Package 'DiscreteFDR'

January 20, 2025

Type Package

Title FDR Based Multiple Testing Procedures with Adaptation for Discrete Tests

Version 2.1.0

Date 2024-12-14

Description Implementations of the multiple testing procedures for discrete tests described in the paper Döhler, Durand and Roquain (2018) ``New FDR bounds for discrete and heterogeneous tests'' <doi:10.1214/18-EJS1441>. The main procedures of the paper (HSU and HSD), their adaptive counterparts (AHSU and AHSD), and the HBR variant are available and are coded to take as input the results of a test procedure from package 'DiscreteTests', or a set of observed p-values and their discrete support under their nulls. A shortcut function to obtain such p-values and supports is also provided, along with a wrapper allowing to apply discrete procedures directly to data.

License GPL-3

Language en-US

Encoding UTF-8

Depends R (>= 3.00)

Imports Rcpp (>= 1.0.12), DiscreteTests (>= 0.2.1), lifecycle, checkmate, DiscreteDatasets

LinkingTo Rcpp, RcppArmadillo

Suggests rmarkdown, knitr, R.rsp, kableExtra

VignetteBuilder knitr, R.rsp

URL https://github.com/DISOhda/DiscreteFDR

BugReports https://github.com/DISOhda/DiscreteFDR/issues

RoxygenNote 7.3.2

NeedsCompilation yes

Author Sebastian Döhler [aut, ctb] (<https://orcid.org/0000-0002-0321-6355>), Florian Junge [aut, ctb, cre] (<https://orcid.org/0009-0001-6856-6938>), Guillermo Durand [aut, ctb] (<https://orcid.org/0000-0003-4056-5631>), Etienne Roquain [ctb], Christina Kihn [ctb]

Maintainer Florian Junge <diso.fbmn@h-da.de>

Repository CRAN

Date/Publication 2024-12-14 14:50:02 UTC

Contents

ADBH	2
DBH	5
DBR	8
DBY	11
direct.discrete.BH	13
discrete.BH	15
DiscreteFDR	18
fast.Discrete	20
fisher.pvalues.support	22
generate.pvalues	24
hist.DiscreteFDR	26
kernel	27
plot.DiscreteFDR	29
print.DiscreteFDR	31
summary.DiscreteFDR	32
	34

Index

ADBH

Wrapper Functions for the Adaptive Discrete Benjamini-Hochberg Procedure

Description

ADBH() is a wrapper function of discrete.BH() for computing [AHSU] and [AHSD], which are more powerful than [HSU] and [HSD], respectively. It simply passes its arguments to discrete.BH() with fixed adaptive = TRUE and is computationally more demanding than DBH().

Usage

```
ADBH(test.results, ...)
## Default S3 method:
ADBH(
   test.results,
   pCDFlist,
   alpha = 0.05,
   direction = "su",
```

ADBH

```
ret.crit.consts = FALSE,
select.threshold = 1,
pCDFlist.indices = NULL,
...
)
## S3 method for class 'DiscreteTestResults'
ADBH(
test.results,
alpha = 0.05,
direction = "su",
ret.crit.consts = FALSE,
select.threshold = 1,
...
)
```

Arguments

test.results	either a numeric vector with <i>p</i> -values or an R6 object of class DiscreteTestResults from package DiscreteTests for which a discrete FDR procedure is to be performed.	
	further arguments to be passed to or from other methods. They are ignored here.	
pCDFlist	list of the supports of the CDFs of the <i>p</i> -values; each list item must be a numeric vector, which is sorted in increasing order and whose last element equals 1.	
alpha	single real number strictly between 0 and 1 indicating the target FDR level.	
direction	single character string specifying whether to perform a step-up ("su"; the de- fault) or step-down procedure ("sd").	
ret.crit.consts		
	single boolean specifying whether critical constants are to be computed.	
select.threshold		
	single real number strictly between 0 and 1 indicating the largest raw p -value to be considered, i.e. only p -values below this threshold are considered and the procedures are adjusted in order to take this selection effect into account; if threshold = 1 (the default), all raw p -values are selected.	
pCDFlist.indices		
	list of numeric vectors containing the test indices that indicate to which raw <i>p</i> -value each unique support in pCDFlist belongs; ignored if the lengths of test.results and pCDFlist are equal.	

Details

Computing critical constants (ret.crit.consts = TRUE) requires considerably more execution time, especially if the number of unique supports is large. We recommend that users should only have them calculated when they need them, e.g. for illustrating the rejection set in a plot or other theoretical reasons.

Value

A DiscreteFDR S3 class object whose elements are:

Rejected	rejected raw p-values.	
Indices	indices of rejected hypotheses.	
Num.rejected	number of rejections.	
Adjusted	adjusted p-values (only for step-down direction).	
Critical.consta	ints	
	critical values (only exists if computations where performed with ret.crit.consts = TRUE).	
Data	list with input data.	
Data\$Method	character string describing the used algorithm, e.g. 'Discrete Benjamini-Hochberg procedure (step-up)'	
Data\$Raw.pvalues		
	observed <i>p</i> -values.	
Data\$pCDFlist	list of the <i>p</i> -value supports.	
Data\$FDR.level	FDR level alpha.	
Data\$Data.name	the respective variable names of the input data.	
Select	list with data related to <i>p</i> -value selection; only exists if select.threshold < 1.	
Select\$Threshold		
	<i>p</i> -value selection threshold (select.threshold).	
Select\$Effective.Thresholds		
	results of each <i>p</i> -value CDF evaluated at the selection threshold.	
Select\$Pvalues	selected <i>p</i> -values that are \leq selection threshold.	
Select\$Indices	indices of <i>p</i> -values \leq selection threshold.	
Select\$Scaled	scaled selected p-values.	
Select\$Number	number of selected p -values \leq selection threshold.	

References

Döhler, S., Durand, G., & Roquain, E. (2018). New FDR bounds for discrete and heterogeneous tests. *Electronic Journal of Statistics*, *12*(1), pp. 1867-1900. doi:10.1214/18EJS1441

See Also

discrete.BH(), DBH(), DBR(), DBY()

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1) X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2) N1 <- rep(148, 9) N2 <- rep(132, 9) Y1 <- N1 - X1 Y2 <- N2 - X2

DBH

```
df <- data.frame(X1, Y1, X2, Y2)
df
# Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")</pre>
raw.pvalues <- test.result$get_pvalues()</pre>
pCDFlist <- test.result$get_pvalue_supports()</pre>
# ADBH (step-up) without critical values; using test results object
ADBH.su.fast <- ADBH(test.result)</pre>
summary(ADBH.su.fast)
# ADBH (step-down) without critical values; using extracted p-values
# and supports
ADBH.sd.fast <- ADBH(raw.pvalues, pCDFlist, direction = "sd")
summary(ADBH.sd.fast)
# ADBH (step-up) with critical values; using extracted p-values and supports
ADBH.su.crit <- ADBH(raw.pvalues, pCDFlist, ret.crit.consts = TRUE)
summary(ADBH.su.crit)
# ADBH (step-down) with critical values; using test results object
ADBH.sd.crit <- ADBH(test.result, direction = "sd", ret.crit.consts = TRUE)
summary(ADBH.sd.crit)
```

DBH

Wrapper Functions for the Discrete Benjamini-Hochberg Procedure

Description

DBH() is a wrapper function of discrete.BH() for computing [HSU] and [HSD]. It simply passes its arguments to discrete.BH() with fixed adaptive = FALSE.

Usage

```
DBH(test.results, ...)
## Default S3 method:
DBH(
   test.results,
   pCDFlist,
   alpha = 0.05,
   direction = "su",
   ret.crit.consts = FALSE,
   select.threshold = 1,
   pCDFlist.indices = NULL,
   ...
)
```

```
## S3 method for class 'DiscreteTestResults'
DBH(
   test.results,
   alpha = 0.05,
   direction = "su",
   ret.crit.consts = FALSE,
   select.threshold = 1,
   ...
)
```

Arguments

test.results	either a numeric vector with <i>p</i> -values or an R6 object of class DiscreteTestResults from package DiscreteTests for which a discrete FDR procedure is to be performed.	
	further arguments to be passed to or from other methods. They are ignored here.	
pCDFlist	list of the supports of the CDFs of the <i>p</i> -values; each list item must be a numeric vector, which is sorted in increasing order and whose last element equals 1.	
alpha	single real number strictly between 0 and 1 indicating the target FDR level.	
direction	single character string specifying whether to perform a step-up ("su"; the de- fault) or step-down procedure ("sd").	
ret.crit.consts		
	single boolean specifying whether critical constants are to be computed.	
select.threshold		
	single real number strictly between 0 and 1 indicating the largest raw p -value to be considered, i.e. only p -values below this threshold are considered and the procedures are adjusted in order to take this selection effect into account; if threshold = 1 (the default), all raw p -values are selected.	
pCDFlist.indices		
	list of numeric vectors containing the test indices that indicate to which raw p -value each unique support in pCDFlist belongs; ignored if the lengths of test.results and pCDFlist are equal.	

Details

Computing critical constants (ret.crit.consts = TRUE) requires considerably more execution time, especially if the number of unique supports is large. We recommend that users should only have them calculated when they need them, e.g. for illustrating the rejection set in a plot or other theoretical reasons.

Value

A DiscreteFDR S3 class object whose elements are:

Rejected	rejected raw <i>p</i> -values.
Indices	indices of rejected hypotheses.

DBH

Num.rejected	number of rejections.
Adjusted	adjusted <i>p</i> -values (only for step-down direction).
Critical.consta	ants
	critical values (only exists if computations where performed with ret.crit.consts = TRUE).
Data	list with input data.
Data\$Method	character string describing the used algorithm, e.g. 'Discrete Benjamini-Hochberg procedure (step-up)'
Data\$Raw.pvalue	25
	observed <i>p</i> -values.
Data\$pCDFlist	list of the <i>p</i> -value supports.
Data\$FDR.level	FDR level alpha.
Data\$Data.name	the respective variable names of the input data.
Select	list with data related to <i>p</i> -value selection; only exists if select.threshold < 1.
Select\$Threshol	.d
	<i>p</i> -value selection threshold (select.threshold).
Select\$Effectiv	ve.Thresholds
	results of each <i>p</i> -value CDF evaluated at the selection threshold.
Select\$Pvalues	selected <i>p</i> -values that are \leq selection threshold.
Select\$Indices	indices of p -values \leq selection threshold.
Select\$Scaled	scaled selected <i>p</i> -values.
Select\$Number	number of selected p -values \leq selection threshold.

References

Döhler, S., Durand, G., & Roquain, E. (2018). New FDR bounds for discrete and heterogeneous tests. *Electronic Journal of Statistics*, *12*(1), pp. 1867-1900. doi:10.1214/18EJS1441

See Also

discrete.BH(), ADBH(), DBR(), DBY()

Examples

```
X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df
# Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")</pre>
```

```
pCDFlist <- test.result$get_pvalue_supports()
# DBH (step-up) without critical values; using test results object
DBH.su.fast <- DBH(test.result)
summary(DBH.su.fast)
# DBH (step-down) without critical values; using extracted p-values
# and supports
DBH.sd.fast <- DBH(raw.pvalues, pCDFlist, direction = "sd")
summary(DBH.sd.fast)
# DBH (step-up) with critical values; using extracted p-values and supports
DBH.su.crit <- DBH(raw.pvalues, pCDFlist, ret.crit.consts = TRUE)
summary(DBH.sd.crit)
# DBH (step-down) with critical values; using test results object
DBH.sd.crit <- DBH(test.result, direction = "sd", ret.crit.consts = TRUE)
summary(DBH.sd.crit)</pre>
```

DBR

The Discrete Blanchard-Roquain Procedure

Description

Applies the [HBR- λ] procedure, with or without computing the critical constants, to a set of p-values and their respective discrete supports.

Usage

```
DBR(test.results, ...)
## Default S3 method:
DBR(
  test.results,
  pCDFlist,
  alpha = 0.05,
  lambda = NULL,
  ret.crit.consts = FALSE,
  select.threshold = 1,
  pCDFlist.indices = NULL,
  . . .
)
## S3 method for class 'DiscreteTestResults'
DBR(
  test.results,
  alpha = 0.05,
```

```
lambda = NULL,
ret.crit.consts = FALSE,
select.threshold = 1,
...
```

Arguments

test.results	either a numeric vector with <i>p</i> -values or an R6 object of class DiscreteTestResults from package DiscreteTests for which a discrete FDR procedure is to be performed.	
	further arguments to be passed to or from other methods. They are ignored here.	
pCDFlist	list of the supports of the CDFs of the <i>p</i> -values; each list item must be a numeric vector, which is sorted in increasing order and whose last element equals 1.	
alpha	single real number strictly between 0 and 1 indicating the target FDR level.	
lambda	real number strictly between 0 and 1 specifying the DBR tuning parameter; if lambda = NULL (the default), lambda is chosen to be equal to alpha.	
ret.crit.consts		
	single boolean specifying whether critical constants are to be computed.	
select.threshold		
	single real number strictly between 0 and 1 indicating the largest raw p -value to be considered, i.e. only p -values below this threshold are considered and the procedures are adjusted in order to take this selection effect into account; if threshold = 1 (the default), all raw p -values are selected.	
pCDFlist.indices		
	list of numeric vectors containing the test indices that indicate to which raw p -value each unique support in pCDFlist belongs; ignored if the lengths of test.results and pCDFlist are equal.	

Details

 $[DBR-\lambda]$ is the discrete version of the $[Blanchard-Roquain-\lambda]$ procedure (see References). The authors of the latter suggest to take lambda = alpha (see their Proposition 17), which explains the choice of the default value here.

Computing critical constants (ret.crit.consts = TRUE) requires considerably more execution time, especially if the number of unique supports is large. We recommend that users should only have them calculated when they need them, e.g. for illustrating the rejection set in a plot or other theoretical reasons.

Value

A DiscreteFDR S3 class object whose elements are:

Rejected	rejected raw <i>p</i> -values.
Indices	indices of rejected hypotheses.
Num.rejected	number of rejections.
Adjusted	adjusted <i>p</i> -values.

	Critical.constants		
		critical values (only exists if computations where performed with ret.crit.consts = TRUE).	
	Data	list with input data.	
	Data\$Method	character string describing the used algorithm, e.g. 'Discrete Benjamini-Hochberg procedure (step-up)'	
	Data\$Raw.pvalue	25	
		observed <i>p</i> -values.	
	Data\$pCDFlist	list of the <i>p</i> -value supports.	
	Data\$FDR.level	FDR level alpha.	
	Data\$DBR.Tuning	5	
		value of the tuning parameter lambda.	
	Data\$Data.name	the respective variable names of the input data.	
	Select	list with data related to p -value selection; only exists if select.threshold < 1.	
Select\$Threshold			
		<i>p</i> -value selection threshold (select.threshold).	
	Select\$Effectiv		
		results of each <i>p</i> -value CDF evaluated at the selection threshold.	
	Select\$Pvalues	selected <i>p</i> -values that are \leq selection threshold.	
	Select\$Indices	indices of p -values \leq selection threshold.	
	Select\$Scaled	scaled selected <i>p</i> -values.	
	Select\$Number	number of selected p -values \leq selection threshold.	

References

: G. Blanchard and E. Roquain (2009). Adaptive false discovery rate control under independence and dependence. *Journal of Machine Learning Research*, *10*, pp. 2837-2871. doi:10.48550/arXiv.0707.0536

See Also

discrete.BH(), DBH(), ADBH(), DBY()

Examples

```
X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)

X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)

N1 <- rep(148, 9)

N2 <- rep(132, 9)

Y1 <- N1 - X1

Y2 <- N2 - X2

df <- data.frame(X1, Y1, X2, Y2)

df
```

Compute p-values and their supports of Fisher's exact test test.result <- generate.pvalues(df, "fisher")</pre>

```
raw.pvalues <- test.result$get_pvalues()
pCDFlist <- test.result$get_pvalue_supports()
# DBR without critical values; using test results object
DBR.fast <- DBR(test.result)
summary(DBR.fast)
# DBR with critical values; using extracted p-values and supports
DBR.crit <- DBR(raw.pvalues, pCDFlist, ret.crit.consts = TRUE)
summary(DBR.crit)</pre>
```

DBY

The Discrete Benjamini-Yekutieli Procedure

Description

Applies the Discrete Benjamini-Yekutieli procedure, with or without computing the critical constants, to a set of *p*-values and their respective discrete supports.

Usage

```
DBY(test.results, ...)
## Default S3 method:
DBY(
  test.results,
  pCDFlist,
  alpha = 0.05,
  ret.crit.consts = FALSE,
  select.threshold = 1,
  pCDFlist.indices = NULL,
  . . .
)
## S3 method for class 'DiscreteTestResults'
DBY(
  test.results,
  alpha = 0.05,
  ret.crit.consts = FALSE,
  select.threshold = 1,
  . . .
)
```

Arguments

```
test.results either a numeric vector with p-values or an R6 object of class DiscreteTestResults from package DiscreteTests for which a discrete FDR procedure is to be performed.
```

	further arguments to be passed to or from other methods. They are ignored here.	
pCDFlist	list of the supports of the CDFs of the <i>p</i> -values; each list item must be a numeric vector, which is sorted in increasing order and whose last element equals 1.	
alpha	single real number strictly between 0 and 1 indicating the target FDR level.	
ret.crit.consts	5	
	single boolean specifying whether critical constants are to be computed.	
select.threshold		
	single real number strictly between 0 and 1 indicating the largest raw p -value to be considered, i.e. only p -values below this threshold are considered and the procedures are adjusted in order to take this selection effect into account; if threshold = 1 (the default), all raw p -values are selected.	
pCDFlist.indices		
	list of numeric vectors containing the test indices that indicate to which raw p -value each unique support in pCDFlist belongs; ignored if the lengths of test.results and pCDFlist are equal.	

Details

Computing critical constants (ret.crit.consts = TRUE) requires considerably more execution time, especially if the number of unique supports is large. We recommend that users should only have them calculated when they need them, e.g. for illustrating the rejection set in a plot or other theoretical reasons.

Value

A DiscreteFDR S3 class object whose elements are:

Rejected	rejected raw <i>p</i> -values.	
Indices	indices of rejected hypotheses.	
Num.rejected	number of rejections.	
Adjusted	adjusted p-values (only for step-down direction).	
Critical.consta	ants	
	critical values (only exists if computations where performed with ret.crit.consts = TRUE).	
Data	list with input data.	
Data\$Method	character string describing the used algorithm, e.g. 'Discrete Benjamini-Hochberg procedure (step-up)'	
Data\$Raw.pvalues		
	observed <i>p</i> -values.	
Data\$pCDFlist	list of the <i>p</i> -value supports.	
Data\$FDR.level	FDR level alpha.	
Data\$Data.name	the respective variable names of the input data.	
Select	list with data related to p -value selection; only exists if select.threshold < 1.	
Select\$Threshold		
	<i>p</i> -value selection threshold (select.threshold).	

Select\$Effective.Thresholds		
	results of each <i>p</i> -value CDF evaluated at the selection threshold.	
Select\$Pvalues	selected <i>p</i> -values that are \leq selection threshold.	
Select\$Indices	indices of p -values \leq selection threshold.	
Select\$Scaled	scaled selected <i>p</i> -values.	
Select\$Number	number of selected p -values \leq selection threshold.	

References

Döhler, S. (2018). A discrete modification of the Benjamini-Yekutieli procedure. Econometrics and Statistics, 5, pp. 137-147. doi:10.1016/j.ecosta.2016.12.002

See Also

discrete.BH(), DBH(), ADBH(), DBR()

Examples

```
X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df
# Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")</pre>
raw.pvalues <- test.result$get_pvalues()</pre>
pCDFlist <- test.result$get_pvalue_supports()</pre>
# DBY without critical values; using test results object
DBY.fast <- DBY(test.result)</pre>
summary(DBY.fast)
# DBY with critical values; using extracted p-values and supports
DBY.crit <- DBY(raw.pvalues, pCDFlist, ret.crit.consts = TRUE)</pre>
summary(DBY.crit)
```

direct.discrete.BH Direct Application of Multiple Testing Procedures to Dataset

Description

Apply the [HSU], [HSD], [AHSU] or [AHSD] procedure, with or without computing the critical constants, to a data set of 2x2 contingency tables using Fisher's exact tests which may have to be transformed before computing p-values.

Usage

```
direct.discrete.BH(
   dat,
   test.fun,
   test.args = NULL,
   alpha = 0.05,
   direction = "su",
   adaptive = FALSE,
   ret.crit.consts = FALSE,
   select.threshold = 1,
   preprocess.fun = NULL,
   preprocess.args = NULL
)
```

Arguments

dat	input data; must be suitable for the first parameter of the provided preprocess.fun function or, if preprocess.fun is NULL, for the first parameter of the test.fun function.
test.fun	function from package DiscreteTests, i.e. one whose name ends with *_test_pv and which performs hypothesis tests and provides an object with <i>p</i> -values and their support sets; can be specified by a single character string (which is automatically checked for being a suitable function from that package and may be abbreviated) or a single function object.
test.args	optional named list with arguments for test.fun; the names of the list fields must match the test function's parameter names. The first parameter of the test function (i.e. the data) MUST NOT be included!
alpha	single real number strictly between 0 and 1 indicating the target FDR level.
direction	single character string specifying whether to perform a step-up ("su"; the default) or step-down procedure ("sd").
adaptive	single boolean specifying whether to conduct an adaptive procedure or not.
ret.crit.consts	
	single boolean specifying whether critical constants are to be computed.
<pre>select.threshol</pre>	d
	single real number strictly between 0 and 1 indicating the largest raw <i>p</i> -value to be considered, i.e. only <i>p</i> -values below this threshold are considered and the procedures are adjusted in order to take this selection effect into account; if threshold = 1 (the default), all raw <i>p</i> -values are selected.
preprocess.fun	optional function for pre-processing the input data; its result must be suitable for the first parameter of the test.fun function.
preprocess.args	
	optional named list with arguments for preprocess.fun; the names of the list fields must match the pre-processing function's parameter names. The first parameter of the test function (i.e. the data) MUST NOT be included!

discrete.BH

Examples

```
X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df
DBH.su <- direct.discrete.BH(df, "fisher", direction = "su")</pre>
summary(DBH.su)
DBH.sd <- direct.discrete.BH(df, "fisher", direction = "sd")</pre>
DBH.sd$Adjusted
summary(DBH.sd)
ADBH.su <- direct.discrete.BH(df, "fisher", direction = "su",</pre>
                               adaptive = TRUE)
summary(ADBH.su)
ADBH.sd <- direct.discrete.BH(df, "fisher", direction = "sd",</pre>
                               adaptive = TRUE)
ADBH.sd$Adjusted
summary(ADBH.sd)
```

discrete.BH	The Discrete Benjamini-Hochberg Procedure
-------------	---

Description

Applies the [HSU], [HSD], [AHSU] and [AHSD] procedures at a given FDR level, with or without computing the critical constants, to a set of p-values and their respective discrete supports.

Usage

```
discrete.BH(test.results, ...)
## Default S3 method:
discrete.BH(
  test.results,
  pCDFlist,
  alpha = 0.05,
  direction = "su",
  adaptive = FALSE,
  ret.crit.consts = FALSE,
  select.threshold = 1,
```

```
pCDFlist.indices = NULL,
....)
## S3 method for class 'DiscreteTestResults'
discrete.BH(
  test.results,
  alpha = 0.05,
  direction = "su",
  adaptive = FALSE,
  ret.crit.consts = FALSE,
  select.threshold = 1,
  ....)
```

Arguments

test.results	either a numeric vector with <i>p</i> -values or an R6 object of class DiscreteTestResults from package DiscreteTests for which a discrete FDR procedure is to be performed.	
	further arguments to be passed to or from other methods. They are ignored here.	
pCDFlist	list of the supports of the CDFs of the <i>p</i> -values; each list item must be a numeric vector, which is sorted in increasing order and whose last element equals 1.	
alpha	single real number strictly between 0 and 1 indicating the target FDR level.	
direction	single character string specifying whether to perform a step-up ("su"; the de- fault) or step-down procedure ("sd").	
adaptive	single boolean specifying whether to conduct an adaptive procedure or not.	
ret.crit.const	S	
	single boolean specifying whether critical constants are to be computed.	
select.threshold		
	single real number strictly between 0 and 1 indicating the largest raw p -value to be considered, i.e. only p -values below this threshold are considered and the procedures are adjusted in order to take this selection effect into account; if threshold = 1 (the default), all raw p -values are selected.	
pCDFlist.indices		
	list of numeric vectors containing the test indices that indicate to which raw <i>p</i> -value each unique support in pCDFlist belongs; ignored if the lengths of test.results and pCDFlist are equal.	

Details

The adaptive variants [AHSU] and [AHSD], which are executed via adaptive = TRUE, are often slightly more powerful than [HSU] and [HSD], respectively. But they are also computationally more demanding.

Computing critical constants (ret.crit.consts = TRUE) requires considerably more execution time, especially if the number of unique supports is large. We recommend that users should only have them calculated when they need them, e.g. for illustrating the rejection set in a plot or other theoretical reasons.

discrete.BH

Value

A DiscreteFDR S3 class object whose elements are:

Rejected	rejected raw p-values.	
Indices	indices of rejected hypotheses.	
Num.rejected	number of rejections.	
Adjusted	adjusted p-values (only for step-down direction).	
Critical.consta	ints	
	critical values (only exists if computations where performed with ret.crit.consts = TRUE).	
Data	list with input data.	
Data\$Method	character string describing the used algorithm, e.g. 'Discrete Benjamini-Hochberg procedure (step-up)'	
Data\$Raw.pvalue	S	
	observed <i>p</i> -values.	
Data\$pCDFlist	list of the <i>p</i> -value supports.	
Data\$FDR.level	FDR level alpha.	
Data\$Data.name	the respective variable names of the input data.	
Select	list with data related to <i>p</i> -value selection; only exists if select.threshold < 1.	
Select\$Threshol	.d	
	<i>p</i> -value selection threshold (select.threshold).	
Select\$Effectiv		
	results of each <i>p</i> -value CDF evaluated at the selection threshold.	
Select\$Pvalues	selected <i>p</i> -values that are \leq selection threshold.	
Select\$Indices	indices of <i>p</i> -values \leq selection threshold.	
Select\$Scaled	scaled selected p-values.	
Select\$Number	number of selected p -values \leq selection threshold.	

References

Döhler, S., Durand, G., & Roquain, E. (2018). New FDR bounds for discrete and heterogeneous tests. *Electronic Journal of Statistics*, *12*(1), pp. 1867-1900. doi:10.1214/18EJS1441

See Also

DBH(), ADBH(), DBR(), DBY()

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1) X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2) N1 <- rep(148, 9) N2 <- rep(132, 9) Y1 <- N1 - X1 Y2 <- N2 - X2

```
df <- data.frame(X1, Y1, X2, Y2)
df
# Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")</pre>
raw.pvalues <- test.result$get_pvalues()</pre>
pCDFlist <- test.result$get_pvalue_supports()</pre>
# DBH (step-up) without critical values; using test results object
DBH.su.fast <- discrete.BH(test.result)</pre>
summary(DBH.su.fast)
# DBH (step-down) without critical values; using extracted p-values
# and supports
DBH.sd.fast <- discrete.BH(raw.pvalues, pCDFlist, direction = "sd")
summary(DBH.sd.fast)
# DBH (step-up) with critical values; using extracted p-values and supports
DBH.su.crit <- discrete.BH(raw.pvalues, pCDFlist, ret.crit.consts = TRUE)</pre>
summary(DBH.su.crit)
# DBH (step-down) with critical values; using test results object
DBH.sd.crit <- discrete.BH(test.result, direction = "sd",</pre>
                           ret.crit.consts = TRUE)
summary(DBH.sd.crit)
# ADBH (step-up) without critical values; using test results object
ADBH.su.fast <- discrete.BH(test.result, adaptive = TRUE)
summary(ADBH.su.fast)
# ADBH (step-down) without critical values; using extracted p-values
# and supports
ADBH.sd.fast <- discrete.BH(raw.pvalues, pCDFlist, direction = "sd",
                              adaptive = TRUE)
summary(ADBH.sd.fast)
# ADBH (step-up) with critical values; using extracted p-values and supports
ADBH.su.crit <- discrete.BH(raw.pvalues, pCDFlist, adaptive = TRUE,
                             ret.crit.consts = TRUE)
summary(ADBH.su.crit)
# ADBH (step-down) with critical values; using test results object
ADBH.sd.crit <- discrete.BH(test.result, direction = "sd", adaptive = TRUE,
                             ret.crit.consts = TRUE)
summary(ADBH.sd.crit)
```

DiscreteFDR

FDR-based Multiple Testing Procedures with Adaptation for Discrete Tests

DiscreteFDR

Description

This package implements the [HSU], [HSD], [AHSU], [AHSD] and [HBR- λ] procedures for discrete tests (see References).

Details

The functions are reorganized from the reference paper in the following way. discrete.BH() (for Discrete Benjamini-Hochberg) implements [HSU], [HSD], [AHSU] and [AHSD], while DBR() (for Discrete Blanchard-Roquain) implements [HBR- λ]. DBH() and ADBH() are wrapper functions for discrete.BH() to access [HSU] and [HSD], as well as [AHSU] and [AHSD] directly.

This package is part of a package family to which the DiscreteDatasets and DiscreteTests packages also belong. The latter allows to compute p-values and their respective supports for various tests. The objects that contain these results can be used directly by the discrete.BH(), DBH(), ADBH() and DBR() functions. Alternatively, these functions also accept a vector of raw observed p-values and a list of the respective discrete supports of the CDFs of the p-values.

Note: The former function fisher.pvalues.support(), which allows to compute such p-values and supports in the framework of a Fisher's exact test, is now deprecated and should not be used anymore. It has been replaced by generate.pvalues().

The same applies for the function fast.Discrete(), which is a wrapper for fisher.pvalues.support() and discrete.BH() and allows to apply discrete procedures directly to a data set of contingency tables and perform data preprocessing before p-values are computed. It is also now deprecated and has been replaced by direct.discrete.BH(), but for more flexibility, users may employ pipes, e.g.

```
data |>
DiscreteDatasets::reconstruct_*(<args>) |>
DiscreteTests::*.test.pv(<args>) |>
discrete.BH(<args>).
```

Author(s)

Maintainer: Florian Junge <diso.fbmn@h-da.de> (ORCID) [contributor]

Authors:

- Sebastian Döhler <sebastian.doehler@h-da.de> (ORCID) [contributor]
- Guillermo Durand (ORCID) [contributor]

Other contributors:

- Etienne Roquain [contributor]
- Christina Kihn [contributor]

References

Döhler, S., Durand, G., & Roquain, E. (2018). New FDR bounds for discrete and heterogeneous tests. *Electronic Journal of Statistics*, *12*(1), pp. 1867-1900. doi:10.1214/18EJS1441

G. Blanchard and E. Roquain (2009). Adaptive false discovery rate control under independence and dependence. *Journal of Machine Learning Research*, *10*, pp. 2837-2871. doi:10.48550/arXiv.0707.0536

Döhler, S. (2018). A discrete modification of the Benjamini–Yekutieli procedure. *Econometrics and Statistics*, 5, pp. 137-147. doi:10.1016/j.ecosta.2016.12.002

See Also

Useful links:

- https://github.com/DISOhda/DiscreteFDR
- Report bugs at https://github.com/DISOhda/DiscreteFDR/issues

fast.Discrete Fast Application of Discrete Multiple Testing Procedures

Description

[Deprecated]

Apply the [HSU], [HSD], [AHSU] or [AHSD] procedure, without computing the critical constants, to a data set of 2x2 contingency tables which may have to be preprocessed in order to have the correct structure for computing p-values using Fisher's exact test.

```
Note: This function is deprecated and will be removed in a future version. Please use direct.discrete.BH()
with test.fun = DiscreteTests::fisher.test.pv and (optional) preprocess.fun = DiscreteDatasets::reconstruct
or preprocess.fun = DiscreteDatasets::reconstruct_four instead. Alternatively, use a pipeline,
e.g.
data |>
DiscreteDatasets::reconstruct_*(<args>) |>
DiscreteTests::*.test.pv(<args>) |>
```

discrete.BH(<args>).

Usage

```
fast.Discrete(
   counts,
   alternative = "greater",
   input = "noassoc",
   alpha = 0.05,
   direction = "su",
   adaptive = FALSE,
   select.threshold = 1
}
```

```
)
```

Arguments

counts

a data frame of two or four columns and any number of lines; each line representing a 2x2 contingency table to test. The number of columns and what they must contain depend on the value of the input argument (see Details section of fisher.pvalues.support()).

fast.Discrete

<pre>same argument as in stats::fisher.test(). The three possible values are "greater" (default), "two.sided" or "less" (may be abbreviated).</pre>		
the format of the input data frame (see Details section of fisher.pvalues.support(). The three possible values are "noassoc" (default), "marginal" or "HG2011" (may be abbreviated).		
single real number strictly between 0 and 1 indicating the target FDR level.		
single character string specifying whether to perform a step-up ("su"; the default) or step-down procedure ("sd").		
single boolean specifying whether to conduct an adaptive procedure or not.		
select.threshold		
single real number strictly between 0 and 1 indicating the largest raw p-value		
to be considered, i.e. only <i>p</i> -values below this threshold are considered and the procedures are adjusted in order to take this selection effect into account; if threshold = 1 (the default), all raw <i>p</i> -values are selected.		

Value

A DiscreteFDR S3 class object whose elements are:

Rejected	rejected raw <i>p</i> -values.	
Indices	indices of rejected hypotheses.	
Num.rejected	number of rejections.	
Adjusted	adjusted p-values (only for step-down direction).	
Critical.consta	ints	
	<pre>critical values (only exists if computations where performed with ret.crit.consts = TRUE).</pre>	
Data	list with input data.	
Data\$Method	character string describing the used algorithm, e.g. 'Discrete Benjamini-Hochberg procedure (step-up)'	
Data\$Raw.pvalue	25	
	observed <i>p</i> -values.	
Data\$pCDFlist	list of the <i>p</i> -value supports.	
Data\$FDR.level	FDR level alpha.	
Data\$Data.name	the respective variable names of the input data.	
Select	list with data related to p -value selection; only exists if select.threshold < 1.	
Select\$Threshold		
	<i>p</i> -value selection threshold (select.threshold).	
Select\$Effectiv	ve.Thresholds	
	results of each <i>p</i> -value CDF evaluated at the selection threshold.	
Select\$Pvalues	selected <i>p</i> -values that are \leq selection threshold.	
Select\$Indices	indices of p -values \leq selection threshold.	
Select\$Scaled	scaled selected <i>p</i> -values.	
Select\$Number	number of selected p -values \leq selection threshold.	
Critical.consta Data Data\$Method Data\$Method Data\$Raw.pvalue Data\$pCDFlist Data\$FDR.level Data\$Data.name Select Select\$Threshol Select\$Effectiv Select\$Pvalues Select\$Indices Select\$Scaled	ints critical values (only exists if computations where performed with ret.crit.consts = TRUE). list with input data. character string describing the used algorithm, e.g. 'Discrete Benjamini-Hochberg procedure (step-up)' s observed p-values. list of the p-value supports. FDR level alpha. the respective variable names of the input data. list with data related to p-value selection; only exists if select.threshold < 1. d p-value selection threshold (select.threshold). e. Thresholds results of each p-value CDF evaluated at the selection threshold. selected p-values that are \leq selection threshold. indices of p-values \leq selection threshold. scaled selected p-values.	

See Also

fisher.pvalues.support(), discrete.BH()

Examples

```
X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df
DBH.su <- fast.Discrete(df, input = "noassoc", direction = "su")</pre>
summary(DBH.su)
DBH.sd <- fast.Discrete(df, input = "noassoc", direction = "sd")</pre>
DBH.sd$Adjusted
summary(DBH.sd)
ADBH.su <- fast.Discrete(df, input = "noassoc", direction = "su",
                          adaptive = TRUE)
summary(ADBH.su)
ADBH.sd <- fast.Discrete(df, input = "noassoc", direction = "sd",
                          adaptive = TRUE)
ADBH.sd$Adjusted
summary(ADBH.sd)
```

fisher.pvalues.support

Computing Discrete P-Values and Their Supports for Fisher's Exact Test

Description

[Deprecated]

Computes discrete raw p-values and their support for Fisher's exact test applied to 2x2 contingency tables summarizing counts coming from two categorical measurements.

```
Note: This function is deprecated and will be removed in a future version. Please use generate.pvalues()
with test.fun = DiscreteTests::fisher.test.pv and (optional) preprocess.fun = DiscreteDatasets::reconstruct
or preprocess.fun = DiscreteDatasets::reconstruct_four instead. Alternatively, use a pipeline
like
data |>
DiscreteDatasets::reconstruct_*(<args>) |>
DiscreteTests::fisher.test.pv(<args>)
```

fisher.pvalues.support

Usage

fisher.pvalues.support(counts, alternative = "greater", input = "noassoc")

Arguments

counts	a data frame of two or four columns and any number of lines; each line represents a $2x^2$ contingency table to test. The number of columns and what they must contain depend on the value of the input argument, see Details.
alternative	same argument as in stats::fisher.test(). The three possible values are "greater" (default), "two.sided" or "less" and you can specify just the initial letter.
input	the format of the input data frame, see Details. The three possible values are "noassoc" (default), "marginal" or "HG2011" and you can specify just the initial letter.

Details

Assume that each contingency tables compares two variables and resumes the counts of association or not with a condition. This can be resumed in the following table:

	Association	No association	Total
Variable 1	X_1	Y_1	N_1
Variable 2	X_2	Y_2	N_2
Total	$X_1 + X_2$	$Y_1 + Y_2$	$N_1 + N_2$

If input="noassoc", counts has four columns which respectively contain, X_1 , Y_1 , X_2 and Y_2 . If input="marginal", counts has four columns which respectively contain X_1 , N_1 , X_2 and N_2 .

If input="HG2011", we are in the situation of the amnesia data set as in Heller & Gur (2011, see References). Each contingency table is obtained from one variable which is compared to all other variables of the study. That is, counts for "second variable" are replaced by the sum of the counts of the other variables:

	Association	No association	Total
Variable j	X_j	Y_j	N_{j}
Variables $\neq j$	$\sum_{i \neq j} X_i$	$\sum_{i \neq j} Y_i$	$\sum_{i \neq j} N_i$
Total	$\sum X_i$	$\sum Y_i$	$\sum N_i$

Hence counts needs to have only two columns which respectively contain X_j and Y_j .

The code for the computation of the p-values of Fisher's exact test is inspired by the example in the help page of p.discrete.adjust of package discreteMTP, which is no longer available on CRAN.

See the Wikipedia article about Fisher's exact test, paragraph Example, for a good depiction of what the code does for each possible value of alternative.

Value

A list of two elements:

raw	raw discrete p-values.
support	a list of the supports of the CDFs of the p-values. Each support is represented by a vector in increasing order.

References

R. Heller and H. Gur (2011). False discovery rate controlling procedures for discrete tests. arXiv preprint. arXiv:1112.4627v2.

"Fisher's exact test", Wikipedia, The Free Encyclopedia, accessed 2024-12-14, link.

See Also

fisher.test()

Examples

```
X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df
# Compute p-values and their supports of Fisher's exact test
df.formatted <- fisher.pvalues.support(counts = df, input = "noassoc")
raw.pvalues <- df.formatted$raw
pCDFlist <- df.formatted$support</pre>
```

generate.pvalues	Generation of P-Values and Their Supports After Data Transforma-
	tions

Description

Simple wrapper for generating p-values of discrete tests and their supports after preprocessing the input data. The user only has to provide 1.) a function that generates p-values and supports and 2.) an optional function that preprocesses (i.e. transforms) the input data (if necessary) before it can be used for p-value calculations. The respective arguments are provided

generate.pvalues

Usage

```
generate.pvalues(
  dat,
  test.fun,
  test.args = NULL,
  preprocess.fun = NULL,
  preprocess.args = NULL
)
```

Arguments

dat	input data; must be suitable for the first parameter of the provided preprocess.fun function or, if preprocess.fun is NULL, for the first parameter of the test.fun function.
test.fun	function from package DiscreteTests, i.e. one whose name ends with *_test_pw and which performs hypothesis tests and provides an object with <i>p</i> -values and their support sets; can be specified by a single character string (which is auto- matically checked for being a suitable function from that package and may be abbreviated) or a single function object.
test.args	optional named list with arguments for test.fun; the names of the list fields must match the test function's parameter names. The first parameter of the test function (i.e. the data) MUST NOT be included!
preprocess.fun	optional function for pre-processing the input data; its result must be suitable for the first parameter of the test.fun function.
preprocess.args	
	optional named list with arguments for preprocess.fun; the names of the list fields must match the pre-processing function's parameter names. The first parameter of the test function (i.e. the data) MUST NOT be included!

Value

A DiscreteTestResults R6 class object.

Examples

```
X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df
# Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")
raw.pvalues <- test.result$get_pvalues()
pCDFlist <- test.result$get_pvalue_supports()</pre>
```

```
# Compute p-values and their supports of Fisher's exact test
# with preprocessing
df2 <- data.frame(X1, N1, X2, N2)
generate.pvalues(
  dat = df2,
  test.fun = "fisher_test_pv",
  preprocess.fun = function(tab) {
    for(col in c(2, 4)) tab[, col] <- tab[, col] - tab[, col - 1]</pre>
    return(tab)
  }
)
# Compute p-values and their supports of a binomial test with preprocessing
generate.pvalues(
  dat = rbind(c(5, 2, 7), c(3, 4, 0)),
  test.fun = "binom_test_pv",
  test.args = list(n = c(9, 8, 11), p = 0.6, alternative = "two.sided"),
  preprocess.fun = colSums
)
```

hist.DiscreteFDR Histogram of Raw P-Values

Description

Computes a histogram of the raw p-values of a DiscreteFDR object.

Usage

```
## S3 method for class 'DiscreteFDR'
hist(x, breaks = "FD", mode = c("raw", "selected"), ...)
```

Arguments

х	an object of class DiscreteFDR.
breaks	as in graphics::hist(); here, the Friedman-Diaconis algorithm ("FD") is used as default.
mode	single character string specifying for which \$p\$-values the histogram is to be generated; must either be "raw" or "selected".
	<pre>further arguments to graphics::hist() or graphics::plot.histogram(), respectively.</pre>

Details

If x does not contain results of a selection approach, a warning is issued and a histogram of the raw p-values is drawn.

kernel

Value

An object of class histogram.

Examples

```
X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2)
N1 <- rep(148, 9)
N2 <- rep(132, 9)
Y1 <- N1 - X1
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df
# Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")
raw.pvalues <- test.result$get_pvalues()
pCDFlist <- test.result$get_pvalue_supports()
# DBH (SU)
DBH <- DBH(raw.pvalues, pCDFlist)
hist(DBH)
```

kernel

Kernel Functions

Description

Kernel functions that transform observed p-values or their support according to [HSU], [HSD], [AHSU], [AHSD] and [HBR- λ]. The output is used by discrete.BH or DBR, respectively. kernel_DBH_crit, kernel_ADBH_crit and kernel_DBR_crit additionally compute and return the critical constants. The end user should not use these functions directly.

Note: As of version 2.0, these functions are purely internal functions! As a consequence, they have to be called directly via :::, e.g. DiscreteFDR:::kernel_DBH_fast(). But users should **not** rely on them, as parameters (including their names, order, etc.) may be changed without notice!

Usage

```
kernel_DBH_fast(
   pCDFlist,
   pvalues,
   stepUp = FALSE,
   tau_max = NULL,
   alpha = 0.05,
   support = numeric(),
   pCDFcounts = NULL
)
```

kernel

```
kernel_DBH_crit(
  pCDFlist,
  support,
  sorted_pv,
  stepUp = FALSE,
  alpha = 0.05,
 pCDFcounts = NULL
)
kernel_ADBH_fast(
  pCDFlist,
  sorted_pv,
  stepUp = FALSE,
  alpha = 0.05,
  support = numeric(),
  pCDFcounts = NULL
)
kernel_ADBH_crit(
  pCDFlist,
  support,
  sorted_pv,
  stepUp = FALSE,
  alpha = 0.05,
  pCDFcounts = NULL
)
kernel_DBR_fast(pCDFlist, sorted_pv, lambda = 0.05, pCDFcounts = NULL)
kernel_DBR_crit(
  pCDFlist,
  support,
  sorted_pv,
  lambda = 0.05,
  alpha = 0.05,
 pCDFcounts = NULL
)
kernel_DBY_fast(pCDFlist, pvalues, pCDFcounts = NULL)
kernel_DBY_crit(pCDFlist, support, sorted_pv, alpha = 0.05, pCDFcounts = NULL)
```

Arguments

pCDFlist	list of the supports of the CDFs of the <i>p</i> -values; each list item must be a numeric vector, which is sorted in increasing order and whose last element equals 1.
pvalues	numeric vector, sorted in increasing order, that either must contain the entirety of

	all observable values of the p-value supports (when computing critical constants) or only the sorted raw p-values.
stepUp	boolean specifying whether to conduct the step-up (TRUE) or step-down (FALSE; the default) procedure.
tau_max	single real number strictly between 0 and 1 indicating the largest critical value for step-up procedures; if NULL (the default), it is computed automatically, otherwise it needs to be computed manually by the user; ignored if stepUp = FALSE.
alpha	single real number strictly between 0 and 1 indicating the target FDR level; for *_fast kernels, it is only needed, if stepUp = TRUE.
support	numeric vector, sorted in increasing order, that contains the entirety of all ob- servable values of the p-value supports; for *_fast kernels, it is ignored if stepUp = FALSE.
pCDFcounts	integer vector of counts that indicates to how many p-values each unique p-value distributions belongs.
sorted_pv	numeric vector containing the raw p-values, sorted in increasing order.
lambda	real number strictly between 0 and 1 specifying the DBR tuning parameter.

Details

When computing critical constants under step-down, that is, when using kernel_DBH_crit, kernel_ADBH_crit or kernel_DBR_crit with stepUp = FALSE (i.e. the step-down case), we still need to get transformed p-values to compute the adjusted p-values.

Value

For kernel_DBH_fast(), kernel_ADBH_fast() and kernel_DBR_fast(), a vector of transformed p-values is returned. kernel_DBH_crit, kernel_ADBH_crit and kernel_DBR_crit return a list with critical constants (\$crit.consts) and transformed p-values (\$pval.transf), but if stepUp = FALSE, there are critical values only.

See Also

discrete.BH(), direct.discrete.BH(), DBR()

plot.DiscreteFDR Plot Method for DiscreteFDR objects

Description

Plots raw p-values of a DiscreteFDR object and highlights rejected and accepted p-values. If present, the critical values are plotted, too.

Usage

```
## S3 method for class 'DiscreteFDR'
plot(
    x,
    col = c(2, 4, 1),
    pch = c(20, 20, 17),
    lwd = rep(par()$lwd, 3),
    cex = rep(par()$cex, 3),
    type.crit = "b",
    legend = NULL,
    ...
)
```

Arguments

х	object of class DiscreteFDR.
col	numeric or character vector of length 3 indicating the colors of the
	 rejected p-values accepted p-values critical values (if present).
pch	numeric or character vector of length 3 indicating the point characters of the
	 rejected p-values accepted p-values critical values (if present and type.crit is a plot type like 'p', 'b' etc.).
lwd	numeric vector of length 3 indicating the thickness of the points and lines; de- faults to current par()\$1wd setting.
cex	numeric vector of length 3 indicating the size of point characters or lines of the
	 rejected p-values accepted p-values critical values (if present).
	defaults to current par()\$cex setting.
type.crit	1-character string giving the type of plot desired for the critical values (e.g.: 'p', 'l' etc; see plot()).
legend	if NULL, no legend is plotted; otherwise expecting a character string like "topleft" etc. or a numeric vector of two elements indicating (x, y) coordinates.
	further arguments to plot.default().

Examples

X1 <- c(4, 2, 2, 14, 6, 9, 4, 0, 1) X2 <- c(0, 0, 1, 3, 2, 1, 2, 2, 2) N1 <- rep(148, 9) N2 <- rep(132, 9) Y1 <- N1 - X1

```
Y2 <- N2 - X2
df <- data.frame(X1, Y1, X2, Y2)
df
# Compute p-values and their supports of Fisher's exact test
test.result <- generate.pvalues(df, "fisher")</pre>
raw.pvalues <- test.result$get_pvalues()</pre>
pCDFlist <- test.result$get_pvalue_supports()</pre>
DBH.su.fast <- DBH(raw.pvalues, pCDFlist)</pre>
DBH.su.crit <- DBH(raw.pvalues, pCDFlist, ret.crit.consts = TRUE)</pre>
DBH.sd.fast <- DBH(test.result, direction = "sd")</pre>
DBH.sd.crit <- DBH(test.result, direction = "sd", ret.crit.consts = TRUE)</pre>
plot(DBH.sd.fast)
plot(DBH.sd.crit, xlim = c(1, 5), ylim = c(0, 0.4))
plot(DBH.su.fast, col = c(2, 4), pch = c(2, 3), lwd = c(2, 2),
     legend = "topleft", xlim = c(1, 5), ylim = c(0, 0.4))
plot(DBH.su.crit, col = c(2, 4, 1), pch = c(1, 1, 4), lwd = c(1, 1, 2),
     type.crit = 'o', legend = c(1, 0.4), lty = 1, xlim = c(1, 5),
     ylim = c(0, 0.4))
```

print.DiscreteFDR Printing DiscreteFDR results

Description

Prints the results of discrete FDR analysis, stored in a DiscreteFDR class object.

Usage

```
## S3 method for class 'DiscreteFDR'
print(x, ...)
```

Arguments

x	an object of class "DiscreteFDR".
	further arguments to be passed to or from other methods. They are ignored in this function.

Value

The input object x is invisibly returned via invisible(x).

Examples

summary.DiscreteFDR Summarizing Discrete FDR Results

Description

summary method for class DiscreteFDR.

Usage

S3 method for class 'DiscreteFDR'
summary(object, ...)

S3 method for class 'summary.DiscreteFDR'
print(x, max = NULL, ...)

Arguments

object	an object of class DiscreteFDR.
	further arguments passed to or from other methods.
х	an object of class summary.DiscreteFDR.
max	numeric or NULL, specifying the maximal number of <i>rows</i> of the p-value table to be printed. By default, when NULL, getOption("max.print") is used.

Details

summary.DiscreteFDR objects contain all data of an DiscreteFDR object, but also include an additional table which includes the raw p-values, their indices, the respective critical values (if present), the adjusted p-values (if present) and a logical column to indicate rejection. The table is sorted in ascending order by the raw p-values.

print.summary.DiscreteFDR simply prints the same output as print.DiscreteFDR, but also prints the p-value table.

Value

summary.DiscreteFDR computes and returns a list that includes all the data of an input DiscreteFDR object, plus

Tabledata.frame, sorted by the raw p-values, that contains the indices, the raw p-
values themselves, their respective critical values (if present), their adjusted p-
values (if present) and a logical column to indicate rejection.

Examples

Index

ADBH. 2 ADBH(), 7, 10, 13, 17, 19 DBH, 5 DBH(), 2, 4, 10, 13, 17, 19 DBR, 8, 27 DBR(), 4, 7, 13, 17, 19, 29 DBY, 11 DBY(), 4, 7, 10, 17 direct.discrete.BH, 13 direct.discrete.BH(), 19, 20, 29 discrete.BH, 15, 27 discrete.BH(), 2, 4, 5, 7, 10, 13, 19, 22, 29 DiscreteDatasets, 19 DiscreteFDR, 18 DiscreteFDR-package (DiscreteFDR), 18 DiscreteTestResults, 3, 6, 9, 11, 16, 25 DiscreteTests, 3, 6, 9, 11, 14, 16, 19, 25 fast.Discrete, 20 fast.Discrete(), 19 fisher.pvalues.support, 22 fisher.pvalues.support(), 19-22 fisher.test(), 24 generate.pvalues, 24 generate.pvalues(), 19, 22 graphics::hist(), 26 graphics::plot.histogram(), 26 hist.DiscreteFDR, 26 kernel, 27 kernel_ADBH_crit (kernel), 27 kernel_ADBH_fast (kernel), 27 kernel_DBH_crit (kernel), 27 kernel_DBH_fast (kernel), 27 kernel_DBR_crit (kernel), 27 kernel_DBR_fast (kernel), 27 kernel_DBY_crit (kernel), 27 kernel_DBY_fast (kernel), 27

stats::fisher.test(), 21, 23
summary.DiscreteFDR, 32