
Package ‘DImodelsVis’
January 20, 2025

Title Visualising and Interpreting Statistical Models Fit to
Compositional Data

Version 1.0.1

Description
Statistical models fit to compositional data are often difficult to interpret due to the sum to 1 con-
straint on data variables. 'DImodelsVis' provides novel visualisations tools to aid with the inter-
pretation of models fit to compositional data. All visualisations in the package are created us-
ing the 'ggplot2' plotting framework and can be extended like every other 'ggplot' object.

License GPL (>= 3)

Encoding UTF-8

Imports cli, DImodels (>= 1.3.1), dplyr (>= 1.0.0), forcats,
ggfortify, ggplot2, ggtext (>= 0.1.2), glue, grDevices,
insight, methods, metR, PieGlyph, plotwidgets, rlang, scales,
stats, tidyr, utils

RoxygenNote 7.3.1

Suggests DImodelsMulti (>= 1.0.0), knitr, rmarkdown, spelling

URL https://rishvish.github.io/DImodelsVis/

VignetteBuilder knitr

Language en-US

NeedsCompilation no

Author Rishabh Vishwakarma [aut, cre]
(<https://orcid.org/0000-0002-4847-3494>),

Caroline Brophy [aut],
Laura Byrne [aut],
Catherine Hurley [aut]

Maintainer Rishabh Vishwakarma <vishwakr@tcd.ie>

Repository CRAN

Date/Publication 2024-02-26 14:10:15 UTC

1

https://rishvish.github.io/DImodelsVis/
https://orcid.org/0000-0002-4847-3494

2 add_add_var

Contents
add_add_var . 2
add_ID_terms . 4
add_interaction_terms . 5
add_prediction . 6
conditional_ternary . 8
conditional_ternary_data . 11
conditional_ternary_plot . 15
copy_attributes . 17
custom_filter . 19
get_colours . 20
get_equi_comms . 21
get_shades . 22
gradient_change . 23
gradient_change_data . 26
gradient_change_plot . 30
grouped_ternary . 33
grouped_ternary_data . 36
grouped_ternary_plot . 40
group_prop . 43
model_diagnostics . 44
model_selection . 46
prediction_contributions . 48
prediction_contributions_data . 52
prediction_contributions_plot . 55
prop_to_tern_proj . 57
simplex_path . 58
simplex_path_data . 61
simplex_path_plot . 64
ternary_data . 67
ternary_plot . 70
theme_DI . 73
visualise_effects . 74
visualise_effects_data . 77
visualise_effects_plot . 81

Index 84

add_add_var Add additional variables to the data

Description

Utility function for incorporating any additional variables into the data. Each row in the data will
be replicated and new columns will be added for each variable specified in ‘add_var‘ with values
corresponding to their cartesian product.

add_add_var 3

Usage

add_add_var(data, add_var = NULL)

Arguments

data A data frame containing the data in which to add the additional variables.

add_var A named list or data-frame specifying the names and corresponding values of
each new variable to add to the data. If a list is specified, each row in the data
would be replicated for each unique combination of values of the specified vari-
ables (i.e., their cartesian product) in ‘add_var‘, while specifying a data-frame
would replicate each row in the data for each row in add_var (i.e., merge the two
data-frames).

Value

A data-frame with all additional columns specified in ‘add_var‘ and the following additional col-
umn.

.add_str_ID A unique identifier describing each element from the cartesian product of all variables
specified in ‘add_var‘.

Examples

test_data <- data.frame(diag(1, 3))
print(test_data)

Adding a single variable
add_add_var(data = test_data,

add_var = list("Var1" = c(10, 20)))

Specifying multiple variables as a list will add values for
each unique combination
add_add_var(data = test_data,

add_var = list("Var1" = c(10, 20),
"Var2" = c(30, 40)))

Specifying add_var as a data.frame would simply merge the two data-frames
add_add_var(data = test_data,

add_var = data.frame("Var1" = c(10, 20),
"Var2" = c(30, 40)))

If the list specified in `add_var` is not named, then the additional
variables will be automatically named Var1, Var2, Var3, etc.
add_add_var(data = test_data,

add_var = list(c(1, 2), c(3, 4)))

4 add_ID_terms

add_ID_terms Add identity effect groups used in a Diversity-Interactions (DI) model
to new data

Description

Utility function that accepts a fitted Diversity-Interactions (DI) model object along with a data frame
and adds the appropriate species identity effect groupings to the data for making predictions.

Usage

add_ID_terms(data, model)

Arguments

data A data-frame with species proportions that sum to 1 to create the identity effect
groupings.

model A Diversity Interactions model object fit using the DI() or autoDI() functions
from the DImodels or DImulti() from the DImodelsMulti R packages.

Value

A data-frame with additional columns appended to the end that contain the grouped species propor-
tions.

Examples

library(DImodels)
data(sim1)

Fit DI models with different ID effect groupings
mod1 <- DI(y = "response", prop = 3:6,

data = sim1, DImodel = "AV") # No ID grouping
mod2 <- DI(y = "response", prop = 3:6,

data = sim1, DImodel = "AV",
ID = c("ID1", "ID1", "ID2", "ID2"))

mod3 <- DI(y = "response", prop = 3:6,
data = sim1, DImodel = "AV",
ID = c("ID1", "ID1", "ID1", "ID1"))

Create new data for adding interaction terms
newdata <- sim1[sim1$block == 1, 3:6]
print(head(newdata))

add_ID_terms(data = newdata, model = mod1)
add_ID_terms(data = newdata, model = mod2)
add_ID_terms(data = newdata, model = mod3)

add_interaction_terms 5

add_interaction_terms Add interaction terms used in a Diversity-Interactions (DI) model to
new data

Description

Utility function that accepts a fitted Diversity-Interactions (DI) model object along with a data
frame and adds the necessary interaction structures to the data for making predictions using the
model object specified in ‘model‘.

Usage

add_interaction_terms(data, model)

Arguments

data A data-frame with species proportions that sum to 1 to create the appropriate
interaction structures.

model A Diversity Interactions model object fit using the DI() or autoDI() functions
from the DImodels or DImulti() from the DImodelsMulti R packages.

Value

The original data-frame with additional columns appended at the end describing the interactions
terms present in the model object.

Examples

library(DImodels)
data(sim1)

Fit different DI models
mod1 <- DI(y = "response", prop = 3:6, data = sim1, DImodel = "AV")
mod2 <- DI(y = "response", prop = 3:6, data = sim1, DImodel = "FULL")
mod3 <- DI(y = "response", prop = 3:6, data = sim1, DImodel = "ADD")
mod4 <- DI(y = "response", prop = 3:6, data = sim1,

FG = c("G", "G", "H", "H"), DImodel = "FG")

Create new data for adding interaction terms
newdata <- sim1[sim1$block == 1, 3:6]
print(head(newdata))

add_interaction_terms(data = newdata, model = mod1)
add_interaction_terms(data = newdata, model = mod2)
add_interaction_terms(data = newdata, model = mod3)
add_interaction_terms(data = newdata, model = mod4)

6 add_prediction

add_prediction Add predictions and confidence interval to data using either a model
object or model coefficients

Description

Add predictions and confidence interval to data using either a model object or model coefficients

Usage

add_prediction(
data,
model = NULL,
coefficients = NULL,
coeff_cols = NULL,
vcov = NULL,
interval = c("none", "confidence", "prediction"),
conf.level = 0.95

)

Arguments

data A data-frame containing appropriate values for all the terms in the model.

model A regression model object which will be used to make predictions for the obser-
vations in ‘data‘. Will override ‘coefficients‘ if specified.

coefficients If a regression model is not available (or can’t be fit in R), the regression coeffi-
cients from a model fit in some other language can be used to calculate predic-
tions. However, the user would have to ensure there’s an appropriate one-to-one
positional mapping between the data columns and the coefficient values. Fur-
ther, they would also have to provide a variance-covariance matrix of the coef-
ficients in the ‘vcov‘ parameter if they want the associated CI for the prediction
or it would not be possible to calculate confidence/prediction intervals using this
method.

coeff_cols If ‘coefficients‘ are specified and a one-to-one positional mapping between the
data-columns and coefficient vector is not present. A character string or nu-
meric index can be specified here to reorder the data columns and match the
corresponding coefficient value to the respective data column. See the "Use
model coefficients for prediction" section in examples.

vcov If regression coefficients are specified, then the variance-covariance matrix of
the coefficients can be specified here to calculate the associated confidence in-
terval around each prediction. Failure to do so would result in no confidence
intervals being returned. Ensure ‘coefficients‘ and ‘vcov‘ have the same posi-
tional mapping with the data.

interval Type of interval to calculate:

"none" (default) No interval to be calculated.

add_prediction 7

"confidence" Calculate a confidence interval.
"prediction" Calculate a prediction interval.

conf.level The confidence level for calculating confidence/prediction intervals. Default is
0.95.

Value

A data-frame with the following additional columns

.Pred The predicted response for each observation.

.Lower The lower limit of the confidence/prediction interval for each observation (will be same as
".Pred" if using ‘coefficients‘ and ‘vcov‘ is not specified).

.Upper The lower limit of the confidence/prediction interval for each observation (will be same as
".Pred" if using ‘coefficients‘ and ‘vcov‘ is not specified).

Examples

library(DImodels)
data(sim1)

Fit a model
mod <- lm(response ~ 0 + p1 + p2 + p3 + p4 + p1:p2 + p3:p4, data = sim1)

Create new data for adding predictions
newdata <- head(sim1[sim1$block == 1,])
print(newdata)

Add predictions to data
add_prediction(data = newdata, model = mod)

Adding predictions to data with confidence interval
add_prediction(data = newdata, model = mod, interval = "confidence")

Calculate prediction intervals instead
add_prediction(data = newdata, model = mod, interval = "prediction")

Default is a 95% interval, change to 99%
add_prediction(data = newdata, model = mod, interval = "prediction",

conf.level = 0.99)

##
Use model coefficients for prediction
coeffs <- mod$coefficients

Would now have to add columns corresponding to each coefficient in the
data and ensure there is an appropriate mapping between data columns and
the coefficients.
newdata$`p1:p2` = newdata$p1 * newdata$p2
newdata$`p3:p4` = newdata$p3 * newdata$p4

If the coefficients are named then the function will try to

8 conditional_ternary

perform matching between data columns and the coefficients
Notice that confidence intervals are not produced if we don't
specify a variance covariance matrix
add_prediction(data = newdata, coefficients = coeffs)

However, if the coefficients are not named
The user would have to manually specify the subset
of data columns arranged according to the coefficients
coeffs <- unname(coeffs)

subset_data <- newdata[, c(3:6, 8,9)]
subset_data # Notice now we have the exact columns in data as in coefficients
add_prediction(data = subset_data, coefficients = coeffs)

Or specify a selection (either by name or index) in coeff_cols
add_prediction(data = newdata, coefficients = coeffs,

coeff_cols = c("p1", "p2", "p3", "p4", "p1:p2", "p3:p4"))

add_prediction(data = newdata, coefficients = coeffs,
coeff_cols = c(3, 4, 5, 6, 8, 9))

Adding confidence intervals when using model coefficients
coeffs <- mod$coefficients
We need to provide a variance-covariance matrix to calculate the CI
when using `coefficients` argument. The following warning will be given
add_prediction(data = newdata, coefficients = coeffs,

interval = "confidence")

vcov_mat <- vcov(mod)
add_prediction(data = newdata, coefficients = coeffs,

interval = "confidence", vcov = vcov_mat)

Currently both confidence and prediction intervals will be the same when
using this method
add_prediction(data = newdata, coefficients = coeffs,

interval = "prediction", vcov = vcov_mat)

conditional_ternary Conditional ternary diagrams

Description

We fix n−3 variables to have a constant value p1, p2, p3, ...pn−3 such that P = p1+p2+p3+...pn−3

and 0 ≤ P ≤ 1 and vary the proportion of the remaining three variables between 0 and 1 − P to
visualise the change in the predicted response as a contour map within a ternary diagram. This
is equivalent to taking multiple 2-d slices of the high dimensional simplex space. Taking mul-
tiple 2-d slices across multiple variables should allow to create an approximation of how the re-
sponse varies across the n-dimensional simplex. This is a wrapper function specifically for sta-
tistical models fit using the DI() function from the DImodels R package and would implicitly
call conditional_ternary_data followed by conditional_ternary_plot. If your model object
isn’t fit using DImodels, consider calling these functions manually.

conditional_ternary 9

Usage

conditional_ternary(
model,
FG = NULL,
values = NULL,
tern_vars = NULL,
conditional = NULL,
add_var = list(),
resolution = 3,
plot = TRUE,
nlevels = 7,
colours = NULL,
lower_lim = NULL,
upper_lim = NULL,
contour_text = TRUE,
show_axis_labels = TRUE,
show_axis_guides = FALSE,
axis_label_size = 4,
vertex_label_size = 5,
nrow = 0,
ncol = 0

)

Arguments

model A Diversity Interactions model object fit by using the DI() function from the
DImodels package.

FG A character vector specifying the grouping of the variables specified in ‘prop‘.
Specifying this parameter would call the grouped_ternary_data function inter-
nally. See grouped_ternary or grouped_ternary_data for more information.

values A numeric vector specifying the proportional split of the variables within a
group. The default is to split the group proportion equally between each variable
in the group.

tern_vars A character vector giving the names of the three variables to be shown in the
ternary diagram.

conditional A data-frame describing the names of the compositional variables and their re-
spective values at which to slice the simplex space. The format should be, for
example, as follows:
data.frame("p1" = c(0, 0.5), "p2" = c(0.2, 0.1))
One figure would be created for each row in ‘conditional‘ with the respective
values of all specified variables. Any compositional variables not specified in
‘conditional‘ will be assumed to be 0.

add_var A list or data-frame specifying values for additional variables in the model other
than the proportions (i.e. not part of the simplex design). This could be useful
for comparing the predictions across different values for a non-compositional
variable. If specified as a list, it will be expanded to show a plot for each unique

10 conditional_ternary

combination of values specified, while if specified as a data-frame, one plot
would be generated for each row in the data.

resolution A number between 1 and 10 describing the resolution of the resultant graph.
A high value would result in a higher definition figure but at the cost of being
computationally expensive.

plot A boolean variable indicating whether to create the plot or return the prepared
data instead. The default TRUE creates the plot while FALSE would return the
prepared data for plotting. Could be useful if user wants to modify the data first
and then create the plot.

nlevels The number of levels to show on the contour map.

colours A character vector or function specifying the colours for the contour map or
points. The number of colours should be same as ‘nlevels‘ if (‘show = "con-
tours"‘).
The default colours scheme is the terrain.colors() for continuous variables
and an extended version of the Okabe-Ito colour scale for categorical variables.

lower_lim A number to set a custom lower limit for the contour (if ‘show = "contours"‘).
The default is minimum of the prediction.

upper_lim A number to set a custom upper limit for the contour (if ‘show = "contours"‘).
The default is maximum of the prediction.

contour_text A boolean value indicating whether to include labels on the contour lines show-
ing their values (if ‘show = "contours"‘). The default is TRUE.

show_axis_labels

A boolean value indicating whether to show axis labels along the edges of the
ternary. The default is TRUE.

show_axis_guides

A boolean value indicating whether to show axis guides within the interior of
the ternary. The default is FALSE.

axis_label_size

A numeric value to adjust the size of the axis labels in the ternary plot. The
default size is 4.

vertex_label_size

A numeric value to adjust the size of the vertex labels in the ternary plot. The
default size is 5.

nrow Number of rows in which to arrange the final plot (when ‘add_var‘ is specified).

ncol Number of columns in which to arrange the final plot (when ‘add_var‘ is speci-
fied).

Value

A ggmultiplot (ggplot if single plot is returned) class object or data-frame (if ‘plot = FALSE‘)

Examples

library(DImodels)
library(dplyr)
data(sim2)

conditional_ternary_data 11

m1 <- DI(y = "response", data = sim2, prop = 3:6, DImodel = "FULL")

#' ## Create data for slicing
We only condition on the variable "p3"
conditional_ternary(model = m1, tern_vars = c("p1", "p2", "p4"),

conditional = data.frame("p3" = c(0, 0.2, 0.5)),
resolution = 1)

Slices for experiments for over 4 variables
data(sim4)
m2 <- DI(y = "response", prop = paste0("p", 1:6),

DImodel = "AV", data = sim4) %>%
suppressWarnings()

Conditioning on multiple variables
cond <- data.frame(p4 = c(0, 0.2), p3 = c(0.5, 0.1), p6 = c(0, 0.3))
conditional_ternary(model = m2, conditional = cond,

tern_vars = c("p1", "p2", "p5"), resolution = 1)

Create separate plots for additional variables not a part of the simplex
m3 <- DI(y = "response", prop = paste0("p", 1:6),

DImodel = "AV", data = sim4, treat = "treatment") %>%
suppressWarnings()

Create plot and arrange it using nrow and ncol

conditional_ternary(model = m3, conditional = cond[1,],
tern_vars = c("p1", "p2", "p5"),
resolution = 1,
add_var = list("treatment" = c(50, 150)),
nrow = 2, ncol = 1)

Specify `plot = FALSE` to not create the plot but return the prepared data
head(conditional_ternary(model = m3, conditional = cond[1,],

resolution = 1, plot = FALSE,
tern_vars = c("p1", "p2", "p5"),
add_var = list("treatment" = c(50, 150))))

conditional_ternary_data

Conditional ternary diagrams

Description

The helper function for preparing the underlying data for creating conditional ternary diagrams,
where we fix n− 3 variables to have a constant value p1, p2, p3, ..., pn−3 such that P = p1 + p2 +
p3 + ...pn−3 and 0 ≤ P ≤ 1 and vary the proportion of the remaining three variables between
0 and 1 − P to visualise the change in the predicted response as a contour map within a ternary
diagram. The output of this function can be passed to the conditional_ternary_plot function

12 conditional_ternary_data

to plot the results. Viewing multiple 2-d slices across multiple variables should allow to create an
approximation of how the response varies across the n-dimensional simplex.

Usage

conditional_ternary_data(
prop,
FG = NULL,
values = NULL,
tern_vars = NULL,
conditional = NULL,
add_var = list(),
resolution = 3,
prediction = TRUE,
...

)

Arguments

prop A character vector indicating the model coefficients corresponding to variable
proportions. These variables should be compositional in nature (i.e., proportions
should sum to 1).

FG A character vector specifying the grouping of the variables specified in ‘prop‘.
Specifying this parameter would call the grouped_ternary_data function inter-
nally. See grouped_ternary or grouped_ternary_data for more information.

values A numeric vector specifying the proportional split of the variables within a
group. The default is to split the group proportion equally between each variable
in the group.

tern_vars A character vector giving the names of the three variables to be shown in the
ternary diagram.

conditional A data-frame describing the names of the compositional variables and their re-
spective values at which to slice the simplex space. The format should be, for
example, as follows:
data.frame("p1" = c(0, 0.5), "p2" = c(0.2, 0.1))
One figure would be created for each row in ‘conditional‘ with the respective
values of all specified variables. Any compositional variables not specified in
‘conditional‘ will be assumed to be 0.

add_var A list or data-frame specifying values for additional variables in the model other
than the proportions (i.e. not part of the simplex design). This could be useful
for comparing the predictions across different values for a non-compositional
variable. If specified as a list, it will be expanded to show a plot for each unique
combination of values specified, while if specified as a data-frame, one plot
would be generated for each row in the data.

resolution A number between 1 and 10 describing the resolution of the resultant graph.
A high value would result in a higher definition figure but at the cost of being
computationally expensive.

conditional_ternary_data 13

prediction A logical value indicating whether to pass the final data to the ‘add_prediction‘
function and append the predictions to the data. Default value is TRUE, but of-
ten it would be desirable to make additional changes to the data before mak-
ing any predictions, so the user can set this to FALSE and manually call the
‘add_prediction‘ function.

... Arguments passed on to add_prediction

model A regression model object which will be used to make predictions for
the observations in ‘data‘. Will override ‘coefficients‘ if specified.

coefficients If a regression model is not available (or can’t be fit in R), the
regression coefficients from a model fit in some other language can be used
to calculate predictions. However, the user would have to ensure there’s an
appropriate one-to-one positional mapping between the data columns and
the coefficient values. Further, they would also have to provide a variance-
covariance matrix of the coefficients in the ‘vcov‘ parameter if they want
the associated CI for the prediction or it would not be possible to calculate
confidence/prediction intervals using this method.

vcov If regression coefficients are specified, then the variance-covariance ma-
trix of the coefficients can be specified here to calculate the associated con-
fidence interval around each prediction. Failure to do so would result in no
confidence intervals being returned. Ensure ‘coefficients‘ and ‘vcov‘ have
the same positional mapping with the data.

coeff_cols If ‘coefficients‘ are specified and a one-to-one positional mapping
between the data-columns and coefficient vector is not present. A character
string or numeric index can be specified here to reorder the data columns
and match the corresponding coefficient value to the respective data col-
umn. See the "Use model coefficients for prediction" section in examples.

conf.level The confidence level for calculating confidence/prediction inter-
vals. Default is 0.95.

interval Type of interval to calculate:
"none" (default) No interval to be calculated.
"confidence" Calculate a confidence interval.
"prediction" Calculate a prediction interval.

Value

A data-frame containing compositional columns with names specified in ‘prop‘ parameter along
with any additional columns specified in ‘add_var‘ parameter. The first five columns of the data
contain the three variables (specified in ‘tern_vars‘) shown in the ternary along with their 2-d pro-
jection and should not be modified. The following additional columns could also be present in the
data.

.x The x-projection of the points within the ternary.

.y The y-projection of the points within the ternary.

.add_str_ID An identifier column for grouping the cartesian product of all additional columns
specified in ‘add_var‘ parameter (if ‘add_var‘ is specified).

.Sp An identifier column specifying the variable(s) along which the high dimensional simplex is
sliced.

14 conditional_ternary_data

.Value The value(s) (between 0 and 1) along the direction of variable(s) in ‘.Sp‘ at which the high
dimensional simplex is sliced.

.Facet An identifier column formed by combining ‘.Sp‘ and ‘.value‘ to group observations within
a specific slice of the high dimensional simplex.

.Pred The predicted response for each observation (if ‘prediction‘ is TRUE).

.Lower The lower limit of the prediction/confidence interval for each observation.

.Upper The upper limit of the prediction/confidence interval for each observation.

Examples

library(DImodels)

Load data
data(sim4)

Fit model
mod <- glm(response ~ 0 + (p1 + p2 + p3 + p4 + p5 + p6)^2, data = sim4)

Create data
Any species not specified in `tern_vars` or conditional will be assumed
to be 0, for example p5 and p6 here.
head(conditional_ternary_data(prop = c("p1", "p2", "p3", "p4", "p5", "p6"),

tern_vars = c("p1", "p2", "p3"),
conditional = data.frame("p4" = c(0, 0.2, 0.5)),
model = mod,
resolution = 1))

Can also condition on multiple species
cond <- data.frame(p4 = c(0, 0.2), p5 = c(0.5, 0.1), p6 = c(0, 0.3))
cond
head(conditional_ternary_data(prop = c("p1", "p2", "p3", "p4", "p5", "p6"),

tern_vars = c("p1", "p2", "p3"),
conditional = cond,
model = mod,
resolution = 1))

Fit model
mod <- glm(response ~ 0 + (p1 + p2 + p3 + p4 + p5 + p6)^2 + treatment,

data = sim4)

Can also add any additional variables independent of the simplex
Notice the additional `.add_str_ID` column
head(conditional_ternary_data(prop = c("p1", "p2", "p3", "p4", "p5", "p6"),

tern_vars = c("p1", "p2", "p3"),
conditional = data.frame("p4" = c(0, 0.2, 0.5)),
add_var = list("treatment" = c(50, 150)),
model = mod,
resolution = 1))

It could be desirable to take the output of this function and add
additional variables to the data before making predictions

conditional_ternary_plot 15

Use `prediction = FALSE` to get data without any predictions
cond_data <- conditional_ternary_data(prop = c("p1", "p2", "p3", "p4", "p5", "p6"),

tern_vars = c("p1", "p2", "p3"),
conditional = data.frame("p4" = c(0, 0.2, 0.5)),
prediction = FALSE,
resolution = 1)

The data can then be modified and the `add_prediction` function can be
called manually using either the model object or model coefficients
cond_data$treatment <- 50
head(add_prediction(data = cond_data, model = mod))

conditional_ternary_plot

Conditional ternary diagrams

Description

The helper function for plotting conditional ternary diagrams. The output of the ‘conditional_ternary_data‘
should be passed here to visualise the n-dimensional simplex space as 2-d slices showing the change
in the response across any three variables, when the other variables are conditioned to have fixed
values.

Usage

conditional_ternary_plot(
data,
col_var = ".Pred",
nlevels = 7,
colours = NULL,
lower_lim = NULL,
upper_lim = NULL,
tern_labels = colnames(data)[1:3],
contour_text = TRUE,
show_axis_labels = TRUE,
show_axis_guides = FALSE,
points_size = 2,
axis_label_size = 4,
vertex_label_size = 5,
nrow = 0,
ncol = 0

)

Arguments

data A data-frame which is the output of the ‘conditional_ternary_data‘ function.

col_var The column name containing the variable to be used for colouring the contours
or points. The default is ".Pred".

16 conditional_ternary_plot

nlevels The number of levels to show on the contour map.

colours A character vector or function specifying the colours for the contour map or
points. The number of colours should be same as ‘nlevels‘ if (‘show = "con-
tours"‘).
The default colours scheme is the terrain.colors() for continuous variables
and an extended version of the Okabe-Ito colour scale for categorical variables.

lower_lim A number to set a custom lower limit for the contour (if ‘show = "contours"‘).
The default is minimum of the prediction.

upper_lim A number to set a custom upper limit for the contour (if ‘show = "contours"‘).
The default is maximum of the prediction.

tern_labels A character vector containing the labels of the vertices of the ternary. The default
is the column names of the first three columns of the data, with the first column
corresponding to the top vertex, second column corresponding to the left vertex
and the third column corresponding to the right vertex of the ternary.

contour_text A boolean value indicating whether to include labels on the contour lines show-
ing their values (if ‘show = "contours"‘). The default is TRUE.

show_axis_labels

A boolean value indicating whether to show axis labels along the edges of the
ternary. The default is TRUE.

show_axis_guides

A boolean value indicating whether to show axis guides within the interior of
the ternary. The default is FALSE.

points_size If showing points, then a numeric value specifying the size of the points.
axis_label_size

A numeric value to adjust the size of the axis labels in the ternary plot. The
default size is 4.

vertex_label_size

A numeric value to adjust the size of the vertex labels in the ternary plot. The
default size is 5.

nrow Number of rows in which to arrange the final plot (when ‘add_var‘ is specified).

ncol Number of columns in which to arrange the final plot (when ‘add_var‘ is speci-
fied).

Value

A ggmultiplot (ggplot if single plot is returned) class object or data-frame (if ‘plot = FALSE‘)

Examples

library(DImodels)

Load data
data(sim4)

Fit model
mod <- glm(response ~ 0 + (p1 + p2 + p3 + p4 + p5 + p6)^2, data = sim4)

copy_attributes 17

Create data for slicing
We only condition on the variable "p3"
plot_data <- conditional_ternary_data(prop = c("p1", "p2", "p3", "p4", "p5", "p6"),

tern_vars = c("p1", "p2", "p4"),
conditional = data.frame("p3" = c(0, 0.2, 0.5)),
model = mod,
resolution = 1)

Create plot
conditional_ternary_plot(data = plot_data)

Condition on multiple variables
cond <- data.frame(p4 = c(0, 0.2), p5 = c(0.5, 0.1), p6 = c(0, 0.3))
cond
plot_data <- conditional_ternary_data(prop = c("p1", "p2", "p3", "p4", "p5", "p6"),

tern_vars = c("p1", "p2", "p3"),
conditional = cond,
model = mod,
resolution = 1)

Create plot
conditional_ternary_plot(data = plot_data)

Create multiple plots for additional variables using `add_var`
Fit model

mod <- glm(response ~ 0 + (p1 + p2 + p3 + p4 + p5 + p6)^2 + treatment,
data = sim4)

Notice the additional `.add_str_ID` column
plot_data <- conditional_ternary_data(prop = c("p1", "p2", "p3", "p4", "p5", "p6"),

tern_vars = c("p1", "p2", "p3"),
conditional = data.frame("p4" = c(0, 0.2, 0.5)),
add_var = list("treatment" = c(50, 150)),
model = mod,
resolution = 1)

Create plot
Use nrow to align plots
conditional_ternary_plot(data = plot_data, nrow = 2)

copy_attributes Copy attributes from one object to another

Description

This function copies over any additional attributes from ‘source‘ into ‘target‘. Any attributes already
present in ‘target‘ would be left untouched. This function is useful after manipulating the data from
the *_data preparation functions to ensure any attributes necessary for creating the plot aren’t lost.

18 copy_attributes

Usage

copy_attributes(target, source)

Arguments

target The object to which attributes should be added.

source The object whose attributes to copy.

Value

The object specified in ‘target‘ with all additional attributes in ‘source‘ object.

Examples

Simple example
a <- data.frame(Var1 = runif(1:10), Var2 = runif(1:10))
b <- data.frame(Var3 = runif(1:10), Var4 = runif(1:10))
attr(b, "attr1") <- "Lorem"
attr(b, "attr2") <- "ipsum"

print(attributes(a))
print(attributes(b))

Copy over attributes of `b` into `a`
print(copy_attributes(target = a, source = b))
Note the attributes already present in `a` are left untouched

Can also be used in the dplyr pipeline
library(dplyr)

iris_sub <- iris[1:10,]
attr(iris_sub, "attr1") <- "Lorem"
attr(iris_sub, "attr2") <- "ipsum"
attributes(iris_sub)

Grouping can drop attributes we set
iris_sub %>%

group_by(Species) %>%
summarise(mean(Sepal.Length)) %>%
attributes()

Use copy_attributes with `iris_sub` object as source
to add the attributes again
iris_sub %>%

group_by(Species) %>%
summarise(mean(Sepal.Length)) %>%
copy_attributes(source = iris_sub) %>%
attributes()

custom_filter 19

custom_filter Special custom filtering for compositional data

Description

A handy wrapper around the dplyr filter() function enabling the user to filter rows which satisfy
specific conditions for compositional data like all equi-proportional communities, or communities
with a given value of richness without having to make any changes to the data or adding any addi-
tional columns. All other functionalities are same as the dplyr filter() function.

Usage

custom_filter(data, prop = NULL, special = NULL, ...)

Arguments

data A data frame containing the compositional variables which should be used to
perform the filtering.

prop A character/numeric vector indicating the columns containing the compositional
variables in ‘data‘.

special A character string specifying the filtering condition. Four special keywords can
be specified here for filtering 1. richness: A positive integer value to filter com-
munities with a specific number of compositional variables (variables with non-
zero values). 2. evenness: A numeric value between 0 and 1, to filter rows
based on the relative abundances of the compositional variables where a higher
value signifies a more even community with equal proportions of all variables.
3. equi: A boolean variable indicating whether to filter rows containing equi-
proportional communities, i.e., communities where all variables have the same
non-zero proportion. 4. monos: A boolean value indicating whether to fil-
ter communities containing a single compositional variable, i.e., richness == 1.
These keywords can be combined using any logical operators and can even be
combined with any other variables in the data. Please use the exact keywords
(case-sensitive) in the query to get appropriate results. See examples for more
details.

... Any additional arguments specified to the dplyr filter() function. Filtering
conditions for any additional variables can also be specified here.

Value

A subset of the original data which matches the specified filtering conditions.

Examples

library(DImodels)
library(dplyr)

Load data

20 get_colours

data(sim3)

The special filter keywords should be specified as a string
Filter communities containing 3 species
head(custom_filter(data = sim3, prop = 4:12,

special = "richness == 3"))

Filter communities at richness 6 OR evenness 0
head(custom_filter(data = sim3, prop = 4:12,

special = "richness == 6 | evenness == 0"), 12)

Filter all monoculture AND treatment "A" (treatment is column present in data)
head(custom_filter(data = sim3, prop = 4:12,

special = "monos == TRUE & treatment == 'A'"), 10)

Filter all equi proportional communities but NOT monocultures
head(custom_filter(data = sim3, prop = 4:12,

special = "equi == TRUE & monos == FALSE"))

Can also use normal filter
sim3 %>% custom_filter(p1 == 1, special = NULL, prop = NULL)

Both special filtering and normal filtering can be combined as well
sim3 %>% custom_filter(prop = paste0("p", 1:9),

special = "richness == 1",
community %in% c(7, 9))

get_colours Return colour-blind friendly colours

Description

Utility function to return either a distinct colour-blind friendly colour for each variable or if a func-
tional grouping is specified, then shades of the same colour for variables within a functional group

Usage

get_colours(vars, FG = NULL)

Arguments

vars Either a numeric value ‘n‘ to get n colours, or a character vector of values where
each value will be mapped to a colour.

FG A character vector describing the functional grouping to which each variable
belongs. Variables within the same group will have different shades of the same
colour.

Value

A named vector containing the hex codes of colours

get_equi_comms 21

Examples

Get n colours
get_colours(vars = 4)

Get a color-map for each value specified in vars
get_colours(vars = c("p1", "p2", "p3", "p4"))

Group values of vars using FG. Variables in the same group
will have same shades of a colour
get_colours(vars = 4, FG = c("G1", "G1", "G2", "G2"))

get_equi_comms Get all equi-proportional communities at specific levels of richness

Description

Get all equi-proportional communities at specific levels of richness

Usage

get_equi_comms(
nvars,
richness_lvl = 1:nvars,
variables = paste0("Var", 1:nvars),
threshold = 1e+06

)

Arguments

nvars Number of variables in the design

richness_lvl The richness levels (number of non-zero compositional variables in a commu-
nity) at which to return the equi-proportional communities. Defaults to each
richness level from 1 up to ‘nvars‘ (both inclusive).

variables Names for the variables. Will be used as column names for the final result.
Default is "Var" followed by column number.

threshold The maximum number of communities to select for each level of richness for sit-
uations when there are too many equi-proportional communities. Default value
is a million.
Note: if threshold < ‘number of possible equi-proportional communities‘ at a
given level of richness, a random selection of communities equal to the number
specified in threshold would be returned.

Value

A dataframe consisting all or a random selection of equi-proportional communities at each level of
richness

22 get_shades

Examples

Get all equi-proportional communities for each level of richness upto 10
data10 <- get_equi_comms(10)
head(data10, 12)

Change variable names
data4 <- get_equi_comms(4, variables = c("Lollium perenne", "Chichorum intybus",

"Trifolium repens", "Trifolium pratense"))
head(data4)

Get equi-proportional communities at specific levels of richness
Get all equi-proportional communities of four variables at richness
levels 1 and 3
data4_13 <- get_equi_comms(nvars = 4, richness = c(1, 3))
data4_13

If threshold is specified and it is less than the number of possible
equi-proportional communites at a given level of richness, then a
random selection of communities from the total possible would be returned
Return only 2 random equi-proportional communities at the chosen richness
levels
data4_13_2 <- get_equi_comms(nvars = 4, richness = c(1, 3), threshold = 2)
data4_13_2

Set threshold to a very high positive number to ensure
random selection is never performed
data_no_random <- get_equi_comms(nvars = 15,

threshold = .Machine$integer.max)
head(data_no_random)

get_shades Returns shades of colours

Description

Returns shades of colours

Usage

get_shades(colours = c("#808080"), shades = 3)

Arguments

colours A character vector of colours recognizable by R, to produces shades of

shades A numeric vector giving the number of shades for each colour

Value

A list consisting of hex codes describing the shades of each colour

gradient_change 23

Examples

Shades for a single colour
get_shades(c("red"))

Shades for multiple colours
get_shades(c("red", "blue" ,"#A5F8E3", "#808080"), shades = c(2, 3, 4, 5))

A single value for shade would imply all colours get the same number of shades
get_shades(c("red", "blue" ,"#A5F8E3", "#808080"), shades = 2)

gradient_change Visualise change in (predicted) response over diversity gradient

Description

A scatter-plot of the predicted response (or raw response) over a diversity gradient for specific ob-
servations is shown. The points can be overlaid with ‘pie-glyphs‘ to show the relative proportions
of the compositional variables. The average change in any user-chosen variable over the chosen
diversity gradient can also be shown using the ‘y_var‘ parameter.
This is a wrapper function specifically for statistical models fit using the DI() function from the
DImodels R package and it implicitly calls gradient_change_data followed by gradient_change_plot.
If your model object isn’t fit using DImodels, the associated data and plot functions can instead be
called manually.

Usage

gradient_change(
model,
data = NULL,
gradient = c("richness", "evenness"),
add_var = list(),
plot = TRUE,
average = TRUE,
y_var = ".Pred",
pie_data = NULL,
pie_colours = NULL,
pie_radius = 0.25,
points_size = 3,
facet_var = NULL,
nrow = 0,
ncol = 0

)

Arguments

model A Diversity Interactions model object fit by using the DI() function from the
DImodels package.

24 gradient_change

data A dataframe specifying communities of interest for which user wants to visu-
alise the gradient. If left blank, the data used to fit the model will be used.

gradient Diversity gradient to show on the X-axis, one of "richness" or "evenness". De-
faults to "richness". See ‘Details‘ for more information.

add_var A list specifying values for additional predictor variables in the model indepen-
dent of the compositional predictor variables. This could be useful for compar-
ing the predictions across different values for a non-compositional variable. If
specified as a list, it will be expanded to show a plot for each unique combina-
tion of values specified, while if specified as a data-frame, one plot would be
generated for each row in the data and they will be arranged in a grid according
to the value specified in ‘nrow‘ and ‘ncol‘.

plot A boolean variable indicating whether to create the plot or return the prepared
data instead. The default ‘TRUE‘ creates the plot while ‘FALSE‘ would return
the prepared data for plotting. Could be useful for if user wants to modify the
data first and then call the plotting function manually.

average A boolean value indicating whether to plot a line indicating the average change
in the predicted response with respect to the variable shown on the X-axis. The
average is calculated at the median value of any variables not specified.

y_var A character string indicating the column name of the variable to be shown on
the Y-axis. This could be useful for plotting raw data on the Y-axis. By default
has a value of ".Pred" referring to the column containing model predictions.

pie_data Showing all points on the graph as pie-glyphs could be resource intensive. Hence
a subset of data-frame specified in ‘data‘, can be specified here to visualise only
specific points as pie-glyphs.

pie_colours A character vector specifying the colours for the slices within the pie-glyphs.

pie_radius A numeric value specifying the radius (in cm) for the pie-glyphs.

points_size A numeric value specifying the size of points (when pie-glyphs not shown)
shown in the plots.

facet_var A character string or numeric index identifying the column in the data to be used
for faceting the plot into multiple panels.

nrow Number of rows in which to arrange the final plot (when ‘add_var‘ is specified).

ncol Number of columns in which to arrange the final plot (when ‘add_var‘ is speci-
fied).

Details

Currently two diversity gradients are supported

• Richness: A metric describing the number of non-zero compositional variables in an obser-
vation.

• Evenness: A metric quantifying the relative abundances of all compositional variables in an
observation. Defined as

(2s/(s− 1))

s∑
i,j=1;i<j

pi ∗ pj

gradient_change 25

where s is the total number of compositional variables and pi and pj are the proportions of the
variables i and j. See Kirwan et al., 2007 <doi:10.1890/081684.1> and Kirwan et al., 2009
<doi:10.1890/081684.1> for more information.

Here’s a small example of how these metrics are calculated for a few observations. Suppose we
have four compositional variables (i.e. s = 4) and have the following three observations

• A = (0.5, 0.5, 0, 0)

• B = (0.25, 0.25, 0.25, 0.25)

• C = (1, 0, 0, 0)

The richness values for these three observations would be as follows

• A = 2 (Since two of the four compositional variables were non-zero)

• B = 4 (Since all four compositional variables were non-zero)

• C = 1 (Since one of the four compositional variables were non-zero)

The evenness values would be calculated as follows

• A = 2 ∗ 4/(4− 1) ∗ (0.5 ∗ 0.5 + 0.5 ∗ 0 + 0.5 ∗ 0 + 0.5 ∗ 0 + 0.5 ∗ 0 + 0 ∗ 0) = 0.67

• B = 2∗4/(4−1)∗(0.25∗0.25+0.25∗0.25+0..25∗0.25+0.25∗0.25+0.25∗0.25+0.25∗0) = 1

• C = 2 ∗ 4/(4− 1) ∗ (1 ∗ 0 + 1 ∗ 0 + 1 ∗ 0 + 0 ∗ 0 + 0 ∗ 0 + 0 ∗ 0) = 0

Value

A ggmultiplot (ggplot if single plot is returned) class object or data-frame (if ‘plot = FALSE‘)

Examples

Load DImodels package to fit the model
library(DImodels)
library(dplyr)

Load data
data(sim4)
sim4 <- sim4 %>% filter(treatment == 50)

Fit DI model
mod <- DI(prop = 3:8, DImodel = "AV", data = sim4, y = "response") %>%

suppressWarnings()

Create visualisation

By default, 'richness' is the gradient and communities from the
raw data are used to calculate average response
gradient_change(model = mod)

Specify custom data
gradient_change(model = mod, data = sim4 %>% filter(richness <= 4))

Create plot for all equi-proportional communities at a

https://doi.org/10.1890/08-1684.1
https://doi.org/10.1890/08-1684.1

26 gradient_change_data

given level of richness
plot_data <- get_equi_comms(6, variables = paste0("p", 1:6))
gradient_change(model = mod, data = plot_data)

Can also plot average response across evenness and
change colours of the pie-slices using `pie_colours`
gradient_change(model = mod, gradient = "evenness",

pie_colours = c("darkolivegreen1", "darkolivegreen4",
"orange1", "orange4",
"steelblue1", "steelblue4"))

Manually specify only specific communities to be shown as pie-chart
glyphs using `pie_data` and `facet_var` to facet the plot on
an additional variable.
gradient_change(model = mod,

pie_data = sim4 %>% filter(richness %in% c(1, 6)),
facet_var = "treatment")

Use `add_var` to add additional variables independent of the compositions
Multiple plots will be produced and can be arranged using nrow and ncol
Create plot arranged in 2 columns

gradient_change(model = mod,
data = sim4[, -2],
add_var = list("treatment" = c(50, 250)),
pie_data = sim4[, -2] %>% filter(richness %in% c(1, 6)),
ncol = 2)

Specify `plot = FALSE` to not create the plot but return the prepared data
head(gradient_change(model = mod, plot = FALSE,

pie_data = sim4 %>% filter(richness %in% c(1, 6)),
facet_var = "treatment"))

gradient_change_data Calculate change in predicted response over diversity gradient

Description

Helper function for creating the data to visualise a scatter-plot of the response over a diversity
gradient. The "richness" and "evenness" diversity gradients are currently supported. The average
(predicted) response is calculated from all communities present at a given level of the chosen di-
versity gradient in ‘data‘. The output of this function can be passed to the gradient_change_plot
function to visualise results.

Usage

gradient_change_data(
data,
prop,

gradient_change_data 27

add_var = list(),
gradient = c("richness", "evenness"),
prediction = TRUE,
...

)

Arguments

data A data-frame consisting of variable proportions and any other necessary vari-
ables to make predictions from ‘model‘ or ‘coefficients‘.

prop A vector identifying the column-names or indices of the columns containing the
variable proportions in ‘data‘.

add_var A list specifying values for additional predictor variables in the model indepen-
dent of the compositional predictor variables. This could be useful for compar-
ing the predictions across different values for a non-compositional variable. If
specified as a list, it will be expanded to show a plot for each unique combina-
tion of values specified, while if specified as a data-frame, one plot would be
generated for each row in the data and they will be arranged in a grid according
to the value specified in ‘nrow‘ and ‘ncol‘.

gradient Diversity gradient to show on the X-axis, one of "richness" or "evenness". De-
faults to "richness". See ‘Details‘ for more information.

prediction A logical value indicating whether to pass the final data to the ‘add_prediction‘
function and append the predictions to the data. Default value is TRUE, but
often it would be desirable to make additional changes to the data before mak-
ing any predictions, so the user can set this to FALSE and manually call the
‘add_prediction‘ function.

... Arguments passed on to add_prediction

model A regression model object which will be used to make predictions for
the observations in ‘data‘. Will override ‘coefficients‘ if specified.

coefficients If a regression model is not available (or can’t be fit in R), the
regression coefficients from a model fit in some other language can be used
to calculate predictions. However, the user would have to ensure there’s an
appropriate one-to-one positional mapping between the data columns and
the coefficient values. Further, they would also have to provide a variance-
covariance matrix of the coefficients in the ‘vcov‘ parameter if they want
the associated CI for the prediction or it would not be possible to calculate
confidence/prediction intervals using this method.

vcov If regression coefficients are specified, then the variance-covariance ma-
trix of the coefficients can be specified here to calculate the associated con-
fidence interval around each prediction. Failure to do so would result in no
confidence intervals being returned. Ensure ‘coefficients‘ and ‘vcov‘ have
the same positional mapping with the data.

coeff_cols If ‘coefficients‘ are specified and a one-to-one positional mapping
between the data-columns and coefficient vector is not present. A character
string or numeric index can be specified here to reorder the data columns
and match the corresponding coefficient value to the respective data col-
umn. See the "Use model coefficients for prediction" section in examples.

28 gradient_change_data

conf.level The confidence level for calculating confidence/prediction inter-
vals. Default is 0.95.

interval Type of interval to calculate:
"none" (default) No interval to be calculated.
"confidence" Calculate a confidence interval.
"prediction" Calculate a prediction interval.

Details

Currently two diversity gradients are supported

• Richness: A metric describing the number of non-zero compositional variables in an obser-
vation.

• Evenness: A metric quantifying the relative abundances of all compositional variables in an
observation. Defined as

(2s/(s− 1))

s∑
i,j=1;i<j

pi ∗ pj

where s is the total number of compositional variables and pi and pj are the proportions of the
variables i and j. See Kirwan et al., 2007 <doi:10.1890/081684.1> and Kirwan et al., 2009
<doi:10.1890/081684.1> for more information.

Here’s a small example of how these metrics are calculated for a few observations. Suppose we
have four compositional variables (i.e. s = 4) and have the following three observations

• A = (0.5, 0.5, 0, 0)

• B = (0.25, 0.25, 0.25, 0.25)

• C = (1, 0, 0, 0)

The richness values for these three observations would be as follows

• A = 2 (Since two of the four compositional variables were non-zero)

• B = 4 (Since all four compositional variables were non-zero)

• C = 1 (Since one of the four compositional variables were non-zero)

The evenness values would be calculated as follows

• A = 2 ∗ 4/(4− 1) ∗ (0.5 ∗ 0.5 + 0.5 ∗ 0 + 0.5 ∗ 0 + 0.5 ∗ 0 + 0.5 ∗ 0 + 0 ∗ 0) = 0.67

• B = 2∗4/(4−1)∗(0.25∗0.25+0.25∗0.25+0..25∗0.25+0.25∗0.25+0.25∗0.25+0.25∗0) = 1

• C = 2 ∗ 4/(4− 1) ∗ (1 ∗ 0 + 1 ∗ 0 + 1 ∗ 0 + 0 ∗ 0 + 0 ∗ 0 + 0 ∗ 0) = 0

Value

The data-frame with the following columns appended at the end

.Richness The richness (number of non-zero compositional variables) within each observation.

.Evenness The evenness (metric quantifying the relative abundance of each compositional variable)
within each observation.

.Gradient An character string defining the diversity gradient used for averaging the response.

https://doi.org/10.1890/08-1684.1
https://doi.org/10.1890/08-1684.1

gradient_change_data 29

.add_str_ID An identifier column for grouping the cartesian product of all additional columns
specified in ‘add_var‘ parameter (if ‘add_var‘ is specified).

.Pred The predicted response for each obsvervation.

.Lower The lower limit of the prediction/confidence interval for each observation.

.Upper The upper limit of the prediction/confidence interval for each observation.

.Avg The averaged value of the predicted response for each unique value of the selected diversity
gradient.

Examples

library(DImodels)
library(dplyr)

Load data
data(sim2)

Fit model
mod <- glm(response ~ 0 + (p1 + p2 + p3 + p4)^2, data = sim2)

Create data
By default response would be averaged on the basis of richness
head(gradient_change_data(data = sim2,

prop = c("p1", "p2", "p3", "p4"),
model = mod))

Average response with respect to evenness
head(gradient_change_data(data = sim2,

prop = c("p1", "p2", "p3", "p4"),
model = mod,
gradient = "evenness"))

Additional variables can also be added to the data by either specifying
them directly in the `data` or by using the `add_var` argument
Refit model
sim2$block <- as.numeric(sim2$block)
new_mod <- update(mod, ~. + block, data = sim2)
This model has block so we can either specify block in the data
subset_data <- sim2[c(1,5,9,11), 2:6]
subset_data
head(gradient_change_data(data = subset_data,

prop = c("p1", "p2", "p3", "p4"),
model = mod,
gradient = "evenness"))

Or we could add the variable using `add_var`
subset_data <- sim2[c(1,5,9,11), 3:6]
subset_data
head(gradient_change_data(data = subset_data,

prop = c("p1", "p2", "p3", "p4"),
model = new_mod,
gradient = "evenness",
add_var = list(block = c(1, 2))))

30 gradient_change_plot

The benefit of specifying the variable this way is we have an ID
columns now called `.add_str_ID` which could be used to create a
separate plot for each value of the additional variable

Model coefficients can also be used, but then user would have
to specify the data with all columns corresponding to each coefficient
coef_data <- sim2 %>%

mutate(`p1:p2` = p1*p2, `p1:p3` = p1*p2, `p1:p4` = p1*p4,
`p2:p3` = p2*p3, `p2:p4` = p2*p4, `p3:p4` = p3*p4) %>%

select(p1, p2, p3, p4,
`p1:p2`, `p1:p3`, `p1:p4`,
`p2:p3`, `p2:p4`, `p3:p4`) %>%

slice(1,5,9,11)
print(coef_data)
print(mod$coefficients)
gradient_change_data(data = coef_data,

prop = c("p1", "p2", "p3", "p4"),
gradient = "evenness",
coefficients = mod$coefficients,
interval = "none")

gradient_change_plot Visualise change in (predicted) response over diversity gradient

Description

Helper function for plotting the average (predicted) response at each level of a diversity gradient.
The output of the gradient_change_data function should be passed here to visualise a scatter-plot
of the predicted response (or raw response) over a diversity gradient. The points can be overlaid
with ‘pie-glyphs‘ to show the relative proportions of the compositional variables. The average
change in any user-chosen variable over the chosen diversity gradient can also be shown using the
‘y_var‘ parameter.

Usage

gradient_change_plot(
data,
prop = NULL,
pie_data = NULL,
pie_colours = NULL,
pie_radius = 0.25,
points_size = 3,
average = TRUE,
y_var = ".Pred",
facet_var = NULL,
nrow = 0,
ncol = 0

)

gradient_change_plot 31

Arguments

data A data-frame which is the output of the ‘gradient_change_data‘ function, con-
sisting of the predicted response averaged over a particular diversity gradient.

prop A vector of column names or indices identifying the columns containing the
species proportions in the data. Will be inferred from the data if it is created
using the ‘gradient_change_data‘ function, but the user also has the flexibility
of manually specifying the values.

pie_data A subset of data-frame specified in ‘data‘, to visualise the individual data-points
as pie-glyphs showing the relative proportions of the variables in the data-point.

pie_colours A character vector specifying the colours for the slices within the pie-glyphs.

pie_radius A numeric value specifying the radius (in cm) for the pie-glyphs.

points_size A numeric value specifying the size of points (when pie-glyphs not shown)
shown in the plots.

average A boolean value indicating whether to plot a line indicating the average change
in the predicted response with respect to the variable shown on the X-axis. The
average is calculated at the median value of any variables not specified.

y_var A character string indicating the column name of the variable to be shown on
the Y-axis. This could be useful for plotting raw data on the Y-axis. By default
has a value of ".Pred" referring to the column containing model predictions.

facet_var A character string or numeric index identifying the column in the data to be used
for faceting the plot into multiple panels.

nrow Number of rows in which to arrange the final plot (when ‘add_var‘ is specified).

ncol Number of columns in which to arrange the final plot (when ‘add_var‘ is speci-
fied).

Value

A ggplot object

Examples

library(DImodels)
library(dplyr)

Load data
data(sim4)
sim4 <- sim4 %>% filter(treatment %in% c(50, 150))

Fit model
mod <- glm(response ~ 0 + (p1 + p2 + p3 + p4 + p5 + p6)^2, data = sim4)

Create data
By default response would be averaged on the basis of richness
plot_data <- gradient_change_data(data = sim4,

prop = c("p1", "p2", "p3",
"p4", "p5", "p6"),

model = mod)

32 gradient_change_plot

Create plot
gradient_change_plot(data = plot_data)

Average response with respect to evenness
plot_data <- gradient_change_data(data = sim4,

prop = c("p1", "p2", "p3",
"p4", "p5", "p6"),

model = mod,
gradient = "evenness")

gradient_change_plot(data = plot_data)

Can also manually specify prop variables
Add grouped proportions to data
plot_data <- group_prop(plot_data,

prop = c("p1", "p2", "p3", "p4", "p5", "p6"),
FG = c("Gr", "Gr", "Le", "Le", "He", "He"))

Manually specify prop to show in pie-glyphs
gradient_change_plot(data = plot_data,

prop = c("Gr", "Le", "He"))

Don't show line indicating the average change by using `average = FALSE` and
Change colours of the pie-slices using `pie_colours`
gradient_change_plot(data = plot_data,

average = FALSE,
pie_colours = c("darkolivegreen1", "darkolivegreen4",

"orange1", "orange4",
"steelblue1", "steelblue4"))

Manually specify only specific communities to be shown as pie-chart
glyphs using `pie_data`.
Note: It is important for the data specified in
`pie_data` to have the .Pred and .Gradient columns.
So the best use case for this parameter is to accept
a subset of the data specified in `data`.#'
Also use `facet_var` to facet the plot on an additional variable
gradient_change_plot(data = plot_data,

pie_data = plot_data %>% filter(.Richness %in% c(1, 6)),
facet_var = "treatment")

If `add_var` was used during the data preparation step then
multiple plots will be produced and can be arranged using nrow and ncol

new_mod <- update(mod, ~. + treatment, data = sim4)
plot_data <- gradient_change_data(data = sim4[c(seq(1, 18, 3), 19:47), -2],

prop = c("p1", "p2", "p3",
"p4", "p5", "p6"),

model = new_mod,
add_var = list("treatment" = c(50, 250)))

Create plot arranged in 2 columns
gradient_change_plot(data = plot_data,

pie_data = plot_data %>% filter(.Richness %in% c(1, 6)),
ncol = 2)

grouped_ternary 33

Create plot for raw data instead of predictions
Create the data for plotting by specifying `prediction = FALSE`
plot_data <- gradient_change_data(data = sim4[sim4$treatment == 50,],

prop = c("p1", "p2", "p3",
"p4", "p5", "p6"),

prediction = FALSE)
This data will not have any predictions
head(plot_data)
Call the plotting function by specifying the variable you we wish to
plot on the Y-axis by using the argument `y_var`
Since this data wasn't created using `gradient_change_data`
`prop` should be manually specified
gradient_change_plot(data = plot_data, y_var = "response",

prop = c("p1", "p2", "p3",
"p4", "p5", "p6"))

grouped_ternary Conditional ternary diagrams at functional group level

Description

Grouped ternary diagrams are created by combining the proportions of the compositional variables
into groups and visualising these groups on a 2-d ternary diagram. These are very useful when we
have multiple compositional variables that can be grouped together by some hierarchical grouping
structure. For example, grouping species in a ecosystem based on the functions they perform, or
grouping political parties based on their national alliances. Grouping variables this way allows us
to reduce the dimensionality of the compositional data and visualise it. This is akin to looking at a
2-d slice of the high dimensional simplex. The relative proportions of each variable within a group
can be adjusted to look at different slices of the simplex. Looking at multiple such slices would
enable us to create an approximation of how the response varies across the original n-dimensional
simplex. This is a wrapper function specifically for statistical models fit using the DI() func-
tion from the DImodels R package and would implicitly call grouped_ternary_data followed
by grouped_ternary_plot. If your model object isn’t fit using DImodels, consider calling these
functions manually.

Usage

grouped_ternary(
model,
FG,
values = NULL,
tern_vars = NULL,
conditional = NULL,
add_var = list(),
resolution = 3,
plot = TRUE,

34 grouped_ternary

nlevels = 7,
colours = NULL,
lower_lim = NULL,
upper_lim = NULL,
contour_text = TRUE,
show_axis_labels = TRUE,
show_axis_guides = FALSE,
axis_label_size = 4,
vertex_label_size = 5,
nrow = 0,
ncol = 0

)

Arguments

model A Diversity Interactions model object fit by using the DI() function from the
DImodels package.

FG A character vector specifying the groupings of the variables specified in ‘prop‘.
values A numeric vector specifying the proportional split of the variables within a

group. The default is to split the group proportion equally between each variable
in the group.

tern_vars A character vector giving the names of the three variables to be shown in the
ternary diagram.

conditional A data-frame describing the names of the compositional variables and their re-
spective values at which to slice the simplex space. The format should be, for
example, as follows:
data.frame("p1" = c(0, 0.5), "p2" = c(0.2, 0.1))
One figure would be created for each row in ‘conditional‘ with the respective
values of all specified variables. Any compositional variables not specified in
‘conditional‘ will be assumed to be 0.

add_var A list or data-frame specifying values for additional variables in the model other
than the proportions (i.e. not part of the simplex design). This could be useful
for comparing the predictions across different values for a non-compositional
variable. If specified as a list, it will be expanded to show a plot for each unique
combination of values specified, while if specified as a data-frame, one plot
would be generated for each row in the data.

resolution A number between 1 and 10 describing the resolution of the resultant graph.
A high value would result in a higher definition figure but at the cost of being
computationally expensive.

plot A boolean variable indicating whether to create the plot or return the prepared
data instead. The default TRUE creates the plot while FALSE would return the
prepared data for plotting. Could be useful if user wants to modify the data first
and then create the plot.

nlevels The number of levels to show on the contour map.
colours A character vector or function specifying the colours for the contour map or

points. The number of colours should be same as ‘nlevels‘ if (‘show = "con-
tours"‘).

grouped_ternary 35

The default colours scheme is the terrain.colors() for continuous variables
and an extended version of the Okabe-Ito colour scale for categorical variables.

lower_lim A number to set a custom lower limit for the contour (if ‘show = "contours"‘).
The default is minimum of the prediction.

upper_lim A number to set a custom upper limit for the contour (if ‘show = "contours"‘).
The default is maximum of the prediction.

contour_text A boolean value indicating whether to include labels on the contour lines show-
ing their values (if ‘show = "contours"‘). The default is TRUE.

show_axis_labels

A boolean value indicating whether to show axis labels along the edges of the
ternary. The default is TRUE.

show_axis_guides

A boolean value indicating whether to show axis guides within the interior of
the ternary. The default is FALSE.

axis_label_size

A numeric value to adjust the size of the axis labels in the ternary plot. The
default size is 4.

vertex_label_size

A numeric value to adjust the size of the vertex labels in the ternary plot. The
default size is 5.

nrow Number of rows in which to arrange the final plot (when ‘add_var‘ is specified).

ncol Number of columns in which to arrange the final plot (when ‘add_var‘ is speci-
fied).

Value

A ggmultiplot (ggplot if single plot is returned) class object or data-frame (if ‘plot = FALSE‘)

Examples

library(DImodels)
library(dplyr)
data(sim3)
m1 <- DI(y = "response", prop = paste0("p", 1:9),

DImodel = "AV", data = sim3) %>%
suppressWarnings()

We have nine (p1 to p9) variables here and using `conditional_ternary`
to visualise the simplex space won't be very helpful as there are too
variables to condition on
Instead we group the nine-variables into three groups called "G", "L" and "H"
grouped_ternary(model = m1, FG = c("G","G","G","G","G","L","L","H","H"),

resolution = 1)
By default the variables within a group take up an equal share of the
group proportion. So for example, each point along the above ternary
would have a 50:50 split of the variables in the group "L" or "H", thus
the vertex where "L" is 1, would mean that p6 and p7 are 0.5 each,
similarly, the vertex "H" is made up of 0.5 of p8 and p9 while the "G"

36 grouped_ternary_data

vertex is comprised of 0.2 of each of p1, p2, p3, p4, and p5. The concepts
also extend to points along the edges and interior of the ternary.

We can also manually specify the split of the species within a group
This would mean we are looking at a different slice of the simplex
For example this would mean the groups "L" group is made up of 100% of
p7 and doesn't contain any p6, while "H" group contains 30% of p8 and
70% of p9, while "G" group still contains 20% of each p1 to p5.
grouped_ternary(m1, FG = c("G","G","G","G","G","L","L","H","H"),

resolution = 1,
values = c(0.2, 0.2, 0.2, 0.2, 0.2,

0, 1,
0.3, 0.7))

If here are more than three groups then, we could condition some groups
to have a fixed value while three groups are manipulated within a ternary
The group "G" is now split into two groups "G1" and "G2"
We can create conditional ternary diagram at the grouped level as well
Notice the values going in `tern_vars` and `conditional` are names
of the groups and not the original compositional variables
grouped_ternary(m1, FG = c("G1","G1","G2","G2","G2","L","L","H","H"),

resolution = 1,
tern_vars = c("G1", "L", "H"),
conditional = data.frame("G2" = c(0, 0.25, 0.5)))

Specify `plot = FALSE` to not create the plot but return the prepared data
head(grouped_ternary(m1, FG = c("G1","G1","G2","G2","G2","L","L","H","H"),

resolution = 1, plot = FALSE,
tern_vars = c("G1", "L", "H"),
conditional = data.frame("G2" = c(0, 0.25, 0.5))))

All other functionality from \code{\link{condtional_ternary_plot}} is
available in this function too.

grouped_ternary_data Grouped ternary diagrams

Description

The helper function for preparing the underlying data for creating grouped ternary diagrams where
the proportions of the compositional variables are combined into groups and visualised on a ternary
diagram. These are very useful when we have multiple compositional variables that can be grouped
together by some hierarchical grouping structure. For example, grouping species in a ecosystem
based on the functions they perform, or grouping political parties based on their national alliances.
Grouping variables this way allows us to reduce the dimensionality of the compositional data and
visualise it. This is akin to looking at a 2-d slice of the high dimensional simplex. The relative
proportions of each variable within a group can be adjust to look at different slices of the simplex.
Looking at multiple such slices would enable us to create an approximation of how the response
varies across the original n-dimensional simplex. The output of this function can be passed to the
grouped_ternary_plot function to plot the results.

grouped_ternary_data 37

Usage

grouped_ternary_data(
prop,
FG,
values = NULL,
tern_vars = NULL,
conditional = NULL,
add_var = list(),
resolution = 3,
prediction = TRUE,
...

)

Arguments

prop A character vector indicating the model coefficients corresponding to variable
proportions. These variables should be compositional in nature (i.e., proportions
should sum to 1).

FG A character vector specifying the groupings of the variables specified in ‘prop‘.

values A numeric vector specifying the proportional split of the variables within a
group. The default is to split the group proportion equally between each variable
in the group.

tern_vars A character vector giving the names of the three variables to be shown in the
ternary diagram.

conditional A data-frame describing the names of the compositional variables and their re-
spective values at which to slice the simplex space. The format should be, for
example, as follows:
data.frame("p1" = c(0, 0.5), "p2" = c(0.2, 0.1))
One figure would be created for each row in ‘conditional‘ with the respective
values of all specified variables. Any compositional variables not specified in
‘conditional‘ will be assumed to be 0.

add_var A list or data-frame specifying values for additional variables in the model other
than the proportions (i.e. not part of the simplex design). This could be useful
for comparing the predictions across different values for a non-compositional
variable. If specified as a list, it will be expanded to show a plot for each unique
combination of values specified, while if specified as a data-frame, one plot
would be generated for each row in the data.

resolution A number between 1 and 10 describing the resolution of the resultant graph.
A high value would result in a higher definition figure but at the cost of being
computationally expensive.

prediction A logical value indicating whether to pass the final data to the ‘add_prediction‘
function and append the predictions to the data. Default value is TRUE, but of-
ten it would be desirable to make additional changes to the data before mak-
ing any predictions, so the user can set this to FALSE and manually call the
‘add_prediction‘ function.

... Arguments passed on to add_prediction

38 grouped_ternary_data

model A regression model object which will be used to make predictions for
the observations in ‘data‘. Will override ‘coefficients‘ if specified.

coefficients If a regression model is not available (or can’t be fit in R), the
regression coefficients from a model fit in some other language can be used
to calculate predictions. However, the user would have to ensure there’s an
appropriate one-to-one positional mapping between the data columns and
the coefficient values. Further, they would also have to provide a variance-
covariance matrix of the coefficients in the ‘vcov‘ parameter if they want
the associated CI for the prediction or it would not be possible to calculate
confidence/prediction intervals using this method.

vcov If regression coefficients are specified, then the variance-covariance ma-
trix of the coefficients can be specified here to calculate the associated con-
fidence interval around each prediction. Failure to do so would result in no
confidence intervals being returned. Ensure ‘coefficients‘ and ‘vcov‘ have
the same positional mapping with the data.

coeff_cols If ‘coefficients‘ are specified and a one-to-one positional mapping
between the data-columns and coefficient vector is not present. A character
string or numeric index can be specified here to reorder the data columns
and match the corresponding coefficient value to the respective data col-
umn. See the "Use model coefficients for prediction" section in examples.

conf.level The confidence level for calculating confidence/prediction inter-
vals. Default is 0.95.

interval Type of interval to calculate:
"none" (default) No interval to be calculated.
"confidence" Calculate a confidence interval.
"prediction" Calculate a prediction interval.

Value

A data-frame containing compositional columns with names specified in ‘FG‘ and ‘prop‘ parame-
ters along with any additional columns specified in ‘add_var‘ parameter and the following columns
appended at the end.

.x The x-projection of the points within the ternary.

.y The y-projection of the points within the ternary.

.add_str_ID An identifier column for grouping the cartesian product of all additional columns
specified in ‘add_var‘ parameter (if ‘add_var‘ is specified).

.Sp An identifier column specifying the functional group along which the high dimensional simplex
is sliced (if there are more than 3 groups).

.Value The value (between 0 and 1) along the direction of functional group in ‘.Sp‘ at which the
high dimensional simplex is sliced.

.Facet An identifier column formed by combining ‘.Sp‘ and ‘.value‘ to group observations within
a specific slice of the high dimensional simplex.

.Pred The predicted response for each observation. (if ‘prediction‘ is TRUE)

.Lower The lower limit of the prediction/confidence interval for each observation.

.Upper The upper limit of the prediction/confidence interval for each observation.

grouped_ternary_data 39

Examples

library(DImodels)

Load data
data(sim3)

Fit model
mod <- glm(response ~ 0 + (p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9)^2,

data = sim3)

Create data
We have nine (p1 to p9) variables here and using \code{\link{conditional_ternary}}
to visualise the simplex space won't be very helpful as there are too
variables to condition on
Instead we group the nine-variables into three groups called "G", "L" and "H"
head(grouped_ternary_data(model = mod,

prop = paste0("p", 1:9),
FG = c("G","G","G","G","G","L","L","H","H"),
resolution = 1))

By default the variables within a group take up an equal share of the
group proportion. So for example, each point along the above ternary
would have a 50:50 split of the variables in the group "L" or "H", thus
the vertex where "L" is 1, would mean that p6 and p7 are 0.5 each,
similarly, the vertex "H" is made up of 0.5 of p8 and p9 while the "G"
vertex is comprised of 0.2 of each of p1, p2, p3, p4, and p5. The concepts
also extend to points along the edges and interior of the ternary.

Change the proportional split of species within an FG by using `values`
`values` takes a numeric vector where the position of each element
describes the proportion of the corresponding species within the
corresponding FG
For examples this vector describes, 2-% each of p1, p2, p3, p4 and p5,
in G, 0% and 100% of p6 and p7, respectively in G2 and 30% and 70% of
p8 and p9, respectively in G3.
vals <- c(0.2, 0.2, 0.2, 0.2, 0.2,

0, 1,
0.3, 0.7)

head(grouped_ternary_data(prop = paste0("p", 1:9),
FG = c("G","G","G","G","G","L","L","H","H"),
values = vals,
resolution = 1,
model = mod))

Can also add any additional experimental structures
Notice .add_str_ID in the data
head(grouped_ternary_data(prop = paste0("p", 1:9),

FG = c("G","G","G","G","G","L","L","H","H"),
add_var = list("treatment" = c("50", "150")),
values = vals,
model = mod,
resolution = 1))

40 grouped_ternary_plot

It could be desirable to take the output of this function and add
additional variables to the data before making predictions
Use `prediction = FALSE` to get data without any predictions
grouped_data <- grouped_ternary_data(prop = paste0("p", 1:9),

FG = c("G","G","G","G","G","L","L","H","H"),
values = vals,
resolution = 1,
prediction = FALSE)

grouped_data$treatment <- 250
Add predictions
head(add_prediction(data = grouped_data, model = mod))

grouped_ternary_plot Conditional ternary diagrams at functional group level

Description

The helper function for plotting grouped ternary diagrams. The output of the ‘grouped_ternary_data‘
with the compositional variables combined into groups should be passed here to be visualised on a
2-d ternary diagram. These are very useful when we have multiple compositional variables that can
be grouped together by some hierarchical grouping structure. For example, grouping species in a
ecosystem based on the functions they perform, or grouping political parties based on their national
alliances.

Usage

grouped_ternary_plot(
data,
col_var = ".Pred",
nlevels = 7,
colours = NULL,
lower_lim = NULL,
upper_lim = NULL,
tern_labels = colnames(data)[1:3],
contour_text = TRUE,
show_axis_labels = TRUE,
show_axis_guides = FALSE,
axis_label_size = 4,
vertex_label_size = 5,
nrow = 0,
ncol = 0

)

Arguments

data A data-frame which is the output of the ‘conditional_ternary_data‘ function.

grouped_ternary_plot 41

col_var The column name containing the variable to be used for colouring the contours
or points. The default is ".Pred".

nlevels The number of levels to show on the contour map.

colours A character vector or function specifying the colours for the contour map or
points. The number of colours should be same as ‘nlevels‘ if (‘show = "con-
tours"‘).
The default colours scheme is the terrain.colors() for continuous variables
and an extended version of the Okabe-Ito colour scale for categorical variables.

lower_lim A number to set a custom lower limit for the contour (if ‘show = "contours"‘).
The default is minimum of the prediction.

upper_lim A number to set a custom upper limit for the contour (if ‘show = "contours"‘).
The default is maximum of the prediction.

tern_labels A character vector containing the labels of the vertices of the ternary. The default
is the column names of the first three columns of the data, with the first column
corresponding to the top vertex, second column corresponding to the left vertex
and the third column corresponding to the right vertex of the ternary.

contour_text A boolean value indicating whether to include labels on the contour lines show-
ing their values (if ‘show = "contours"‘). The default is TRUE.

show_axis_labels

A boolean value indicating whether to show axis labels along the edges of the
ternary. The default is TRUE.

show_axis_guides

A boolean value indicating whether to show axis guides within the interior of
the ternary. The default is FALSE.

axis_label_size

A numeric value to adjust the size of the axis labels in the ternary plot. The
default size is 4.

vertex_label_size

A numeric value to adjust the size of the vertex labels in the ternary plot. The
default size is 5.

nrow Number of rows in which to arrange the final plot (when ‘add_var‘ is specified).

ncol Number of columns in which to arrange the final plot (when ‘add_var‘ is speci-
fied).

Value

A ggmultiplot (ggplot if single plot is returned) class object or data-frame (if ‘plot = FALSE‘)

Examples

library(DImodels)

Load data
data(sim3)

Fit model

42 grouped_ternary_plot

mod <- glm(response ~ 0 + (p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9)^2,
data = sim3)

Create data
We have nine (p1 to p9) variables here and using conditional_ternary
to visualise the simplex space won't be very helpful as there are too
variables to condition on
Instead we group the nine-variables into three groups called "G", "L" and "H"
plot_data <- grouped_ternary_data(model = mod,

prop = paste0("p", 1:9),
FG = c("G","G","G","G","G","L","L","H","H"),
resolution = 1)

grouped_ternary_plot(plot_data)

By default the variables within a group take up an equal share of the
group proportion. So for example, each point along the above ternary
would have a 50:50 split of the variables in the group "L" or "H", thus
the vertex where "L" is 1, would mean that p6 and p7 are 0.5 each,
similarly, the vertex "H" is made up of 0.5 of p8 and p9 while the "G"
vertex is comprised of 0.2 of each of p1, p2, p3, p4, and p5. The concepts
also extend to points along the edges and interior of the ternary.

Change the proportional split of species within an FG by using `values`
`values` takes a numeric vector where the position of each element
describes the proportion of the corresponding species within the
corresponding FG
For examples this vector describes, 2-% each of p1, p2, p3, p4 and p5,
in G, 0% and 100% of p6 and p7, respectively in G2 and 30% and 70% of
p8 and p9, respectively in G3.
vals <- c(0.2, 0.2, 0.2, 0.2, 0.2,

0, 1,
0.3, 0.7)

plot_data <- grouped_ternary_data(prop = paste0("p", 1:9),
FG = c("G","G","G","G","G","L","L","H","H"),
values = vals,
resolution = 1,
model = mod)

Change number of contours and colour scheme
grouped_ternary_plot(plot_data,

nlevels = 8,
colours = hcl.colors(8))

Can also add any additional experimental structures
Notice .add_str_ID in the data
plot_data <- grouped_ternary_data(prop = paste0("p", 1:9),

FG = c("G","G","G","G","G","L","L","H","H"),
add_var = list("treatment" = c("50", "150")),
values = vals,
model = mod,
resolution = 1)

grouped_ternary_plot(data = plot_data)

group_prop 43

group_prop Combine variable proportions into groups

Description

Combine variable proportions into groups

Usage

group_prop(data, prop, FG = NULL)

Arguments

data A data frame containing the compositional variables which need to be grouped.

prop A character/numeric vector indicating the columns containing the compositional
variables in ‘data‘.

FG A character vector of same length as ‘prop‘ specifying the group each variable
belongs to.

Value

A data-frame with additional columns appended to the end that contain the grouped variable pro-
portions.

Examples

library(DImodels)

data(sim1)

head(group_prop(data = sim1, prop = 3:6,
FG = c("Gr1", "Gr1", "Gr1", "Gr2")))

head(group_prop(data = sim1, prop = 3:6,
FG = c("Group1", "Group2", "Group1", "Group3")))

Data is returned as is, if no groups are specified in FG
head(group_prop(data = sim1, prop = 3:6))

44 model_diagnostics

model_diagnostics Regression diagnostics plots with pie-glyphs

Description

This function returns regression diagnostics plots for a model with points replaced by pie-glyphs
making it easier to track various data points in the plots. This could be useful in models with
compositional predictors to quickly identify any observations with unusual residuals, hat values,
etc.

Usage

model_diagnostics(
model,
which = c(1, 2, 3, 5),
prop = NULL,
FG = NULL,
npoints = 3,
cook_levels = c(0.5, 1),
pie_radius = 0.2,
pie_colours = NULL,
only_extremes = FALSE,
label_size = 4,
points_size = 3,
plot = TRUE,
nrow = 0,
ncol = 0

)

Arguments

model A statistical regression model object fit using lm, glm, nlme functions, etc.

which A subset of the numbers 1 to 6, by default 1, 2, 3, and 5, referring to
1 - "Residuals vs Fitted", aka "Tukey-Anscombe" plot
2 - "Normal Q-Q" plot, an enhanced qqnorm(resid(.))
3 - "Scale-Location"
4 - "Cook’s distance"
5 - "Residuals vs Leverage"
6 - "Cook’s dist vs Lev./(1-Lev.)"
Note: If the specified model object does not inherit the lm class, it might not be
possible to create all diagnostics plots. In these cases, the user will be notified
about any plots which can’t be created.

prop A character vector giving names of columns containing proportions to show in
the pie-glyphs. If not specified, black points (geom_point) will be shown for
each observation in the model. Note: \code{prop} can be left blank and will be
interpreted if model is a Diversity-Interactions (DI) model object fit using
the DI() function from the DImodels package.

model_diagnostics 45

FG A character vector of same length as prop specifying the group each variable
belongs to.

npoints Number of points to be labelled in each plot, starting with the most extreme
(those points with the highest absolute residuals or hat values).

cook_levels A numeric vector specifying levels of Cook’s distance at which to draw contours.

pie_radius A numeric value specifying the radius (in cm) for the pie-glyphs.

pie_colours A character vector specifying the colours for the slices within the pie-glyphs.

only_extremes A logical value indicating whether to show pie-glyphs only for extreme obser-
vations (points with the highest absolute residuals or hat values).

label_size A numeric value specifying the size of the labels identifying extreme observa-
tions.

points_size A numeric value specifying the size of points (when pie-glyphs not shown)
shown in the plots.

plot A boolean variable indicating whether to create the plot or return the prepared
data instead. The default TRUE creates the plot while FALSE would return the
prepared data for plotting. Could be useful if user wants to modify the data first
and then create the plot.

nrow Number of rows in which to arrange the final plot.

ncol Number of columns in which to arrange the final plot.

Value

A ggmultiplot (ggplot if single plot is returned) class object or data-frame (if plot = FALSE).

Examples

library(DImodels)

Load data
data(sim1)

Fit model
mod1 <- lm(response ~ 0 + (p1 + p2 + p3 + p4)^2, data = sim1)

Get diagnostics plot
Recommend to store plot in a variable, to access individual plots later
diagnostics <- model_diagnostics(mod1, prop = c("p1", "p2", "p3", "p4"))
print(diagnostics)

Access individual plots
print(diagnostics[[1]])
print(diagnostics[[4]])

Change plot arrangement

model_diagnostics(mod1, prop = c("p1", "p2", "p3", "p4"),
which = c(1, 3), nrow = 2, ncol = 1)

46 model_selection

Show only extreme points as pie-glyphs to avoid overplotting
model_diagnostics(mod1, prop = c("p1", "p2", "p3", "p4"),

which = 2, npoints = 5, only_extremes = TRUE)

If model is a DImodels object, the don't need to specify prop
DI_mod <- DI(y = "response", prop = c("p1", "p2", "p3", "p4"),

DImodel = "FULL", data = sim1)
model_diagnostics(DI_mod, which = 1)

Specify `plot = FALSE` to not create the plot but return the prepared data
head(model_diagnostics(DI_mod, which = 1, plot = FALSE))

model_selection Visualising model selection

Description

This function helps to visualise model selection by showing a visual comparison between the in-
formation criteria for different models. It is also possible to visualise a breakup of the information
criteria into deviance (goodness-of-fit) and penalty terms for each model. This could aid in under-
standing why a parsimonious model could be preferable over a more complex model.

Usage

model_selection(
models,
metric = c("AIC", "BIC", "AICc", "BICc", "deviance"),
sort = FALSE,
breakup = FALSE,
plot = TRUE,
model_names = names(models)

)

Arguments

models List of statistical regression model objects.

metric Metric used for comparisons between models. Takes values from c("AIC",
"BIC", "AICc", "BICc", "logLik"). Can choose a single or multiple metrics
for comparing the different models.

sort A boolean value indicating whether to sort the model from highest to lowest
value of chosen metric.

breakup A boolean value indicating whether to breakup the metric value into deviance
(defined as -2*loglikelihood) and penalty components. Will work only if a single
metric out of "AIC", "AICc", "BIC", or "BICc" is chosen to plot.

model_selection 47

plot A boolean variable indicating whether to create the plot or return the prepared
data instead. The default ‘TRUE‘ creates the plot while ‘FALSE‘ would return
the prepared data for plotting. Could be useful if user wants to modify the data
first and then call the plotting

model_names A character string describing the names to display on X-axis for each model in
order they appear in the models parameter.

Value

A ggplot object or data-frame (if ‘plot == FALSE‘)

Examples

library(DImodels)

Load data
data(sim2)

Fit different DI models
mod_AV <- DI(prop = 3:6, DImodel = "AV", data = sim2, y = "response")
mod_FULL <- DI(prop = 3:6, DImodel = "FULL", data = sim2, y = "response")
mod_FG <- DI(prop = 3:6, DImodel = "FG", FG = c("G","G","L","L"),

data = sim2, y = "response")
mod_AV_theta <- DI(prop = 3:6, DImodel = "AV", data = sim2,

y = "response", estimate_theta = TRUE)
mod_FULL_theta <- DI(prop = 3:6, DImodel = "FULL", data = sim2,

y = "response", estimate_theta = TRUE)
mod_FG_theta <- DI(prop = 3:6, DImodel = "FG", FG = c("G","G","L","L"),

data = sim2, y = "response", estimate_theta = TRUE)

models_list <- list("AV model" = mod_AV, "Full model" = mod_FULL,
"FG model" = mod_FG, "AV model_t" = mod_AV_theta,
"Full model_t" = mod_FULL_theta,
"FG model_t" = mod_FG_theta)

Specific metric
model_selection(models = models_list,

metric = c("AIC"))

Multiple metrics can be plotted together as well
model_selection(models = models_list,

metric = c("AIC", "BIC"))

If single metric is specified then breakup of metric
between goodness of fit and penalty can also be visualised
model_selection(models = models_list,

metric = c("AICc"),
breakup = TRUE)

Sort models
model_selection(models = models_list,

metric = c("AICc"),

48 prediction_contributions

breakup = TRUE, sort = TRUE)

If multiple metrics are specified then sorting
will be done on first metric specified in list (AIC in this case)
model_selection(models = models_list,

metric = c("AIC", "BIC", "AICc", "BICc"), sort = TRUE)

If the list specified in models is not named then
By default the labels on the X-axis for the models will be
created by assigning a unique ID to each model sequentially
in the order they appear in the models object
names(models_list) <- NULL
model_selection(models = models_list,

metric = c("AIC", "BIC", "AICc"), sort = TRUE)

When possible the variables names of objects containing the
individual models would be used as axis labels
model_selection(models = list(mod_AV, mod_FULL, mod_FG,

mod_AV_theta, mod_FULL_theta, mod_FG_theta),
metric = c("AIC", "BIC"), sort = TRUE)

If neither of these two situations are desirable custom labels
for each model can be specified using the model_names parameter
model_selection(models = list(mod_AV, mod_FULL, mod_FG,

mod_AV_theta, mod_FULL_theta, mod_FG_theta),
metric = c("AIC", "BIC"), sort = TRUE,
model_names = c("AV model", "Full model", "FG model",

"AV theta", "Full theta", "FG theta"))

Specify `plot = FALSE` to not create the plot but return the prepared data
head(model_selection(models = list(mod_AV, mod_FULL, mod_FG,

mod_AV_theta, mod_FULL_theta, mod_FG_theta),
metric = c("AIC", "BIC"), sort = TRUE, plot = FALSE,
model_names = c("AV model", "Full model", "FG model",

"AV theta", "Full theta", "FG theta")))

prediction_contributions

Model term contributions to predicted response

Description

A stacked bar_chart is shown where the individual contributions (parameter estimate * predic-
tor value) for each term in a statistical model are stacked on top of another. The total height
of the stacked bar gives the value of the predicted response. The uncertainty around the pre-
dicted response can also be shown on the plot. This is a wrapper function specifically designed
for statistical models fit using the DI() function from the DImodels R package and it implicitly
calls prediction_contributions_data followed by prediction_contributions_plot. If your
model object isn’t fit using DImodels, the associated data and plot functions can instead be called
manually.

prediction_contributions 49

Usage

prediction_contributions(
model,
data = NULL,
add_var = list(),
groups = list(),
conf.level = 0.95,
bar_labs = rownames(data),
colours = NULL,
se = FALSE,
FG = NULL,
interval = c("confidence", "prediction", "none"),
bar_orientation = c("vertical", "horizontal"),
facet_var = NULL,
plot = TRUE,
nrow = 0,
ncol = 0

)

Arguments

model A Diversity Interactions model object fit by using the DI() function from the
DImodels package.

data A user-defined data-frame containing values for compositional variables along
with any additional variables that the user wishes to predict for. If left blank, a
selection of observations (2 from each level of richness) from the original data
used to fit the model would be selected.

add_var A list specifying values for additional predictor variables in the model indepen-
dent of the compositional predictor variables. This could be useful for compar-
ing the predictions across different values for a non-compositional variable. If
specified as a list, it will be expanded to show a plot for each unique combina-
tion of values specified, while if specified as a data-frame, one plot would be
generated for each row in the data and they will be arranged in a grid according
to the value specified in ‘nrow‘ and ‘ncol‘.

groups A list specifying groupings to arrange coefficients into. The coefficients within a
group will be added together and shown as a single component on the respective
bars in the plot. This could be useful for grouping multiple similar terms into a
single term for better visibility.

conf.level The confidence level for calculating confidence or prediction intervals.

bar_labs The labels to be shown for each bar in the plot. The user has three options: -
By default, the row-names in the data would be used as labels for the bars. -
A character string or numeric index indicating an ID column in data. - A char-
acter vector of same length as the number of rows in the data, which manually
specifies the names for each bar. If none of the three options are available, the
function would assign a unique ID for each bar.

50 prediction_contributions

colours A character vector specifying the colours for the contributions of the different
coefficients. If not specified, a default colour-scheme would be chosen, how-
ever it might be uninformative in some situations (for examples when manual
groupings are specified using ‘groups‘ parameter).

se A logical value indicating whether to show prediction intervals for predictions
in the plot.

FG A higher level grouping for the compositional variables in the data. Variables
belonging to the same group will be assigned with different shades of the same
colour. The user can manually specify a character vector giving the group each
variable belongs to. If left empty the function will try to get a grouping from the
original DI model object.

interval Type of interval to calculate:

"none" No interval to be calculated.
"confidence" (default) Calculate a confidence interval.
"prediction" Calculate a prediction interval.

bar_orientation

One of "vertical" or "horizontal" indicating the orientation of the bars. Defaults
to a vertical orientation.

facet_var A character string or numeric index identifying the column in the data to be used
for faceting the plot into multiple panels.

plot A boolean variable indicating whether to create the plot or return the prepared
data instead. The default ‘TRUE‘ creates the plot while ‘FALSE‘ would return
the prepared data for plotting. Could be useful for if user wants to modify the
data first and then call the plotting function manually.

nrow Number of rows in which to arrange the final plot (when ‘add_var‘ is specified).

ncol Number of columns in which to arrange the final plot (when ‘add_var‘ is speci-
fied).

Value

A ggmultiplot (ggplot if single plot is returned) class object or data-frame (if ‘plot = FALSE‘)

Examples

#' ## Load DImodels package to fit the model
library(DImodels)

Load data
data(sim2)

Fit DI model
model1 <- DI(prop = 3:6, DImodel = 'FULL', data = sim2, y = 'response')

Create visualisation
If no communities are specified 2 communities at
each level of richness from the original data are used
prediction_contributions(model1)

prediction_contributions 51

Can also manually specify communities of interest
my_comms <- data.frame(p1 = c(1, 0, 0, 0.5, 1/3, 0.25),

p2 = c(0, 0, 0.5, 0, 1/3, 0.25),
p3 = c(0, 1, 0.5, 0, 1/3, 0.25),
p4 = c(0, 0, 0, 0.5, 0, 0.25))

prediction_contributions(model1, data = my_comms)

Group contributions to show as a single component on the plot
prediction_contributions(model1, data = my_comms,

groups = list("Interactions" = c("`p1:p2`", "`p1:p3`",
"`p1:p4`", "`p2:p3`",
"`p2:p4`", "`p3:p4`")))

Add a prediction interval using `se = TRUE` and show bars horizontally
prediction_contributions(model1, data = my_comms, se = TRUE,

bar_orientation = "horizontal",
groups = list("Interactions" = c("`p1:p2`", "`p1:p3`",

"`p1:p4`", "`p2:p3`",
"`p2:p4`", "`p3:p4`")))

Facet the plot on any variable
my_comms$richness <- c(1, 1, 2, 2, 3, 4)
Use `facet_var`
prediction_contributions(model1, data = my_comms, facet_var = "richness",

bar_orientation = "horizontal",
groups = list("Interactions" = c("`p1:p2`", "`p1:p3`",

"`p1:p4`", "`p2:p3`",
"`p2:p4`", "`p3:p4`")))

Can also add additional variables independent of the simplex design
to get a separate plot for unique combination of the variables
prediction_contributions(model1, data = my_comms,

add_var = list("block" = factor(c(1, 2),
levels = c(1, 2, 3, 4))))

Manually specify colours and bar labels
Model has 10 terms but we grouped 6 of them into 1 term,
so we need to specify 5 colours (4 ungrouped terms + 1 grouped term)
Bar labels can be specified using `bar_labs`
Also, using nrow to arrange plots in rows
prediction_contributions(model1, data = my_comms,

colours = c("steelblue1", "steelblue4",
"orange", "orange4",
"grey"),

bar_labs = c("p1 Mono", "p3 Mono", "1/2 p2 p3",
"1/2 p1 p4", "1/3 p1 p2 p3", "Centroid"),

add_var = list("block" = factor(c(1, 2),
levels = c(1, 2, 3, 4))),

nrow = 2,
groups = list("Interactions" = c("`p1:p2`", "`p1:p3`",

"`p1:p4`", "`p2:p3`",

52 prediction_contributions_data

"`p2:p4`", "`p3:p4`")))

Specify `plot = FALSE` to not create the plot but return the prepared data
head(prediction_contributions(model1, data = my_comms, plot = FALSE,

facet_var = "richness",
bar_orientation = "horizontal"))

prediction_contributions_data

Model term contributions to predicted response

Description

The helper function for preparing the data to split the predicted response from a regression model
into contributions (predictor coefficient * predictor value) by the terms in the model. The output of
this function can be passed to the ‘prediction_contributions_plot‘ function to visualise the results.

Usage

prediction_contributions_data(
data,
model = NULL,
coefficients = NULL,
coeff_cols = NULL,
vcov = NULL,
add_var = list(),
groups = list(),
conf.level = 0.95,
interval = c("confidence", "prediction", "none"),
bar_labs = rownames(data)

)

Arguments

data A user-defined data-frame containing values for compositional variables along
with any additional variables that the user wishes to predict for. If left blank, a
selection of observations (2 from each level of richness) from the original data
used to fit the model would be selected.

model A Diversity Interactions model object fit by using the DI() function from the
DImodels package.

coefficients If a regression model is not available (or can’t be fit in R), the regression coeffi-
cients from a model fit in some other language can be used to calculate predic-
tions. However, the user would have to ensure there’s an appropriate one-to-one
positional mapping between the data columns and the coefficient values. Fur-
ther, they would also have to provide a variance-covariance matrix of the coef-
ficients in the ‘vcov‘ parameter if they want the associated CI for the prediction
or it would not be possible to calculate confidence/prediction intervals using this
method.

prediction_contributions_data 53

coeff_cols If ‘coefficients‘ are specified and a one-to-one positional mapping between the
data-columns and coefficient vector is not present. A character string or nu-
meric index can be specified here to reorder the data columns and match the
corresponding coefficient value to the respective data column. See the "Use
model coefficients for prediction" section in examples.

vcov If regression coefficients are specified, then the variance-covariance matrix of
the coefficients can be specified here to calculate the associated confidence in-
terval around each prediction. Failure to do so would result in no confidence
intervals being returned. Ensure ‘coefficients‘ and ‘vcov‘ have the same posi-
tional mapping with the data.

add_var A list specifying values for additional predictor variables in the model indepen-
dent of the compositional predictor variables. This could be useful for compar-
ing the predictions across different values for a non-compositional variable. If
specified as a list, it will be expanded to show a plot for each unique combina-
tion of values specified, while if specified as a data-frame, one plot would be
generated for each row in the data and they will be arranged in a grid according
to the value specified in ‘nrow‘ and ‘ncol‘.

groups A list specifying groupings to arrange coefficients into. The coefficients within a
group will be added together and shown as a single component on the respective
bars in the plot. This could be useful for grouping multiple similar terms into a
single term for better visibility.

conf.level The confidence level for calculating confidence or prediction intervals.
interval Type of interval to calculate:

"none" No interval to be calculated.
"confidence" (default) Calculate a confidence interval.
"prediction" Calculate a prediction interval.

bar_labs The labels to be shown for each bar in the plot. The user has three options: -
By default, the row-names in the data would be used as labels for the bars. -
A character string or numeric index indicating an ID column in data. - A char-
acter vector of same length as the number of rows in the data, which manually
specifies the names for each bar. If none of the three options are available, the
function would assign a unique ID for each bar.

Value

A data-frame with the following columns. Any additional columns which weren’t used when fitting
the model would also be present.

.Community An identifier column to discern each observation in the data. These are the labels
which will be displayed for the bars in the plot.

.add_str_ID An identifier column for grouping the cartesian product of all additional columns
specified in ‘add_var‘ parameter (if ‘add_var‘ is specified).

.Pred The predicted repsonse for each observation.

.Lower The lower limit of the prediction interval for each observation.

.Upper The lower limit of the prediction interval for each observation.

.Contributions An identifier describing the name of the coefficient contributing to the response.

.Value The contributed value of the respective coefficient/group to the total prediction.

54 prediction_contributions_data

Examples

library(DImodels)
library(dplyr)

Load data
data(sim2)

Fit model
mod <- glm(response ~ 0 + (p1 + p2 + p3 + p4)^2, data = sim2)

prediction_contributions_data(data = sim2[c(1,5,9,11),],
model = mod)

Specific coefficients can also be grouped together
Either by their indices in the model coefficient vector
prediction_contributions_data(data = sim2[c(1,5,9,11),],

model = mod,
groups = list("Interactions" = 5:10))

Or by specifying the coefficient names as character strings
prediction_contributions_data(data = sim2[c(1,5,9,11),],

model = mod,
groups = list("p1_Ints" = c("p1:p2",

"p1:p3",
"p1:p4")))

Additional variables can also be added to the data by either specifying
them directly in the `data` or by using the `add_var` argument
Refit model
sim2$block <- as.numeric(sim2$block)
new_mod <- update(mod, ~. + block, data = sim2)
This model has block so we can either specify block in the data
subset_data <- sim2[c(1,5,9,11), 2:6]
subset_data
head(prediction_contributions_data(data = subset_data,

model = new_mod))
Or we could add the variable using `add_var`
subset_data <- sim2[c(1,5,9,11), 3:6]
subset_data
head(prediction_contributions_data(data = subset_data,

model = new_mod,
add_var = list(block = c(1, 2))))

The benefit of specifying the variable this way is we have an ID
columns now called `.add_str_ID` which would be used to create a
separate plot for each value of the additional variable

Model coefficients can also be used, but then user would have
to specify the data with all columns corresponding to each coefficient
coef_data <- sim2 %>%

mutate(`p1:p2` = p1*p2, `p1:p3` = p1*p2, `p1:p4` = p1*p4,
`p2:p3` = p2*p3, `p2:p4` = p2*p4, `p3:p4` = p3*p4) %>%

select(p1, p2, p3, p4,

prediction_contributions_plot 55

`p1:p2`, `p1:p3`, `p1:p4`,
`p2:p3`, `p2:p4`, `p3:p4`) %>%

slice(1,5,9,11)
print(coef_data)
print(mod$coefficients)
prediction_contributions_data(data = coef_data,

coefficients = mod$coefficients,
interval = "none")

To get uncertainity using coefficients vcov matrix would have to specified
prediction_contributions_data(data = coef_data,

coefficients = mod$coefficients,
vcov = vcov(mod))

Specifying `bar_labs`
Our data has four rows so we'd need four labels in bar_labs
prediction_contributions_data(data = coef_data,

coefficients = mod$coefficients,
vcov = vcov(mod),
bar_labs = c("p1 Domm", "p2 Domm",

"p3 Domm", "p4 Domm"))

prediction_contributions_plot

Visualise model term contributions to predicted response

Description

The plotting function to visualise the predicted response from a regression model as a stacked
bar-chart showing the contributions (predictor coefficient * predictor value) of each model term to
the total predicted value (represented by the total height of the bar). Requires the output of the
‘prediction_contributions_data‘ as an input in the ‘data‘ parameter.

Usage

prediction_contributions_plot(
data,
colours = NULL,
se = FALSE,
bar_orientation = c("vertical", "horizontal"),
facet_var = NULL,
nrow = 0,
ncol = 0

)

Arguments

data A data-frame which is the output of the ‘prediction_contributions_data‘ func-
tion, consisting of the predicted response split into the contributions by the dif-
ferent coefficients.

56 prediction_contributions_plot

colours A character vector specifying the colours for the contributions of the different
coefficients. If not specified, a default colour-scheme would be chosen, however
it could be uninformative and it is recommended to manually choose contrasting
colours for each coefficient group to render a more informative plot.

se A logical value indicating whether to show prediction intervals for predictions
in the plot.

bar_orientation

One of "vertical" or "horizontal" indicating the orientation of the bars. Defaults
to a vertical orientation.

facet_var A character string or numeric index identifying the column in the data to be used
for faceting the plot into multiple panels.

nrow Number of rows in which to arrange the final plot (when ‘add_var‘ is specified).

ncol Number of columns in which to arrange the final plot (when ‘add_var‘ is speci-
fied).

Value

A ggmultiplot (ggplot if single plot is returned) class object or data-frame (if ‘plot = FALSE‘)

Examples

library(DImodels)
library(dplyr)

Load data
data(sim2)
sim2$AV <- DI_data_E_AV(data = sim2, prop = 3:6)$AV

Fit model
mod <- glm(response ~ 0 + (p1 + p2 + p3 + p4 + AV), data = sim2)

Create data for plotting
plot_data <- prediction_contributions_data(data = sim2[c(1,5,9,11,15,19,23),],

model = mod)
Create plot
prediction_contributions_plot(data = plot_data)

Choose distinct colours for groups of coefficients for better visibility
ID_cols <- get_colours(4, FG = c("G", "G", "H", "H"))
int_cols <- "#808080"
cols <- c(ID_cols, int_cols)
Specify colours using `cols`
prediction_contributions_plot(data = plot_data, colours = cols)

Show prediction intervals
prediction_contributions_plot(data = plot_data, colours = cols, se = TRUE)

Change orientation of bars using `bar_orientation`
prediction_contributions_plot(data = plot_data, colours = cols,

se = TRUE, bar_orientation = "horizontal")

prop_to_tern_proj 57

Facet plot based on a variable in the data
prediction_contributions_plot(data = plot_data, colours = cols,

se = TRUE, bar_orientation = "horizontal",
facet_var = "block")

If multiple plots are desired `add_var` can be specified during
data preparation and the plots can be arranged using nrow and ncol
sim2$block <- as.character(sim2$block)
new_mod <- update(mod, ~. + block, data = sim2)
plot_data <- prediction_contributions_data(data = sim2[c(1,5,9,11,15,19,23), c(3:6, 8)],

model = new_mod,
add_var = list("block" = c("1", "2")))

Arrange in two columns
prediction_contributions_plot(data = plot_data, ncol = 2)

prop_to_tern_proj Project 3-d compositional data onto x-y plane and vice versa

Description

Points in the 3-d simplex space with coordinates (x, y ,z) such that x + y + z = 1 are projected into
the 2-d plane they reside in. This function can be used to convert the 3-d compositional data into
2-d and then be overlayed on the plots output by ternary_plot, conditional_ternary_plot and
grouped_ternary_plot.

Usage

prop_to_tern_proj(data, prop, x = ".x", y = ".y")

tern_to_prop_proj(data, x, y, prop = c("p1", "p2", "p3"))

Arguments

data A data-frame containing the x-y coordinates of the points.

prop A character vector specifying the columns names of variable containing the pro-
jected compositions. Default is "p1", "p2", and "p3".

x A character string specifying the name for the column containing the x compo-
nent of the x-y projection of the simplex.

y A character string specifying the name for the column containing the y compo-
nent of the x-y projection of the simplex.

Value

A data-frame with the following two columns appended (when transforming to x-y projection)

.x (or value specified in "x") The x component of the x-y projection of the simplex point.

.y (or value specified in "y") The y component of the x-y projection of the simplex point.

58 simplex_path

A data-frame with the following three columns appended (when transforming to compositional
projection)

p1 (or first value specified in "prop") The first component of the 3-d simplex point.

p2 (or second value specified in "prop") The second component of the 3-d simplex point.

p3 (or third value specified in "prop") The third component of the 3-d simplex point.

Examples

Convert proportions to x-y co-ordinates
library(DImodels)
data(sim0)
sim0 <- sim0[1:16,]

prop_to_tern_proj(data = sim0, prop = c("p1", "p2", "p3"))

Change names of the x and y projections
prop_to_tern_proj(data = sim0, prop = c("p1", "p2", "p3"),

x = "x-proj", y = "y-proj")
Convert x-y co-ordinates to proportions
library(DImodels)
data(sim0)
sim0 <- sim0[1:16,]

proj_data <- prop_to_tern_proj(data = sim0, prop = c("p1", "p2", "p3"))

tern_to_prop_proj(data = proj_data, x = ".x", y = ".y")

Change prop names
tern_to_prop_proj(data = proj_data, x = ".x", y = ".y",

prop = c("prop1", "prop2", "prop3"))

simplex_path Visualising the change in a response variable between two points in
the simplex space

Description

This function will prepare the underlying data and plot the results for visualising the change in a
response variable as we move across a straight line between two points in the simplex space in a
single function call. The two sets of points specified by the ‘starts‘ and ‘ends‘ parameters are joined
by a straight line across the simplex space and the response is predicted for the starting, ending
and intermediate communities along this line. The associated uncertainty along this prediction is
also shown. The generated plot will show individual curves indicating the variation in the response
between the points. ‘Pie-glyphs‘ are used to highlight the compositions of the starting, ending
and midpoint of the straight line between the two points. This is a wrapper function specifically for
statistical models fit using the DI() function from the DImodels R package and would implicitly
call simplex_path_data followed by simplex_path_plot. If your model object isn’t fit using
DImodels, consider calling these functions manually.

simplex_path 59

Usage

simplex_path(
model,
starts,
ends,
add_var = list(),
interval = c("confidence", "prediction", "none"),
conf.level = 0.95,
se = FALSE,
pie_positions = c(0, 0.5, 1),
pie_colours = NULL,
pie_radius = 0.3,
FG = NULL,
facet_var = NULL,
plot = TRUE,
nrow = 0,
ncol = 0

)

Arguments

model A Diversity Interactions model object fit by using the ‘DI()‘ function from the
‘DImodels‘ package.

starts A data-frame specifying the starting proportions of the compositional variables.
If a model object is specified then this data should contain all the variables
present in the model object including any additional non-compositional vari-
ables. If a coefficient vector is specified then data should contain same number
of columns as the number of elements in the coefficient vector and a one-to-
one positional mapping would be assumed between the data columns and the
elements of the coefficient vector.

ends A data-frame specifying the ending proportions of the compositional variables.
If a model object is specified then this data should contain all the variables
present in the model object including any additional non-compositional vari-
ables. If a coefficient vector is specified then data should contain same number
of columns as the number of elements in the coefficient vector and a one-to-
one positional mapping would be assumed between the data columns and the
elements of the coefficient vector.

add_var A list specifying values for additional variables in the model other than the pro-
portions (i.e. not part of the simplex design). This would be useful to compare
the predictions across different values for a categorical variable. One plot will
be generated for each unique combination of values specified here.

interval Type of interval to calculate:
"none" No interval to be calculated.
"confidence" (default) Calculate a confidence interval.
"prediction" Calculate a prediction interval.

conf.level The confidence level for calculating confidence/prediction intervals. Default is
0.95.

60 simplex_path

se A boolean variable indicating whether to plot confidence intervals associated
with the effect of species increase or decrease

pie_positions A numeric vector with values between 0 and 1 (both inclusive) indicating the
positions along the X-axis at which to show pie-glyphs for each curve. Default
is c(0, 0.5, 1) meaning that pie-glyphs with be shown at the start, midpoint and
end of each curve.

pie_colours A character vector indicating the colours for the slices in the pie-glyphs.
If left NULL, the colour blind friendly colours will be for the pie-glyph slices.

pie_radius A numeric value specifying the radius (in cm) for the pie-glyphs. Default is 0.3
cm.

FG A higher level grouping for the compositional variables in the data. Variables
belonging to the same group will be assigned with different shades of the same
colour. The user can manually specify a character vector giving the group each
variable belongs to. If left empty the function will try to get a grouping from the
original DI model object.

facet_var A character string or numeric index identifying the column in the data to be used
for faceting the plot into multiple panels.

plot A boolean variable indicating whether to create the plot or return the prepared
data instead. The default ‘TRUE‘ creates the plot while ‘FALSE‘ would return
the prepared data for plotting. Could be useful for if user wants to modify the
data first and then call the plotting function manually.

nrow Number of rows in which to arrange the final plot (when ‘add_var‘ is specified).

ncol Number of columns in which to arrange the final plot (when ‘add_var‘ is speci-
fied).

Value

A ggmultiplot (ggplot if single plot is returned) class object or data-frame (if ‘plot = FALSE‘)

Examples

library(DImodels)
data(sim2)

Fit model
mod <- DI(y = "response", prop = 3:6, DImodel = "AV", data = sim2)

Create plot
Move from p3 monoculture to p4 monoculture
simplex_path(model = mod,

starts = data.frame(p1 = 0, p2 = 0, p3 = 1, p4 = 0),
ends = data.frame(p1 = 0, p2 = 0, p3 = 0, p4 = 1))

Move from each 70% dominant mixtures to p1 monoculture
simplex_path(model = mod,

starts = sim2[c(1, 5, 9, 13), 3:6],
ends = data.frame(p1 = 1, p2 = 0, p3 = 0, p4 = 0))

simplex_path_data 61

Move from centroid community to each monoculture
simplex_path(model = mod,

starts = sim2[c(18),],
ends = sim2[c(48, 52, 56, 60),])

Show change across multiple points simultaneously and show confidence bands
using `se = TRUE`
simplex_path(model = mod,

starts = sim2[c(1, 17, 22),],
ends = sim2[c(5, 14, 17),], se = TRUE)

Change pie_colours using `pie_colours` and show pie-glyph at different
points along the curve using `pie_positions`
simplex_path(model = mod,

starts = sim2[c(1, 17, 22),],
ends = sim2[c(5, 14, 17),], se = TRUE,
pie_positions = c(0, 0.25, 0.5, 0.75, 1),
pie_colours = c("steelblue1", "steelblue4", "orange1", "orange4"))

Facet based on existing variables

simplex_path(model = mod,
starts = sim2[c(1, 17, 22),],
ends = sim2[c(5, 14, 17),], se = TRUE, facet_var = "block",
pie_colours = c("steelblue1", "steelblue4", "orange1", "orange4"))

Add additional variables and create a separate plot for each
simplex_path(model = mod,

starts = sim2[c(1, 17, 22), 3:6],
ends = sim2[c(5, 14, 17), 3:6], se = TRUE,
pie_colours = c("steelblue1", "steelblue4", "orange1", "orange4"),
add_var = list("block" = factor(c(1, 3),

levels = c(1, 2, 3, 4))))

Specify `plot = FALSE` to not create the plot but return the prepared data
head(simplex_path(model = mod, plot = FALSE,

starts = sim2[c(1, 17, 22), 3:6],
ends = sim2[c(5, 14, 17), 3:6], se = TRUE,
pie_colours = c("steelblue1", "steelblue4",

"orange1", "orange4"),
add_var = list("block" = factor(c(1, 3),

levels = c(1, 2, 3, 4)))))

simplex_path_data Creating data for visualising the change in a response variable be-
tween two points in the simplex space

62 simplex_path_data

Description

This is the helper function to prepare the underlying data for visualising the change in a response
variable between two points in a simplex space. The two points specified by the ‘starts‘ and ‘ends‘
parameters are joined by a straight line across the simplex space and the response is predicted for the
starting, ending and intermediate communities along this line. The associated uncertainty along this
prediction is also returned. The output of this function can be passed to the simplex_path_plot
function to visualise the change in response.

Usage

simplex_path_data(starts, ends, prop, add_var = list(), prediction = TRUE, ...)

Arguments

starts A data-frame specifying the starting proportions of the compositional variables.
If a model object is specified then this data should contain all the variables
present in the model object including any additional non-compositional vari-
ables. If a coefficient vector is specified then data should contain same number
of columns as the number of elements in the coefficient vector and a one-to-
one positional mapping would be assumed between the data columns and the
elements of the coefficient vector.

ends A data-frame specifying the ending proportions of the compositional variables.
If a model object is specified then this data should contain all the variables
present in the model object including any additional non-compositional vari-
ables. If a coefficient vector is specified then data should contain same number
of columns as the number of elements in the coefficient vector and a one-to-
one positional mapping would be assumed between the data columns and the
elements of the coefficient vector.

prop A vector of column names identifying the columns containing the variable pro-
portions (i.e., compositional columns) in the data.

add_var A list or data-frame specifying values for additional variables in the model other
than the proportions (i.e. not part of the simplex design). This could be useful
for comparing the predictions across different values for a non-compositional
variable. If specified as a list, it will be expanded to show a plot for each unique
combination of values specified, while if specified as a data-frame, one plot
would be generated for each row in the data.

prediction A logical value indicating whether to pass the final data to the ‘add_prediction‘
function and append the predictions to the data. Default value is TRUE, but of-
ten it would be desirable to make additional changes to the data before mak-
ing any predictions, so the user can set this to FALSE and manually call the
‘add_prediction‘ function.

... Arguments passed on to add_prediction

model A regression model object which will be used to make predictions for
the observations in ‘data‘. Will override ‘coefficients‘ if specified.

coefficients If a regression model is not available (or can’t be fit in R), the
regression coefficients from a model fit in some other language can be used

simplex_path_data 63

to calculate predictions. However, the user would have to ensure there’s an
appropriate one-to-one positional mapping between the data columns and
the coefficient values. Further, they would also have to provide a variance-
covariance matrix of the coefficients in the ‘vcov‘ parameter if they want
the associated CI for the prediction or it would not be possible to calculate
confidence/prediction intervals using this method.

vcov If regression coefficients are specified, then the variance-covariance ma-
trix of the coefficients can be specified here to calculate the associated con-
fidence interval around each prediction. Failure to do so would result in no
confidence intervals being returned. Ensure ‘coefficients‘ and ‘vcov‘ have
the same positional mapping with the data.

coeff_cols If ‘coefficients‘ are specified and a one-to-one positional mapping
between the data-columns and coefficient vector is not present. A character
string or numeric index can be specified here to reorder the data columns
and match the corresponding coefficient value to the respective data col-
umn. See the "Use model coefficients for prediction" section in examples.

conf.level The confidence level for calculating confidence/prediction inter-
vals. Default is 0.95.

interval Type of interval to calculate:
"none" (default) No interval to be calculated.
"confidence" Calculate a confidence interval.
"prediction" Calculate a prediction interval.

Value

A data frame with the following columns appended at the end

.InterpConst The value of the interpolation constant for creating the intermediate compositions
between the start and end compositions.

.Group An identifier column to discern between the different curves.

.add_str_ID An identifier column for grouping the cartesian product of all additional columns
specified in ‘add_var‘ parameter (if ‘add_var‘ is specified).

.Pred The predicted response for each observation.

.Lower The lower limit of the prediction/confidence interval for each observation.

.Upper The upper limit of the prediction/confidence interval for each observation.

Examples

library(DImodels)

Load data
data(sim2)

Fit model
mod <- glm(response ~ (p1 + p2 + p3 + p4)^2 + 0, data = sim2)

Create data for visualising change in response as we move from
a species dominated by 70% of one species to a monoculture of

64 simplex_path_plot

same species
head(simplex_path_data(starts = sim2[c(1, 5, 9, 13), 3:6],

ends = sim2[c(48, 52, 56, 60), 3:6],
prop = c("p1", "p2", "p3", "p4"),
model = mod))

Create data for visualising change in response as we move from
the centroid mixture to each monoculture
If either of starts or ends have only row, then they'll be recycled
to match the number of rows in the other
Notice starts has only one row here, but will be recycled to have 4
since ends has 4 four rows
head(simplex_path_data(starts = sim2[c(18),3:6],

ends = sim2[c(48, 52, 56, 60),3:6],
prop = c("p1", "p2", "p3", "p4"),
model = mod))

Changing the confidence level for the prediction interval
Use `conf.level` parameter
head(simplex_path_data(starts = sim2[c(18), 3:6],

ends = sim2[c(48, 52, 56, 60),3:6],
prop = c("p1", "p2", "p3", "p4"),
model = mod, conf.level = 0.99))

Adding additional variables to the data using `add_var`
Notice the new .add_str_ID column in the output
sim2$block <- as.numeric(sim2$block)
new_mod <- update(mod, ~ . + block, data = sim2)
head(simplex_path_data(starts = sim2[c(18), 3:6],

ends = sim2[c(48, 52, 56, 60), 3:6],
prop = c("p1", "p2", "p3", "p4"),
model = new_mod, conf.level = 0.99,
add_var = list("block" = c(1, 2))))

Use predict = FALSE to get raw data structure
out_data <- simplex_path_data(starts = sim2[c(18), 3:6],

ends = sim2[c(48, 52, 56, 60), 3:6],
prop = c("p1", "p2", "p3", "p4"),
model = new_mod,
prediction = FALSE)

head(out_data)
Manually add block
out_data$block = 3
Call `add_prediction` to get prediction
head(add_prediction(data = out_data, model = new_mod, interval = "conf"))

simplex_path_plot Visualising the change in a response variable between two points in
the simplex space

simplex_path_plot 65

Description

The helper function for plotting the change in a response variable over a straight line between two
points across the simplex space. The output of the simplex_path_data function (with any desired
modifications) should be passed here. The generated plot will show individual curves indicating the
variation in the response between the points. ‘Pie-glyphs‘ are used to highlight the compositions
of the starting, ending and midpoint of the straight line between the two points.

Usage

simplex_path_plot(
data,
prop = NULL,
pie_positions = c(0, 0.5, 1),
pie_radius = 0.3,
pie_colours = NULL,
se = FALSE,
facet_var = NULL,
nrow = 0,
ncol = 0

)

Arguments

data A data frame created using the simplex_path_data function.

prop A vector of column names or indices identifying the columns containing the
species proportions in the data. Will be inferred from the data if it is created
using the ‘simplex_path_data‘ function, but the user also has the flexibility of
manually specifying the values.

pie_positions A numeric vector with values between 0 and 1 (both inclusive) indicating the
positions along the X-axis at which to show pie-glyphs for each curve. Default
is c(0, 0.5, 1) meaning that pie-glyphs with be shown at the start, midpoint and
end of each curve.

pie_radius A numeric value specifying the radius (in cm) for the pie-glyphs. Default is 0.3
cm.

pie_colours A character vector indicating the colours for the slices in the pie-glyphs.
If left NULL, the colour blind friendly colours will be for the pie-glyph slices.

se A boolean variable indicating whether to plot confidence intervals associated
with the effect of species increase or decrease

facet_var A character string or numeric index identifying the column in the data to be used
for faceting the plot into multiple panels.

nrow Number of rows in which to arrange the final plot (when ‘add_var‘ is specified).

ncol Number of columns in which to arrange the final plot (when ‘add_var‘ is speci-
fied).

Value

A ggmultiplot (ggplot if single plot is returned) class object or data-frame (if ‘plot = FALSE‘)

66 simplex_path_plot

Examples

library(DImodels)

Load data
data(sim2)

Fit model
mod <- glm(response ~ (p1 + p2 + p3 + p4)^2 + 0, data = sim2)

Visualise change as we move from the centroid community to each monoculture
plot_data <- simplex_path_data(starts = sim2[c(19, 20, 19, 20),],

ends = sim2[c(47, 52, 55, 60),],
prop = c("p1", "p2", "p3", "p4"),
model = mod)

prop will be inferred from data
simplex_path_plot(data = plot_data)

Show specific curves
simplex_path_plot(data = plot_data[plot_data$.Group %in% c(1, 4),])

Show uncertainty using `se = TRUE`
simplex_path_plot(data = plot_data[plot_data$.Group %in% c(1, 4),],

se = TRUE)

Change colours of pie-glyphs using `pie_colours`
simplex_path_plot(data = plot_data[plot_data$.Group %in% c(1, 4),],

se = TRUE,
pie_colours = c("steelblue1", "steelblue4", "orange1", "orange4"))

Show pie-glyphs at different points along the curve using `pie_positions`
simplex_path_plot(data = plot_data[plot_data$.Group %in% c(1, 4),],

se = TRUE,
pie_positions = c(0, 0.25, 0.5, 0.75, 1),
pie_colours = c("steelblue1", "steelblue4", "orange1", "orange4"))

Facet plot based on specific variables
simplex_path_plot(data = plot_data,

se = TRUE,
facet_var = "block",
pie_colours = c("steelblue1", "steelblue4", "orange1", "orange4"))

Simulataneously create multiple plots for additional variables
sim2$block <- as.numeric(sim2$block)
new_mod <- update(mod, ~ . + block, data = sim2)
plot_data <- simplex_path_data(starts = sim2[c(18), 3:6],

ends = sim2[c(48, 60), 3:6],
prop = c("p1", "p2", "p3", "p4"),
model = new_mod, conf.level = 0.95,
add_var = list("block" = c(1, 2)))

simplex_path_plot(data = plot_data,
pie_colours = c("steelblue1", "steelblue4",

ternary_data 67

"orange1", "orange4"),
nrow = 1, ncol = 2)

ternary_data Prepare data for showing contours in ternary diagrams.

Description

The data preparation function for creating an equally spaced grid of three compositional variables
(i.e., the three variables sum to 1 at each point along the grid). The projection of each point in the
grid on the x-y plane is also calculated. This data can be used with a relevant statistical model to
predict the response across the ternary surface. The output of this function can then be passed to
the ternary_plot function to visualise the change in the response as a contour plot.
Note: This function works only for models with three compositional predictors. For models with
more than three compositional predictors see conditional_ternary.

Usage

ternary_data(
prop = c(".P1", ".P2", ".P3"),
add_var = list(),
resolution = 3,
prediction = TRUE,
...

)

Arguments

prop A character vector specifying the columns names of compositional variables
whose proportions to manipulate. Default is ".P1", ".P2", and ".P3".

add_var A list or data-frame specifying values for additional variables in the model other
than the proportions (i.e. not part of the simplex design). This could be useful
for comparing the predictions across different values for a non-compositional
variable. If specified as a list, it will be expanded to show a plot for each unique
combination of values specified, while if specified as a data-frame, one plot
would be generated for each row in the data.

resolution A number between 1 and 10 describing the resolution of the resultant graph.
A high value would result in a higher definition figure but at the cost of being
computationally expensive.

prediction A logical value indicating whether to pass the final data to the ‘add_prediction‘
function and append the predictions to the data. Default value is TRUE, but of-
ten it would be desirable to make additional changes to the data before mak-
ing any predictions, so the user can set this to FALSE and manually call the
‘add_prediction‘ function.

... Arguments passed on to add_prediction

68 ternary_data

model A regression model object which will be used to make predictions for
the observations in ‘data‘. Will override ‘coefficients‘ if specified.

coefficients If a regression model is not available (or can’t be fit in R), the
regression coefficients from a model fit in some other language can be used
to calculate predictions. However, the user would have to ensure there’s an
appropriate one-to-one positional mapping between the data columns and
the coefficient values. Further, they would also have to provide a variance-
covariance matrix of the coefficients in the ‘vcov‘ parameter if they want
the associated CI for the prediction or it would not be possible to calculate
confidence/prediction intervals using this method.

vcov If regression coefficients are specified, then the variance-covariance ma-
trix of the coefficients can be specified here to calculate the associated con-
fidence interval around each prediction. Failure to do so would result in no
confidence intervals being returned. Ensure ‘coefficients‘ and ‘vcov‘ have
the same positional mapping with the data.

coeff_cols If ‘coefficients‘ are specified and a one-to-one positional mapping
between the data-columns and coefficient vector is not present. A character
string or numeric index can be specified here to reorder the data columns
and match the corresponding coefficient value to the respective data col-
umn. See the "Use model coefficients for prediction" section in examples.

conf.level The confidence level for calculating confidence/prediction inter-
vals. Default is 0.95.

interval Type of interval to calculate:

"none" (default) No interval to be calculated.

"confidence" Calculate a confidence interval.

"prediction" Calculate a prediction interval.

Value

A data-frame with the following columns and any additional columns specified in ‘add_var‘ param-
eter

.x The x component of the x-y projection of the simplex point.

.y The y component of the x-y projection of the simplex point.

.P1 The first variable whose proportion is varied across the simplex.

.P2 The second variable whose proportion is varied across the simplex.

.P3 The third variable whose proportion is varied across the simplex.

.add_str_ID An identifier column for grouping the cartesian product of all additional columns
specified in ‘add_var‘ parameter (if ‘add_var‘ is specified).

.Pred The predicted response for each observation (if ‘prediction‘ is TRUE).

.Lower The lower limit of the prediction/confidence interval for each observation.

.Upper The upper limit of the prediction/confidence interval for each observation.

ternary_data 69

Examples

library(DImodels)
library(dplyr)

Load data
data(sim0)

Fit model
mod <- lm(response ~ 0 + (p1 + p2 + p3)^2, data = sim0)

Prepare data for creating a contour map of predicted response over
the ternary surface
Remember to specify prop with the same character values as the names
of the variables in the model containing the prop.
plot_data <- ternary_data(resolution = 1, model = mod,

prop = c("p1", "p2", "p3"))
Show plot
ternary_plot(data = plot_data)

Can also add any additional variables independent of the simplex using
the `add_var` argument
sim0$treatment <- rep(c("A", "B", "C", "D"), each = 16)
new_mod <- update(mod, ~. + treatment, data = sim0)
plot_data <- ternary_data(prop = c("p1", "p2", "p3"),

add_var = list("treatment" = c("A", "B")),
resolution = 1, model = new_mod)

Plot to compare between additional variables

ternary_plot(plot_data)

It could be desirable to take the output of this function and add
additional variables to the data before making predictions
Use `prediction = FALSE` to get data without any predictions
contour_data <- ternary_data(prop = c("p1", "p2", "p3"),

model = mod,
prediction = FALSE,
resolution = 1)

head(contour_data)

Manually add the treatment variable
contour_data$treatment <- "A"
Make predictions
head(add_prediction(data = contour_data, model = new_mod))

Manually add the interaction terms
contour_data <- contour_data %>%

mutate(`p1:p2` = p1*p2,
`p2:p3` = p2*p3,
`p1:p3` = p1*p3)

Add predictions using model coefficients

70 ternary_plot

contour_data <- add_prediction(data = contour_data,
coefficient = mod$coefficient)

head(contour_data)

Note: Add predictions via coefficients would not give confidence intervals
to get CIs using coefficients we need to specify the variance-covariance
matrix using `vcov`
contour_data <- add_prediction(data = contour_data,

coefficient = mod$coefficient,
vcov = vcov(mod),
interval = "confidence")

head(contour_data)
Show plot

ternary_plot(contour_data)

See `?ternary_plot` for options to customise the ternary_plot

ternary_plot Ternary diagrams

Description

Create a ternary diagram showing the a scatter-plot of points across the surface or a contour map
showing the change in a continuous variable across the ternary surface. The ternary surface can be
created using the ternary_data function.

Usage

ternary_plot(
data,
prop = NULL,
col_var = ".Pred",
show = c("contours", "points"),
tern_labels = c("P1", "P2", "P3"),
show_axis_labels = TRUE,
show_axis_guides = FALSE,
axis_label_size = 4,
vertex_label_size = 5,
points_size = 2,
nlevels = 7,
colours = NULL,
lower_lim = NULL,
upper_lim = NULL,
contour_text = TRUE,
nrow = 0,
ncol = 0

)

ternary_plot 71

Arguments

data A data-frame consisting of the x-y plane projection of the 2-d simplex. This
data could be the output of the ‘ternary_data‘ function, and contain the predicted
response at each point along the simplex to show the variation in response as a
contour map.

prop A character vector specifying the columns names of compositional variables.
By default, the function will try to automatically interpret these values from the
data.

col_var The column name containing the variable to be used for colouring the contours
or points. The default is ".Pred".

show A character string indicating whether to show data-points or contours on the
ternary. The default is to show "contours".

tern_labels A character vector containing the labels of the vertices of the ternary. The default
is the column names of the first three columns of the data, with the first column
corresponding to the top vertex, second column corresponding to the left vertex
and the third column corresponding to the right vertex of the ternary.

show_axis_labels

A boolean value indicating whether to show axis labels along the edges of the
ternary. The default is TRUE.

show_axis_guides

A boolean value indicating whether to show axis guides within the interior of
the ternary. The default is FALSE.

axis_label_size

A numeric value to adjust the size of the axis labels in the ternary plot. The
default size is 4.

vertex_label_size

A numeric value to adjust the size of the vertex labels in the ternary plot. The
default size is 5.

points_size If showing points, then a numeric value specifying the size of the points.

nlevels The number of levels to show on the contour map.

colours A character vector or function specifying the colours for the contour map or
points. The number of colours should be same as ‘nlevels‘ if (‘show = "con-
tours"‘).
The default colours scheme is the terrain.colors() for continuous variables
and an extended version of the Okabe-Ito colour scale for categorical variables.

lower_lim A number to set a custom lower limit for the contour (if ‘show = "contours"‘).
The default is minimum of the prediction.

upper_lim A number to set a custom upper limit for the contour (if ‘show = "contours"‘).
The default is maximum of the prediction.

contour_text A boolean value indicating whether to include labels on the contour lines show-
ing their values (if ‘show = "contours"‘). The default is TRUE.

nrow Number of rows in which to arrange the final plot (when ‘add_var‘ is specified).

ncol Number of columns in which to arrange the final plot (when ‘add_var‘ is speci-
fied).

72 ternary_plot

Value

A ggmultiplot (ggplot if single plot is returned) class object or data-frame (if ‘plot = FALSE‘)

Examples

library(DImodels)
library(dplyr)
library(ggplot2)

Load data
data(sim0)

Show raw data as points in ternary
`ternary_plot` shows contours by default, use `show = "points"` to show
points across the ternary
ternary_plot(data = sim0, prop = c("p1", "p2", "p3"), show = "points")

The points can also be coloured using an additional variable by
specifying it in `col_var`
ternary_plot(data = sim0, prop = c("p1", "p2", "p3"),

col_var = "response", show = "points")

Categorical variables can also be shown
Also show axis guides using `show_axis_guides`
sim0$richness <- as.factor(sim0$richness)
ternary_plot(data = sim0, prop = c("p1", "p2", "p3"),

col_var = "richness", show = "points",
show_axis_guides = TRUE)

Change colours by using `colours` argument
and increase points size using `points_size`
ternary_plot(data = sim0, prop = c("p1", "p2", "p3"),

col_var = "richness", show = "points",
colours = c("tomato", "steelblue", "orange"),
points_size = 4)

Show contours of response
Fit model
mod <- lm(response ~ 0 + (p1 + p2 + p3)^2, data = sim0)

Create a contour map of predicted response over the ternary surface
Remember to specify prop with the same character values as the names
of the variables in the model containing the prop.
plot_data <- ternary_data(resolution = 1, model = mod,

prop = c("p1", "p2", "p3"))

Create a contour plot of response across the ternary space
ternary_plot(plot_data)

Change colour scheme
cols <- hcl.colors(7) # because there are 7 contour levels by default
ternary_plot(plot_data, colours = cols)

theme_DI 73

Change number of contours using `nlevels`
and set custom upper and lower limits for the scale
ternary_plot(plot_data, nlevels = 10, colours = hcl.colors(10),

lower_lim = 10, upper_lim = 35)

Change ternary labels along with their font-size
ternary_plot(plot_data, tern_labels = c("Sp1", "Sp2", "Sp3"),

vertex_label_size = 6, axis_label_size = 5)

Add additional variables and create a separate plot for each
sim0$treatment <- rep(c("A", "B", "C", "D"), each = 16)
new_mod <- update(mod, ~. + treatment, data = sim0)
tern_data <- ternary_data(resolution = 1, model = new_mod,

prop = c("p1", "p2", "p3"),
add_var = list("treatment" = c("A", "C")))

Arrange plot in 2 columns
ternary_plot(data = tern_data, ncol = 2)

theme_DI Default theme for DImodelsVis

Description

Default theme for DImodelsVis

Usage

theme_DI(
font_size = 14,
font_family = "",
legend = c("top", "bottom", "left", "right", "none")

)

Arguments

font_size Base font size for text across the plot

font_family Font family for text across the plot

legend One of c("top", "bottom", "left", "right", "none") specifying the position of the
legend. The legend position can also be specified as a numeric vector of form
c(x, y) with x and y having values between 0 and 1. If specified as a numeric
vector the legend within the plotting region where c(0,0) corresponds to the
"bottom left" and c(1,1) corresponds to the "top right" position. The default
position is "top".

74 visualise_effects

Value

A ggplot theme object

Examples

library(ggplot2)

plot_data <- mtcars
plot_data$gear <- as.factor(plot_data$gear)
ggplot(data = plot_data,

aes(x = mpg, y = disp, colour = gear))+
geom_point(size = 3)+
facet_wrap(~cyl) +
theme_DI()

visualise_effects Effects plot for compositional data

Description

This function will prepare the underlying data and plot the results for visualising the effect of
increasing or decreasing the proportion of a predictor variable (from a set of compositional vari-
ables). The generated plot will show a curve for each observation (whenever possible) in the data.
Pie-glyphs are used to highlight the compositions of the specified communities and the ending
community after the variable interest either completes dominates the community (when looking at
the effect of increase) or completely vanishes from the community (when looking at the effect of
decrease) or both. This is a wrapper function specifically for statistical models fit using the DI()
function from the DImodels R package and would implicitly call visualise_effects_data fol-
lowed by visualise_effects_plot. If your model object isn’t fit using DImodels, users can call
the data and plot functions manually, one by one.

Usage

visualise_effects(
model,
data = NULL,
var_interest = NULL,
effect = c("increase", "decrease", "both"),
add_var = list(),
interval = c("confidence", "prediction", "none"),
conf.level = 0.95,
se = FALSE,
average = TRUE,
pie_colours = NULL,
pie_radius = 0.3,
FG = NULL,
plot = TRUE,

visualise_effects 75

nrow = 0,
ncol = 0

)

Arguments

model A Diversity Interactions model object fit by using the ‘DI()‘ function from the
‘DImodels‘ package.

data A dataframe specifying communities of interest for which user wants visualise
the effect of species decrease or increase. If left blank, the communities from
the original data used to fit the model would be selected.

var_interest A character vector specifying the variable for which to visualise the effect of
change on the response. If left blank, all variables would be assumed to be of
interest.

effect One of "increase", "decrease" or "both" to indicate whether to look at the effect
of increasing the proportion, decreasing the proportion or doing both simultane-
ously, respectively on the response. The default in "increasing".

add_var A list specifying values for additional variables in the model other than the pro-
portions (i.e. not part of the simplex design). This would be useful to compare
the predictions across different values for a categorical variable. One plot will
be generated for each unique combination of values specified here.

interval Type of interval to calculate:

"none" No interval to be calculated.
"confidence" (default) Calculate a confidence interval.
"prediction" Calculate a prediction interval.

conf.level The confidence level for calculating confidence/prediction intervals. Default is
0.95.

se A boolean variable indicating whether to plot confidence intervals associated
with the effect of species increase or decrease

average A boolean value indicating whether to add a line describing the "average" effect
of variable increase or decrease. The average is calculated at the median value
of any variables not specified.

pie_colours A character vector indicating the colours for the slices in the pie-glyphs.
If left NULL, the colour blind friendly colours will be for the pie-glyph slices.

pie_radius A numeric value specifying the radius (in cm) for the pie-glyphs. Default is 0.3
cm.

FG A higher level grouping for the compositional variables in the data. Variables
belonging to the same group will be assigned with different shades of the same
colour. The user can manually specify a character vector giving the group each
variable belongs to. If left empty the function will try to get a grouping from the
original DI model object.

plot A boolean variable indicating whether to create the plot or return the prepared
data instead. The default ‘TRUE‘ creates the plot while ‘FALSE‘ would return
the prepared data for plotting. Could be useful for if user wants to modify the
data first and then call the plotting function manually.

76 visualise_effects

nrow Number of rows in which to arrange the final plot (when ‘add_var‘ is specified).

ncol Number of columns in which to arrange the final plot (when ‘add_var‘ is speci-
fied).

Value

A ggmultiplot (ggplot if single plot is returned) class object or data-frame (if ‘plot = FALSE‘)

Examples

library(DImodels)

Load data
data(sim1)

Fit model
mod <- DI(prop = 3:6, DImodel = "AV", data = sim1, y = "response")

Get effects plot for all species in design
visualise_effects(model = mod)

Choose a variable of interest using `var_interest`
visualise_effects(model = mod, var_interest = c("p1", "p3"))

Add custom communities to plot instead of design communities
Any variable not specified will be assumed to be 0
Not showing the average curve using `average = FALSE`
visualise_effects(model = mod, average = FALSE,

data = data.frame("p1" = c(0.7, 0.1),
"p2" = c(0.3, 0.5),
"p3" = c(0, 0.4)),

var_interest = c("p2", "p3"))

Add uncertainty on plot
visualise_effects(model = mod, average = TRUE,

data = data.frame("p1" = c(0.7, 0.1),
"p2" = c(0.3, 0.5),
"p3" = c(0, 0.4)),

var_interest = c("p2", "p3"), se = TRUE)

Visualise effect of species decrease for particular species
Show a 99% confidence interval using `conf.level`
visualise_effects(model = mod, effect = "decrease",

average = TRUE, se = TRUE, conf.level = 0.99,
data = data.frame("p1" = c(0.7, 0.1),

"p2" = c(0.3, 0.5),
"p3" = c(0, 0.4),
"p4" = 0),

var_interest = c("p1", "p3"))

Show effects of both increase and decrease using `effect = "both"`
and change colours of pie-glyphs using `pie_colours`

visualise_effects_data 77

visualise_effects(model = mod, effect = "both",
average = FALSE,
pie_colours = c("steelblue1", "steelblue4", "orange1", "orange4"),
data = data.frame("p1" = c(0.7, 0.1),

"p2" = c(0.3, 0.5),
"p3" = c(0, 0.4),
"p4" = 0),

var_interest = c("p1", "p3"))

Add additional variables and create a separate plot for each

visualise_effects(model = mod, effect = "both",
average = FALSE,
pie_colours = c("steelblue1", "steelblue4", "orange1", "orange4"),
data = data.frame("p1" = c(0.7, 0.1),

"p2" = c(0.3, 0.5),
"p3" = c(0, 0.4),
"p4" = 0),

var_interest = c("p1", "p3"),
add_var = list("block" = factor(c(1, 2),

levels = c(1, 2, 3, 4))))

Specify `plot = FALSE` to not create the plot but return the prepared data
head(visualise_effects(model = mod, effect = "both",

average = FALSE, plot = FALSE,
pie_colours = c("steelblue1", "steelblue4",

"orange1", "orange4"),
data = data.frame("p1" = c(0.7, 0.1),

"p2" = c(0.3, 0.5),
"p3" = c(0, 0.4),
"p4" = 0),

var_interest = c("p1", "p3")))

visualise_effects_data

Prepare data for effects plots for compositional data

Description

The helper function to create the underlying data for visualising the effect of increasing or decreas-
ing (or both) the proportion of a variable from a set of compositional variables. This is a special
case of the simplex_path function where the end points are either the monoculture (i.e. variable
of interest = 1, while all others equal 0) of the variable of interest (when increasing the proportion)
or a community without the variable of interest (when decreasing the proportion). The observations
specified in ‘data‘ are connected to the respective communities (monoculture of the variable of in-
terest or the community without the variable of interest) by a straight line across the simplex; This
has the effect of changing the proportion of the variable of interest whilst adjusting the proportion

78 visualise_effects_data

of the other variables but keeping the ratio of their relative proportions unchanged, thereby preserv-
ing the compositional nature of the data. See examples for more information. The output of this
function can be passed to the visualise_effects_plot function to visualise the results.

Usage

visualise_effects_data(
data,
prop,
var_interest = NULL,
effect = c("increase", "decrease", "both"),
add_var = list(),
prediction = TRUE,
...

)

Arguments

data A dataframe specifying the initial communities of interest for which to visualise
the effect of increasing/decreasing a variable. If a model object is specified then
this data should contain all the variables present in the model object including
any additional variables not part of the simplex design. If a coefficient vector
is specified then data should contain same number of columns as the number of
elements in the coefficient vector and a one-to-one positional mapping would be
assumed between the data columns and the elements of the coefficient vector.

prop A vector of column names or indices identifying the columns containing the
variable proportions (i.e., compositional columns) in the data.

var_interest A character vector specifying the variable for which to visualise the effect of
change on the response. If left blank, all variables would be assumed to be of
interest.

effect One of "increase", "decrease" or "both" to indicate whether to look at the effect
of increasing the proportion, decreasing the proportion or doing both simultane-
ously, respectively on the response. The default in "increasing".

add_var A list specifying values for additional variables in the model other than the pro-
portions (i.e. not part of the simplex design). This would be useful to compare
the predictions across different values for a categorical variable. One plot will
be generated for each unique combination of values specified here.

prediction A logical value indicating whether to pass the final data to ‘add_prediction‘ and
add predictions to the data. Default value is TRUE, but often it would be desirable
to make additional changes to the data before making any predictions, so the user
can set this to FALSE and manually call the ‘add_prediction‘ function.

... Arguments passed on to add_prediction

model A regression model object which will be used to make predictions for
the observations in ‘data‘. Will override ‘coefficients‘ if specified.

coefficients If a regression model is not available (or can’t be fit in R), the
regression coefficients from a model fit in some other language can be used
to calculate predictions. However, the user would have to ensure there’s an

visualise_effects_data 79

appropriate one-to-one positional mapping between the data columns and
the coefficient values. Further, they would also have to provide a variance-
covariance matrix of the coefficients in the ‘vcov‘ parameter if they want
the associated CI for the prediction or it would not be possible to calculate
confidence/prediction intervals using this method.

vcov If regression coefficients are specified, then the variance-covariance ma-
trix of the coefficients can be specified here to calculate the associated con-
fidence interval around each prediction. Failure to do so would result in no
confidence intervals being returned. Ensure ‘coefficients‘ and ‘vcov‘ have
the same positional mapping with the data.

coeff_cols If ‘coefficients‘ are specified and a one-to-one positional mapping
between the data-columns and coefficient vector is not present. A character
string or numeric index can be specified here to reorder the data columns
and match the corresponding coefficient value to the respective data col-
umn. See the "Use model coefficients for prediction" section in examples.

conf.level The confidence level for calculating confidence/prediction inter-
vals. Default is 0.95.

interval Type of interval to calculate:
"none" (default) No interval to be calculated.
"confidence" Calculate a confidence interval.
"prediction" Calculate a prediction interval.

Value

A data frame with the following columns appended at the end

.Sp An identifier column to discern the variable of interest being modified in each curve.

.Proportion The value of the variable of interest within the community.

.Group An identifier column to discern between the different curves.

.add_str_ID An identifier column for grouping the cartesian product of all additional columns
specified in ‘add_var‘ parameter (if ‘add_var‘ is specified).

.Pred The predicted response for each observation.

.Lower The lower limit of the prediction/confidence interval for each observation.

.Upper The upper limit of the prediction/confidence interval for each observation.

.Marginal The marginal change in the response (first derivative) with respect to the gradual change
in the proportion of the species of interest.

.Threshold A numeric value indicating the maximum proportion of the species of interest within a
particular community which has a positive marginal effect on the response.

.MarEffect A character string entailing whether the increase/decrease of the species of interest
from the particular community would result in a positive or negative marginal effect on the
response.

.Effect An identifier column signifying whether considering the effect of species addition or species
decrease.

80 visualise_effects_data

Examples

library(DImodels)

Load data
data(sim1)

Fit model
mod <- glm(response ~ p1 + p2 + p3 + p4 + 0, data = sim1)

Create data for visualising effect of increasing the proportion of
variable p1 in data
Notice how the proportion of `p1` increases while the proportion of
the other variables decreases whilst maintaining their relative proportions
head(visualise_effects_data(data = sim1, prop = c("p1", "p2", "p3", "p4"),

var_interest = "p1", effect = "increase",
model = mod))

Create data for visualising the effect of decreasing the proportion
variable p1 in data using `effect = "decrease"`
head(visualise_effects_data(data = sim1, prop = c("p1", "p2", "p3", "p4"),

var_interest = "p1", effect = "decrease",
model = mod))

Create data for visualising the effect of increasing and decreasing the
proportion variable p3 in data using `effect = "both"`
head(visualise_effects_data(data = sim1, prop = c("p1", "p2", "p3", "p4"),

var_interest = "p3", effect = "decrease",
model = mod))

Getting prediction intervals at a 99% confidence level
head(visualise_effects_data(data = sim1, prop = c("p1", "p2", "p3", "p4"),

var_interest = "p1", effect = "decrease",
model = mod, conf.level = 0.99,
interval = "prediction"))

Adding additional variables to the data using `add_var`
Notice the new .add_str_ID column in the output
sim1$block <- as.numeric(sim1$block)
new_mod <- update(mod, ~ . + block, data = sim1)
head(visualise_effects_data(data = sim1[, 3:6], prop = c("p1", "p2", "p3", "p4"),

var_interest = "p1", effect = "both",
model = new_mod,
add_var = list("block" = c(1, 2))))

Create data for visualising effect of decreasing variable p2 from
the original communities in the data but using model coefficients
When specifying coefficients the data should have a one-to-one
positional mapping with specified coefficients.
init_comms <- sim1[, c("p1", "p2", "p3", "p4")]
head(visualise_effects_data(data = init_comms, prop = 1:4,

var_interest = "p2",
effect = "decrease",

visualise_effects_plot 81

interval = "none",
coefficients = mod$coefficients))

Note that to get confidence interval when specifying
model coefficients we'd also need to provide a variance covariance
matrix using the `vcov` argument
head(visualise_effects_data(data = init_comms, prop = 1:4,

var_interest = "p2",
effect = "decrease",
interval = "confidence",
coefficients = mod$coefficients,
vcov = vcov(mod)))

Can also create only the intermediary communities without predictions
by specifying prediction = FALSE.
Any additional columns can then be added and the `add_prediction` function
can be manually called.
Note: If calling the `add_prediction` function manually, the data would
not contain information about the marginal effect of changing the species
interest
effects_data <- visualise_effects_data(data = init_comms, prop = 1:4,

var_interest = "p2",
effect = "decrease",
prediction = FALSE)

head(effects_data)
Prediction using model object
head(add_prediction(data = effects_data, model = mod, interval = "prediction"))
Prediction using regression coefficients
head(add_prediction(data = effects_data, coefficients = mod$coefficients))

visualise_effects_plot

Effects plot for compositional data

Description

The plotting function to create plots showing the effect of increasing or decreasing the proportion
of a variable from a set of compositional variables. The output of the ‘visualise_effects_data‘
function (with any desired modifications) should be passed here. The generated plot will show a
curve for each observation (whenever possible) in the data. ‘Pie-glyphs‘ are used to highlight the
compositions of the specified communities and the ending community after the variable of interest
either completes dominates the community (when looking at the effect of increase) or completely
vanishes from the community (when looking at the effect of decrease) or both.

Usage

visualise_effects_plot(
data,
prop,

82 visualise_effects_plot

pie_colours = NULL,
pie_radius = 0.3,
se = FALSE,
average = TRUE,
nrow = 0,
ncol = 0

)

Arguments

data A data frame created using the visualise_effects_data function.

prop A vector of column names or indices identifying the columns containing the
compositional variables in the data. Will be inferred from the data if it is cre-
ated using the ‘visualise_effects_data‘ function, but the user also has the
flexibility of manually specifying the values.

pie_colours A character vector indicating the colours for the slices in the pie-glyphs.
If left NULL, the colour blind friendly colours will be for the pie-glyph slices.

pie_radius A numeric value specifying the radius (in cm) for the pie-glyphs. Default is 0.3
cm.

se A boolean variable indicating whether to plot confidence intervals associated
with the effect of species increase or decrease

average A boolean value indicating whether to add a line describing the "average" effect
of variable increase or decrease. The average is calculated at the median value
of any variables not specified.

nrow Number of rows in which to arrange the final plot (when ‘add_var‘ is specified).

ncol Number of columns in which to arrange the final plot (when ‘add_var‘ is speci-
fied).

Value

A ggmultiplot (ggplot if single plot is returned) class object or data-frame (if ‘plot = FALSE‘)

Examples

library(DImodels)

Load data
data(sim1)

Fit model
mod <- glm(response ~ p1 + p2 + p3 + p4 + 0, data = sim1)

Create data for visualising effect of adding species 1 to
the original communities in the data
plot_data <- visualise_effects_data(data = sim1[sim1$block == 1,],

prop = c("p1", "p2", "p3", "p4"),
var_interest = "p1",
effect = "increase", model = mod)

visualise_effects_plot 83

Create plot
visualise_effects_plot(data = plot_data)

Show specific curves with prediction intervals
subset <- custom_filter(plot_data, .Group %in% c(7, 15))
visualise_effects_plot(data = subset, prop = 1:4, se = TRUE)

Do not show average effect line
visualise_effects_plot(data = subset,

se = TRUE, average = FALSE)

Change colours of the pie-glyph slices
visualise_effects_plot(data = subset,

pie_colours = c("darkolivegreen", "darkolivegreen1",
"steelblue4", "steelblue1"))

#' ## Simultaneously create multiple plots for additional variables
sim1$block <- as.numeric(sim1$block)
new_mod <- update(mod, ~ . + block, data = sim1)
plot_data <- visualise_effects_data(data = sim1[c(1, 5, 9, 13), 3:6],

prop = c("p1", "p2", "p3", "p4"),
var_interest = "p3",
model = new_mod, conf.level = 0.95,
add_var = list("block" = c(1, 2)))

visualise_effects_plot(data = plot_data,
average = FALSE,
pie_colours = c("darkolivegreen", "darkolivegreen1",

"steelblue4", "steelblue1"))

Index

add_add_var, 2
add_ID_terms, 4
add_interaction_terms, 5
add_prediction, 6, 13, 27, 37, 62, 67, 78
autoDI(), 4, 5

conditional_ternary, 8, 67
conditional_ternary_data, 8, 11, 15, 40
conditional_ternary_plot, 8, 11, 15, 57
copy_attributes, 17
custom_filter, 19

DI, 50, 60, 75
DI(), 4, 5, 8, 9, 23, 33, 34, 44, 48, 49, 52, 58,

59, 74, 75
DImodels, 4, 5, 8, 9, 23, 33, 34, 44, 48, 49, 52,

58, 59, 74, 75
DImodelsMulti, 4, 5
DImulti(), 4, 5

filter(), 19

get_colours, 20
get_equi_comms, 21
get_shades, 22
gradient_change, 23
gradient_change_data, 23, 26, 30, 31
gradient_change_plot, 23, 26, 30
group_prop, 43
grouped_ternary, 9, 12, 33
grouped_ternary_data, 9, 12, 33, 36, 40
grouped_ternary_plot, 33, 36, 40, 57

model_diagnostics, 44
model_selection, 46

prediction_contributions, 48
prediction_contributions_data, 48, 52,

55
prediction_contributions_plot, 48, 52,

55

prop_to_tern_proj, 57

simplex_path, 58, 77
simplex_path_data, 58, 61, 65
simplex_path_plot, 58, 62, 64

tern_to_prop_proj (prop_to_tern_proj),
57

ternary_data, 67, 70, 71
ternary_plot, 57, 67, 70
terrain.colors(), 10, 16, 35, 41, 71
theme_DI, 73

visualise_effects, 74
visualise_effects_data, 74, 77, 81, 82
visualise_effects_plot, 74, 78, 81

84

	add_add_var
	add_ID_terms
	add_interaction_terms
	add_prediction
	conditional_ternary
	conditional_ternary_data
	conditional_ternary_plot
	copy_attributes
	custom_filter
	get_colours
	get_equi_comms
	get_shades
	gradient_change
	gradient_change_data
	gradient_change_plot
	grouped_ternary
	grouped_ternary_data
	grouped_ternary_plot
	group_prop
	model_diagnostics
	model_selection
	prediction_contributions
	prediction_contributions_data
	prediction_contributions_plot
	prop_to_tern_proj
	simplex_path
	simplex_path_data
	simplex_path_plot
	ternary_data
	ternary_plot
	theme_DI
	visualise_effects
	visualise_effects_data
	visualise_effects_plot
	Index

