
Querying a database

Martijn J. Schuemie

2025-01-15

Contents
1 Introduction 1

2 Querying 1
2.1 Querying using Andromeda objects . 2
2.2 Querying different platforms using the same SQL . 2

3 Inserting tables 2

4 Logging all queries 2

1 Introduction
This vignette describes how to use the DatabaseConnector package to query a database. It assumes you
already know how to create a connection as described in the ‘Connecting to a database’ vignette.

2 Querying
The main functions for querying database are the querySql() and executeSql() functions. The difference
between these functions is that querySql() expects data to be returned by the database, and can handle
only one SQL statement at a time. In contrast, executeSql() does not expect data to be returned, and
accepts multiple SQL statements in a single SQL string.

Some examples:
conn <- connect(dbms = "postgresql",

server = "localhost/postgres",
user = "joe",
password = "secret")

Connecting using PostgreSQL driver

querySql(conn, "SELECT TOP 3 * FROM person")

PERSON_ID GENDER_CONCEPT_ID YEAR_OF_BIRTH
1 1 8507 1975
2 2 8507 1976
3 3 8507 1977

executeSql(conn, "TRUNCATE TABLE foo; DROP TABLE foo; CREATE TABLE foo (bar INT);")

Both function provide extensive error reporting: When an error is thrown by the server, the error message and
the offending piece of SQL are written to a text file to allow better debugging. The executeSql() function also

1

by default shows a progress bar, indicating the percentage of SQL statements that has been executed. If those
attributes are not desired, the package also offers the lowLevelQuerySql() and lowLevelExecuteSql()
functions.

2.1 Querying using Andromeda objects
Sometimes the data to be fetched from the database is too large to fit into memory. In this case one can
use the Andromeda package to store R data objects on file, and use them as if they are available in memory.
DatabaseConnector can download data directly into Andromeda objects:
library(Andromeda)
x <- andromeda()
querySqlToAndromeda(connection = conn,

sql = "SELECT * FROM person",
andromeda = x,
andromedaTableName = "person")

Where x is now an Andromeda object with table person.

2.2 Querying different platforms using the same SQL
One challenge when writing code that is intended to run on multiple database platforms is that each platform
has its own unique SQL dialect. To tackle this problem the SqlRender package was developed. SqlRender
can translate SQL from a single starting dialect (SQL Server SQL) into any of the platforms supported
by DatabaseConnector. The following convenience functions are available that first call the render()
and translate() functions in SqlRender: renderTranslateExecuteSql(), renderTranslateQuerySql(),
renderTranslateQuerySqlToAndromeda(). For example:
persons <- renderTranslatequerySql(conn,

sql = "SELECT TOP 10 * FROM @schema.person",
schema = "cdm_synpuf")

Note that the SQL Server-specific ‘TOP 10’ syntax will be translated to for example ‘LIMIT 10’ on PostgreSQL,
and that the SQL parameter @schema will be instantiated with the provided value ‘cdm_synpuf’.

Note that, on some platforms like Oracle, when using temp tables, it might be required to provide the
tempEmulationSchema argument, since these platforms do not support tables the way other platforms do.

3 Inserting tables
Although it is also possible to insert data in the database by sending SQL statements using the executeSql()
function, it is often convenient and faster to use the insertTable() function:
data(mtcars)
insertTable(conn, "mtcars", mtcars, createTable = TRUE)

In this example, we’re uploading the mtcars data frame to a table called ‘mtcars’ on the server, that will be
automatically created.

4 Logging all queries
For several reasons it might be helpful to log all queries sent to the server (and the time to completion),
for example to understand performance issues. For this one can use the ParallelLogger package. If the
LOG_DATABASECONNECTOR_SQL option is set to TRUE, each query will be logged at the ‘trace’ level. For
example:

2

https://ohdsi.github.io/SqlRender/

options(LOG_DATABASECONNECTOR_SQL = TRUE)
ParallelLogger::addDefaultFileLogger("sqlLog.txt", name = "TEST_LOGGER")

persons <- renderTranslatequerySql(conn,
sql = "SELECT TOP 10 * FROM @schema.person",
schema = "cdm_synpuf")

readLines("sqlLog.txt")

[2] "2022-11-18 10:23:59\t[Main thread]\tTRACE\tDatabaseConnector\tlogTrace\tQuerying SQL: SELECT TOP 10 * FROM cdm_synpuf.person"
[3] "2022-11-18 10:23:59\t[Main thread]\tTRACE\tDatabaseConnector\tlogTrace\tQuerying SQL took 0.105010032653809 secs"

3

	Introduction
	Querying
	Querying using Andromeda objects
	Querying different platforms using the same SQL

	Inserting tables
	Logging all queries

