etienne Roquain [contributor]

• Christina Kihn [contributor]

References

Döhler, S., Durand, G., & Roquain, E. (2018). New FDR bounds for discrete and heterogeneous
tests. Electronic Journal of Statistics, 12(1), pp. 1867-1900. doi:10.1214/18EJS1441

G. Blanchard and E. Roquain (2009). Adaptive false discovery rate control under independence
and dependence. Journal of Machine Learning Research, 10, pp. 2837-2871. doi:10.48550/
arXiv.0707.0536

https://orcid.org/0009-0001-6856-6938
https://orcid.org/0000-0002-0321-6355
https://orcid.org/0000-0003-4056-5631
https://doi.org/10.1214/18-EJS1441
https://doi.org/10.48550/arXiv.0707.0536
https://doi.org/10.48550/arXiv.0707.0536

20 fast.Discrete

Döhler, S. (2018). A discrete modification of the Benjamini–Yekutieli procedure. Econometrics
and Statistics, 5, pp. 137-147. doi:10.1016/j.ecosta.2016.12.002

See Also

Useful links:

• https://github.com/DISOhda/DiscreteFDR

• Report bugs at https://github.com/DISOhda/DiscreteFDR/issues

fast.Discrete Fast Application of Discrete Multiple Testing Procedures

Description

[Deprecated]

Apply the [HSU], [HSD], [AHSU] or [AHSD] procedure, without computing the critical constants,
to a data set of 2x2 contingency tables which may have to be preprocessed in order to have the
correct structure for computing p-values using Fisher’s exact test.

Note: This function is deprecated and will be removed in a future version. Please use direct.discrete.BH()
with test.fun = DiscreteTests::fisher.test.pv and (optional) preprocess.fun = DiscreteDatasets::reconstruct_two
or preprocess.fun = DiscreteDatasets::reconstruct_four instead. Alternatively, use a pipeline,
e.g.
data |>
DiscreteDatasets::reconstruct_*(<args>) |>
DiscreteTests::*.test.pv(<args>) |>
discrete.BH(<args>).

Usage

fast.Discrete(
counts,
alternative = "greater",
input = "noassoc",
alpha = 0.05,
direction = "su",
adaptive = FALSE,
select.threshold = 1

)

Arguments

counts a data frame of two or four columns and any number of lines; each line repre-
senting a 2x2 contingency table to test. The number of columns and what they
must contain depend on the value of the input argument (see Details section of
fisher.pvalues.support()).

https://doi.org/10.1016/j.ecosta.2016.12.002
https://github.com/DISOhda/DiscreteFDR
https://github.com/DISOhda/DiscreteFDR/issues

fast.Discrete 21

alternative same argument as in stats::fisher.test(). The three possible values are
"greater" (default), "two.sided" or "less" (may be abbreviated).

input the format of the input data frame (see Details section of fisher.pvalues.support().
The three possible values are "noassoc" (default), "marginal" or "HG2011"
(may be abbreviated).

alpha single real number strictly between 0 and 1 indicating the target FDR level.

direction single character string specifying whether to perform a step-up ("su"; the de-
fault) or step-down procedure ("sd").

adaptive single boolean specifying whether to conduct an adaptive procedure or not.
select.threshold

single real number strictly between 0 and 1 indicating the largest raw p-value
to be considered, i.e. only p-values below this threshold are considered and
the procedures are adjusted in order to take this selection effect into account; if
threshold = 1 (the default), all raw p-values are selected.

Value

A DiscreteFDR S3 class object whose elements are:

Rejected rejected raw p-values.

Indices indices of rejected hypotheses.

Num.rejected number of rejections.

Adjusted adjusted p-values (only for step-down direction).
Critical.constants

critical values (only exists if computations where performed with ret.crit.consts
= TRUE).

Data list with input data.

Data$Method character string describing the used algorithm, e.g. ’Discrete Benjamini-Hochberg
procedure (step-up)’

Data$Raw.pvalues

observed p-values.

Data$pCDFlist list of the p-value supports.

Data$FDR.level FDR level alpha.

Data$Data.name the respective variable names of the input data.

Select list with data related to p-value selection; only exists if select.threshold < 1.
Select$Threshold

p-value selection threshold (select.threshold).
Select$Effective.Thresholds

results of each p-value CDF evaluated at the selection threshold.

Select$Pvalues selected p-values that are ≤ selection threshold.

Select$Indices indices of p-values ≤ selection threshold.

Select$Scaled scaled selected p-values.

Select$Number number of selected p-values ≤ selection threshold.

22 fisher.pvalues.support

See Also

fisher.pvalues.support(), discrete.BH()

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

DBH.su <- fast.Discrete(df, input = "noassoc", direction = "su")
summary(DBH.su)

DBH.sd <- fast.Discrete(df, input = "noassoc", direction = "sd")
DBH.sd$Adjusted
summary(DBH.sd)

ADBH.su <- fast.Discrete(df, input = "noassoc", direction = "su",
adaptive = TRUE)

summary(ADBH.su)

ADBH.sd <- fast.Discrete(df, input = "noassoc", direction = "sd",
adaptive = TRUE)

ADBH.sd$Adjusted
summary(ADBH.sd)

fisher.pvalues.support

Computing Discrete P-Values and Their Supports for Fisher’s Exact
Test

Description

[Deprecated]
Computes discrete raw p-values and their support for Fisher’s exact test applied to 2x2 contingency
tables summarizing counts coming from two categorical measurements.

Note: This function is deprecated and will be removed in a future version. Please use generate.pvalues()
with test.fun = DiscreteTests::fisher.test.pv and (optional) preprocess.fun = DiscreteDatasets::reconstruct_two
or preprocess.fun = DiscreteDatasets::reconstruct_four instead. Alternatively, use a pipeline
like
data |>
DiscreteDatasets::reconstruct_*(<args>) |>
DiscreteTests::fisher.test.pv(<args>)

fisher.pvalues.support 23

Usage

fisher.pvalues.support(counts, alternative = "greater", input = "noassoc")

Arguments

counts a data frame of two or four columns and any number of lines; each line repre-
sents a 2x2 contingency table to test. The number of columns and what they
must contain depend on the value of the input argument, see Details.

alternative same argument as in stats::fisher.test(). The three possible values are
"greater" (default), "two.sided" or "less" and you can specify just the ini-
tial letter.

input the format of the input data frame, see Details. The three possible values are
"noassoc" (default), "marginal" or "HG2011" and you can specify just the
initial letter.

Details

Assume that each contingency tables compares two variables and resumes the counts of association
or not with a condition. This can be resumed in the following table:

Association No association Total
Variable 1 X1 Y1 N1

Variable 2 X2 Y2 N2

Total X1 +X2 Y1 + Y2 N1 +N2

If input="noassoc", counts has four columns which respectively contain, X1, Y1, X2 and Y2. If
input="marginal", counts has four columns which respectively contain X1, N1, X2 and N2.

If input="HG2011", we are in the situation of the amnesia data set as in Heller & Gur (2011, see
References). Each contingency table is obtained from one variable which is compared to all other
variables of the study. That is, counts for "second variable" are replaced by the sum of the counts
of the other variables:

Association No association Total
Variable j Xj Yj Nj

Variables ̸= j
∑

i̸=j Xi

∑
i ̸=j Yi

∑
i ̸=j Ni

Total
∑

Xi

∑
Yi

∑
Ni

Hence counts needs to have only two columns which respectively contain Xj and Yj .

The code for the computation of the p-values of Fisher’s exact test is inspired by the example in
the help page of p.discrete.adjust of package discreteMTP, which is no longer available on
CRAN.

See the Wikipedia article about Fisher’s exact test, paragraph Example, for a good depiction of what
the code does for each possible value of alternative.

24 generate.pvalues

Value

A list of two elements:

raw raw discrete p-values.

support a list of the supports of the CDFs of the p-values. Each support is represented
by a vector in increasing order.

References

R. Heller and H. Gur (2011). False discovery rate controlling procedures for discrete tests. arXiv
preprint. arXiv:1112.4627v2.

"Fisher’s exact test", Wikipedia, The Free Encyclopedia, accessed 2024-12-14, link.

See Also

fisher.test()

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

Compute p-values and their supports of Fisher's exact test
df.formatted <- fisher.pvalues.support(counts = df, input = "noassoc")
raw.pvalues <- df.formatted$raw
pCDFlist <- df.formatted$support

generate.pvalues Generation of P-Values and Their Supports After Data Transforma-
tions

Description

Simple wrapper for generating p-values of discrete tests and their supports after preprocessing the
input data. The user only has to provide 1.) a function that generates p-values and supports and 2.)
an optional function that preprocesses (i.e. transforms) the input data (if necessary) before it can be
used for p-value calculations. The respective arguments are provided

https://arxiv.org/abs/1112.4627v2
https://en.wikipedia.org/wiki/Fisher%27s_exact_test

generate.pvalues 25

Usage

generate.pvalues(
dat,
test.fun,
test.args = NULL,
preprocess.fun = NULL,
preprocess.args = NULL

)

Arguments

dat input data; must be suitable for the first parameter of the provided preprocess.fun
function or, if preprocess.fun is NULL, for the first parameter of the test.fun
function.

test.fun function from package DiscreteTests, i.e. one whose name ends with *_test_pv
and which performs hypothesis tests and provides an object with p-values and
their support sets; can be specified by a single character string (which is auto-
matically checked for being a suitable function from that package and may be
abbreviated) or a single function object.

test.args optional named list with arguments for test.fun; the names of the list fields
must match the test function’s parameter names. The first parameter of the test
function (i.e. the data) MUST NOT be included!

preprocess.fun optional function for pre-processing the input data; its result must be suitable
for the first parameter of the test.fun function.

preprocess.args

optional named list with arguments for preprocess.fun; the names of the list
fields must match the pre-processing function’s parameter names. The first pa-
rameter of the test function (i.e. the data) MUST NOT be included!

Value

A DiscreteTestResults R6 class object.

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")
raw.pvalues <- test.result$get_pvalues()
pCDFlist <- test.result$get_pvalue_supports()

26 hist.DiscreteFDR

Compute p-values and their supports of Fisher's exact test
with preprocessing
df2 <- data.frame(X1, N1, X2, N2)
generate.pvalues(

dat = df2,
test.fun = "fisher_test_pv",
preprocess.fun = function(tab) {
for(col in c(2, 4)) tab[, col] <- tab[, col] - tab[, col - 1]
return(tab)

}
)

Compute p-values and their supports of a binomial test with preprocessing
generate.pvalues(

dat = rbind(c(5, 2, 7), c(3, 4, 0)),
test.fun = "binom_test_pv",
test.args = list(n = c(9, 8, 11), p = 0.6, alternative = "two.sided"),
preprocess.fun = colSums

)

hist.DiscreteFDR Histogram of Raw P-Values

Description

Computes a histogram of the raw p-values of a DiscreteFDR object.

Usage

S3 method for class 'DiscreteFDR'
hist(x, breaks = "FD", mode = c("raw", "selected"), ...)

Arguments

x an object of class DiscreteFDR.

breaks as in graphics::hist(); here, the Friedman-Diaconis algorithm ("FD") is used
as default.

mode single character string specifying for which p-values the histogram is to be
generated; must either be "raw" or "selected".

... further arguments to graphics::hist() or graphics::plot.histogram(),
respectively.

Details

If x does not contain results of a selection approach, a warning is issued and a histogram of the raw
p-values is drawn.

kernel 27

Value

An object of class histogram.

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")
raw.pvalues <- test.result$get_pvalues()
pCDFlist <- test.result$get_pvalue_supports()

DBH (SU)
DBH <- DBH(raw.pvalues, pCDFlist)
hist(DBH)

kernel Kernel Functions

Description

Kernel functions that transform observed p-values or their support according to [HSU], [HSD],
[AHSU], [AHSD] and [HBR-λ]. The output is used by discrete.BH or DBR, respectively. kernel_DBH_crit,
kernel_ADBH_crit and kernel_DBR_crit additionally compute and return the critical constants.
The end user should not use these functions directly.

Note: As of version 2.0, these functions are purely internal functions! As a consequence, they have
to be called directly via :::, e.g. DiscreteFDR:::kernel_DBH_fast(). But users should not rely
on them, as parameters (including their names, order, etc.) may be changed without notice!

Usage

kernel_DBH_fast(
pCDFlist,
pvalues,
stepUp = FALSE,
tau_max = NULL,
alpha = 0.05,
support = numeric(),
pCDFcounts = NULL

)

28 kernel

kernel_DBH_crit(
pCDFlist,
support,
sorted_pv,
stepUp = FALSE,
alpha = 0.05,
pCDFcounts = NULL

)

kernel_ADBH_fast(
pCDFlist,
sorted_pv,
stepUp = FALSE,
alpha = 0.05,
support = numeric(),
pCDFcounts = NULL

)

kernel_ADBH_crit(
pCDFlist,
support,
sorted_pv,
stepUp = FALSE,
alpha = 0.05,
pCDFcounts = NULL

)

kernel_DBR_fast(pCDFlist, sorted_pv, lambda = 0.05, pCDFcounts = NULL)

kernel_DBR_crit(
pCDFlist,
support,
sorted_pv,
lambda = 0.05,
alpha = 0.05,
pCDFcounts = NULL

)

kernel_DBY_fast(pCDFlist, pvalues, pCDFcounts = NULL)

kernel_DBY_crit(pCDFlist, support, sorted_pv, alpha = 0.05, pCDFcounts = NULL)

Arguments

pCDFlist list of the supports of the CDFs of the p-values; each list item must be a numeric
vector, which is sorted in increasing order and whose last element equals 1.

pvalues numeric vector, sorted in increasing order, that either must contain the entirety of

plot.DiscreteFDR 29

all observable values of the p-value supports (when computing critical constants)
or only the sorted raw p-values.

stepUp boolean specifying whether to conduct the step-up (TRUE) or step-down (FALSE;
the default) procedure.

tau_max single real number strictly between 0 and 1 indicating the largest critical value
for step-up procedures; if NULL (the default), it is computed automatically, other-
wise it needs to be computed manually by the user; ignored if stepUp = FALSE.

alpha single real number strictly between 0 and 1 indicating the target FDR level; for
*_fast kernels, it is only needed, if stepUp = TRUE.

support numeric vector, sorted in increasing order, that contains the entirety of all ob-
servable values of the p-value supports; for *_fast kernels, it is ignored if
stepUp = FALSE.

pCDFcounts integer vector of counts that indicates to how many p-values each unique p-
value distributions belongs.

sorted_pv numeric vector containing the raw p-values, sorted in increasing order.

lambda real number strictly between 0 and 1 specifying the DBR tuning parameter.

Details

When computing critical constants under step-down, that is, when using kernel_DBH_crit, kernel_ADBH_crit
or kernel_DBR_crit with stepUp = FALSE (i.e. the step-down case), we still need to get trans-
formed p-values to compute the adjusted p-values.

Value

For kernel_DBH_fast(), kernel_ADBH_fast() and kernel_DBR_fast(), a vector of transformed
p-values is returned. kernel_DBH_crit, kernel_ADBH_crit and kernel_DBR_crit return a list
with critical constants ($crit.consts) and transformed p-values ($pval.transf), but if stepUp =
FALSE, there are critical values only.

See Also

discrete.BH(), direct.discrete.BH(), DBR()

plot.DiscreteFDR Plot Method for DiscreteFDR objects

Description

Plots raw p-values of a DiscreteFDR object and highlights rejected and accepted p-values. If
present, the critical values are plotted, too.

30 plot.DiscreteFDR

Usage

S3 method for class 'DiscreteFDR'
plot(
x,
col = c(2, 4, 1),
pch = c(20, 20, 17),
lwd = rep(par()$lwd, 3),
cex = rep(par()$cex, 3),
type.crit = "b",
legend = NULL,
...

)

Arguments

x object of class DiscreteFDR.

col numeric or character vector of length 3 indicating the colors of the

1. rejected p-values
2. accepted p-values
3. critical values (if present).

pch numeric or character vector of length 3 indicating the point characters of the

1. rejected p-values
2. accepted p-values
3. critical values (if present and type.crit is a plot type like 'p', 'b' etc.).

lwd numeric vector of length 3 indicating the thickness of the points and lines; de-
faults to current par()$lwd setting.

cex numeric vector of length 3 indicating the size of point characters or lines of the

1. rejected p-values
2. accepted p-values
3. critical values (if present).

defaults to current par()$cex setting.

type.crit 1-character string giving the type of plot desired for the critical values (e.g.: 'p',
'l' etc; see plot()).

legend if NULL, no legend is plotted; otherwise expecting a character string like "topleft"
etc. or a numeric vector of two elements indicating (x, y) coordinates.

... further arguments to plot.default().

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1

print.DiscreteFDR 31

Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")
raw.pvalues <- test.result$get_pvalues()
pCDFlist <- test.result$get_pvalue_supports()

DBH.su.fast <- DBH(raw.pvalues, pCDFlist)
DBH.su.crit <- DBH(raw.pvalues, pCDFlist, ret.crit.consts = TRUE)
DBH.sd.fast <- DBH(test.result, direction = "sd")
DBH.sd.crit <- DBH(test.result, direction = "sd", ret.crit.consts = TRUE)

plot(DBH.sd.fast)
plot(DBH.sd.crit, xlim = c(1, 5), ylim = c(0, 0.4))
plot(DBH.su.fast, col = c(2, 4), pch = c(2, 3), lwd = c(2, 2),

legend = "topleft", xlim = c(1, 5), ylim = c(0, 0.4))
plot(DBH.su.crit, col = c(2, 4, 1), pch = c(1, 1, 4), lwd = c(1, 1, 2),

type.crit = 'o', legend = c(1, 0.4), lty = 1, xlim = c(1, 5),
ylim = c(0, 0.4))

print.DiscreteFDR Printing DiscreteFDR results

Description

Prints the results of discrete FDR analysis, stored in a DiscreteFDR class object.

Usage

S3 method for class 'DiscreteFDR'
print(x, ...)

Arguments

x an object of class "DiscreteFDR".

... further arguments to be passed to or from other methods. They are ignored in
this function.

Value

The input object x is invisibly returned via invisible(x).

32 summary.DiscreteFDR

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")
raw.pvalues <- test.result$get_pvalues()
pCDFlist <- test.result$get_pvalue_supports()

DBH.su.crit <- DBH(raw.pvalues, pCDFlist, direction = "su",
ret.crit.consts = TRUE)

print(DBH.su.crit)

summary.DiscreteFDR Summarizing Discrete FDR Results

Description

summary method for class DiscreteFDR.

Usage

S3 method for class 'DiscreteFDR'
summary(object, ...)

S3 method for class 'summary.DiscreteFDR'
print(x, max = NULL, ...)

Arguments

object an object of class DiscreteFDR.

... further arguments passed to or from other methods.

x an object of class summary.DiscreteFDR.

max numeric or NULL, specifying the maximal number of rows of the p-value table to
be printed. By default, when NULL, getOption("max.print") is used.

summary.DiscreteFDR 33

Details

summary.DiscreteFDR objects contain all data of an DiscreteFDR object, but also include an addi-
tional table which includes the raw p-values, their indices, the respective critical values (if present),
the adjusted p-values (if present) and a logical column to indicate rejection. The table is sorted in
ascending order by the raw p-values.

print.summary.DiscreteFDR simply prints the same output as print.DiscreteFDR, but also
prints the p-value table.

Value

summary.DiscreteFDR computes and returns a list that includes all the data of an input DiscreteFDR
object, plus

Table data.frame, sorted by the raw p-values, that contains the indices, the raw p-
values themselves, their respective critical values (if present), their adjusted p-
values (if present) and a logical column to indicate rejection.

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df

Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")
raw.pvalues <- test.result$get_pvalues()
pCDFlist <- test.result$get_pvalue_supports()

DBH.sd.crit <- DBH(raw.pvalues, pCDFlist, direction = "sd",
ret.crit.consts = TRUE)

summary(DBH.sd.crit)

Index

ADBH, 2
ADBH(), 7, 10, 13, 17, 19

DBH, 5
DBH(), 2, 4, 10, 13, 17, 19
DBR, 8, 27
DBR(), 4, 7, 13, 17, 19, 29
DBY, 11
DBY(), 4, 7, 10, 17
direct.discrete.BH, 13
direct.discrete.BH(), 19, 20, 29
discrete.BH, 15, 27
discrete.BH(), 2, 4, 5, 7, 10, 13, 19, 22, 29
DiscreteDatasets, 19
DiscreteFDR, 18
DiscreteFDR-package (DiscreteFDR), 18
DiscreteTestResults, 3, 6, 9, 11, 16, 25
DiscreteTests, 3, 6, 9, 11, 14, 16, 19, 25

fast.Discrete, 20
fast.Discrete(), 19
fisher.pvalues.support, 22
fisher.pvalues.support(), 19–22
fisher.test(), 24

generate.pvalues, 24
generate.pvalues(), 19, 22
graphics::hist(), 26
graphics::plot.histogram(), 26

hist.DiscreteFDR, 26

kernel, 27
kernel_ADBH_crit (kernel), 27
kernel_ADBH_fast (kernel), 27
kernel_DBH_crit (kernel), 27
kernel_DBH_fast (kernel), 27
kernel_DBR_crit (kernel), 27
kernel_DBR_fast (kernel), 27
kernel_DBY_crit (kernel), 27
kernel_DBY_fast (kernel), 27

plot(), 30
plot.default(), 30
plot.DiscreteFDR, 29
print.DiscreteFDR, 31
print.summary.DiscreteFDR

(summary.DiscreteFDR), 32

stats::fisher.test(), 21, 23
summary.DiscreteFDR, 32

34

	ADBH
	DBH
	DBR
	DBY
	direct.discrete.BH
	discrete.BH
	DiscreteFDR
	fast.Discrete
	fisher.pvalues.support
	generate.pvalues
	hist.DiscreteFDR
	kernel
	plot.DiscreteFDR
	print.DiscreteFDR
	summary.DiscreteFDR
	Index

