Package 'CytOpT'

January 20, 2025

```
Type Package
Title Optimal Transport for Gating Transfer in Cytometry Data with
     Domain Adaptation
Version 0.9.4
Date 2022-02-08
Maintainer Boris Heiblum <boris.hejblum@u-bordeaux.fr>
SystemRequirements Python (>= 3.7)
Description Supervised learning from a source distribution (with known segmentation into cell sub-
     populations)
     to fit a target distribution with unknown segmentation. It relies regularized optimal trans-
     port to directly
     estimate the different cell population proportions from a biological sample character-
     ized with flow cytometry
     measurements. It is based on the regularized Wasserstein metric to compare cytometry measure-
     ments from
     different samples, thus accounting for possible mis-
     alignment of a given cell population across sample
     (due to technical variability from the technology of measurements). Supervised learning tech-
     nique based
     on the Wasserstein metric that is used to estimate an optimal re-weighting of class proportions in a
     mixture model Details are pre-
     sented in Freulon P, Bigot J and Hejblum BP (2021) <arXiv:2006.09003>.
Config/reticulate list( packages = list( list(package = ``numpy"),
     list(package = ``scikit-learn"), list(package = ``scipy") ) )
License GPL (>= 2)
Repository CRAN
URL https://sistm.github.io/CytOpT-R/,
     https://github.com/sistm/CytOpT-R/
Depends R (>= 3.6)
LazyData true
RoxygenNote 7.1.2
```

2 barplot_prop

Encoding UTF-8

Imports ggplot2 (>= 3.0.0), MetBrewer, patchwork, reshape2, reticulate, stats, testthat (>= 3.0.0)

Suggests rmarkdown, knitr, covr

Config/testthat/edition 3

VignetteBuilder knitr

Language en-US

NeedsCompilation no

Author Boris Hejblum [aut, cre],

Paul Freulon [aut],

Kalidou Ba [aut, trl]

Date/Publication 2022-02-09 17:10:06 UTC

Contents

barp:		iction it betv											
Index													16
	summary.CytOpt		 	 			 •		•				 14
	print.summary.CytOpt		 	 				 					 14
	print.CytOpt		 	 				 					 13
	plot.CytOpt		 	 				 					 12
	Label_Prop_sto_r		 	 				 					 11
	KL_plot		 	 				 					 10
	HIPC_Stanford		 	 									 9
	cytopt_minmax_r		 	 				 					 7
	cytopt_desasc_r												
	CytOpT												
	Bland_Altman												
	barplot_prop												

Description

Function to display a bland plot in order to visually assess the agreement between CytOpt estimation of the class proportions and the estimate of the class proportions provided through manual gating.

mate of the class proportions provided through manual gating.

Usage

```
barplot_prop(proportions, title = "", xaxis_angle = 45)
```

Bland_Altman 3

Arguments

```
proportions data.frame of (true and) estimated proportions from CytOpt() title plot title. Default is "", i.e. no title.

xaxis_angle scalar indicating an angle to tilt the labels of x_axis. Default is 45.
```

Value

```
a ggplot object
```

Examples

Bland_Altman

Bland & Altman plot

Description

Function to display a Bland & Altman plot in order to visually assess the agreement between CytOpt estimation of the class proportions and the estimate of the class proportions provided through manual gating. Requires that either theta_true or Lab_target was provided when running CytOpT().

Usage

```
Bland_Altman(proportions, additional_info_shape = NULL)
```

Arguments

See Also

Cyt0pT

4 CytOpT

Examples

Cyt0pT

Function to estimate the type cell proportions in an unclassified cytometry data set denoted X_s by using the classification Lab_source from an other cytometry data set X_s . With this function the computation of the estimate of the class proportions is done with a descent ascent or minmax or two algorithms.

Description

Function to estimate the type cell proportions in an unclassified cytometry data set denoted X_s by using the classification Lab_source from an other cytometry data set X_s . With this function the computation of the estimate of the class proportions is done with a descent ascent or minmax or two algorithms.

Usage

```
CytOpT(
  X_s,
  X_t
  Lab_source,
  Lab_target = NULL,
  theta_true = NULL,
  method = c("minmax", "desasc", "both"),
  eps = 1e-04,
  n_{iter} = 10000,
  power = 0.99,
  step\_grad = 10,
  step = 5,
  1bd = 1e-04,
  n_{out} = 5000,
  n_stoc = 10,
  minMaxScaler = TRUE,
```

CytOpT 5

```
monitoring = FALSE,
  thresholding = TRUE
)
```

Arguments

- 6	Suments	
	X_s	a cytometry dataframe with only d numerical variables for ns observations. The columns correspond to the different biological markers measured. One line corresponds to the cytometry measurements performed on one cell. The classification of this Cytometry data set must be provided with the Lab_source parameters.
	X_t	a cytometry dataframe with only d numerical variables for nt observations. The columns correspond to the different biological markers measured. One line corresponds to the cytometry measurements performed on one cell. The CytOpT algorithm targets the cell type proportion in this Cytometry data set
	Lab_source	a vector of length ns Classification of the X_s cytometry data set
	Lab_target	a vector of length nt Classification of the X_s cytometry data set
	theta_true	If available, gold-standard proportions in the target data set X_t derived from manual gating. It allows to assess the gap between the estimate and the gold-standard. Default is NULL, in which case no assessment is performed.
	method	a character string indicating which method to use to compute the cytopt, either 'minmax', 'desasc' or 'both' for comparing both Min-max swapping and descent-ascent procedures. Default is 'minmax'.
	eps	a float value of regularization parameter of the Wasserstein distance. Default is $1e-04$
	n_iter	an integer Constant that iterate method select. Default is 10000
	power	a float constant the step size policy of the gradient ascent method is step/n^power. Default is 0.99
	step_grad	an integer number step size of the gradient descent algorithm of the outer loop. Default is 10
	step	an integer constant that multiply the step-size policy. Default is 5
	lbd	a float constant that multiply the step-size policy. Default is 1e-04
	n_out	an integer number of iterations in the outer loop. This loop corresponds to the gradient descent algorithm to minimize the regularized Wasserstein distance between the source and target data sets. Default is 1000
	n_stoc	an integer number of iterations in the inner loop. This loop corresponds to the stochastic algorithm that approximates a maximizer of the semi dual problem. Default is 10
	minMaxScaler	a logical flag indicating to whether to scale observations between 0 and 1. Default is TRUE.
	monitoring	a logical flag indicating to possibly monitor the gap between the estimated proportions and the manual gold-standard. Default is FALSE.
	thresholding	a logical flag indicating whether to threshold negative values. Default is TRUE.

6 cytopt_desasc_r

Value

a object of class CytOpt, which is a list of two elements:

- proportions a data.frame with the (optionally true and) estimated proportions for each method
- monitoring a list of estimates over the optimization iterations for each method (listed within)

Examples

cytopt_desasc_r

Function to estimate the type cell proportions in an unclassified cytometry data set denoted X_s by using the classification Lab_source from an other cytometry data set X_s . With this function the computation of the estimate of the class proportions is done with a descent ascent algorithm.

Description

Function to estimate the type cell proportions in an unclassified cytometry data set denoted X_s by using the classification Lab_source from an other cytometry data set X_s. With this function the computation of the estimate of the class proportions is done with a descent ascent algorithm.

Usage

```
cytopt_desasc_r(
   X_s,
   X_t,
   Lab_source,
   theta_true = NULL,
   eps = 1e-04,
   n_out = 5000,
   n_stoc = 10,
   step_grad = 10,
   monitoring = FALSE
)
```

cytopt_minmax_r 7

Arguments

X_s	a cytometry dataframe. The columns correspond to the different biological markers tracked. One line corresponds to the cytometry measurements performed on one cell. The classification of this Cytometry data set must be provided with the Lab_source parameters.
X_t	a cytometry dataframe. The columns correspond to the different biological markers tracked. One line corresponds to the cytometry measurements performed on one cell. The CytOpT algorithm targets the cell type proportion in this Cytometry data set
Lab_source	a vector of length n Classification of the X_s cytometry data set
theta_true	If available, gold-standard proportions in the target data set X_t derived from manual gating. It allows to assess the gap between the estimate and the gold-standard. Default is NULL, in which case no assessment is performed.
eps	an float value of regularization parameter of the Wasserstein distance. Default is 1e-04.
n_out	an integer number of iterations in the outer loop. This loop corresponds to the gradient descent algorithm to minimize the regularized Wasserstein distance between the source and target data sets. Default is 5000.
n_stoc	an integer number of iterations in the inner loop. This loop corresponds to the stochastic algorithm that approximates a maximizer of the semi-dual problem. Default is 10.
step_grad	an integer number step size of the gradient descent algorithm of the outer loop. Default is 10.
monitoring	boolean indicating whether Kullback-Leibler divergence should be monitored and store throughout the optimization iterations. Default is FALSE.

Value

A list with the following elements:h_hat

cytopt_minmax_r Function to estimate the type cell proportions in an unclassified cytometry data set denoted X_s by using the classification Lab_source from an other cytometry data set X_s. With this function an additional resultance ularization parameter on the class proportions enables a faster computation of the estimator.

Description

Function to estimate the type cell proportions in an unclassified cytometry data set denoted X_s by using the classification Lab_source from an other cytometry data set X_s . With this function an additional regularization parameter on the class proportions enables a faster computation of the estimator.

8 cytopt_minmax_r

Usage

```
cytopt_minmax_r(
   X_s,
   X_t,
   Lab_source,
   theta_true = NULL,
   eps = 1e-04,
   lbd = 1e-04,
   n_iter = 10000,
   step = 5,
   power = 0.99,
   monitoring = FALSE
)
```

Arguments

X_s	Cytometry data set. The columns correspond to the different biological markers tracked. One line corresponds to the cytometry measurements performed on one cell. The classification of this Cytometry data set must be provided with the Lab_source parameters.
X_t	Cytometry data set. The columns correspond to the different biological markers tracked. One line corresponds to the cytometry measurements performed on one cell. The CytOpT algorithm targets the cell type proportion in this Cytometry data set.
Lab_source	Classification of the X_s Cytometry data set
theta_true	If available, gold-standard proportions in the target data set X_t derived from manual gating. It allows to assess the gap between the estimate and the gold-standard. Default is NULL, in which case no assessment is performed.

eps Regularization parameter of the Wasserstein distance

an float constant that multiply the step-size policy. Default is 1e-04.

n_iter an integer Constant that iterate method select. Default is 10000.

step Constant that multiply the step-size policy. Default is 5.

power the step size policy of the gradient ascent method is step/n^power. Default is

0.99.

monitoring boolean indicating whether Kullback-Leibler divergence should be monitored

and store throughout the optimization iterations. Default is ${\sf FALSE}.$

Value

A list with the following elements:Results_Minmax

HIPC_Stanford 9

HIPC_Stanford

HIPC_Stanford data

Description

HIPC T cell data set from HIPC program for patients 1228 and 1369 (replicate 1A from Stanford).

Usage

```
data(HIPC_Stanford)
```

Format

The data are composed of 4 objects:

```
HIPC_Stanford_1228_1A: a data.frame of 31342 cells and 7 markers.
```

HIPC_Stanford_1228_1A_labels: a factor vector with the cell type of each of the 31342 observed cells.

HIPC_Stanford_1369_1A: a data.frame of 33992 cells and 7 markers.

HIPC_Stanford_1369_1A_labels: a factor vector with the cell type of each of the 33992 observed cells.

Details

This immunophenotyping T cell panel from the Lyoplate HIPC dataset was used as part of the FlowCAP III Lyoplate challenge.

Flow cytometry data set from the HIPC T-cell panel study. In the HIPC T-cell panel study, Flow cytometry was measured in 3 samples for each 3 patients (IDs: 1228, 1349 and 1369) with 3 replicates each (1A, 2B and 3C) in 7 centers (NHLBI, Yale, UCLA, CIMR, Baylor, Stanford and Miami), i.e. 63 data sets in total. Manual gating was performed in the different centers to cluster te observed cells into one of 10 cellular populations:

- 1. CD8 Effector
- 2. CD8 Naive
- 3. CD8 Central Memory
- 4. CD8 Effector Memory
- 5. CD8 Activated
- 6. CD4 Effector
- 7. CD4 Naive
- 8. CD4 Central Memory
- 9. CD4 Effector Memory
- 10. CD4 Activated

10 KL_plot

Source

```
https://www.immuneprofiling.org/hipc/page/showhttps://www.immunespace.org/https://www.immunespace.org/project/HIPC/Lyoplate/begin.view?pageId=study.DATA_ANALYSIS
```

References

Maecker HT, McCoy JP & Nussenblatt R (2012). Standardizing immunophenotyping for the human immunology project. Nature Reviews Immunology, 12(3):191–200. DOI: 10.1038/nri3158

Finak G, Langweiler M, Jaimes M, Malek M, Taghiyar J, Korin Y, Raddassi K, Devine L, Obermoser G, Pekalski ML, Pontikos N, Diaz A, Heck S, Villanova F, Terrazzini N, Kern F, Qian Y, Stanton R, Wang K, Brandes A, Ramey J, Aghaeepour N, Mosmann T, Scheuermann RH, Reed E, Palucka K, Pascual V, Blomberg BB, Nestle F, Nussenblatt RB, Brinkman RR, Gottardo R, Maecker H & McCoy JP (2016). Standardizing Flow Cytometry Immunophenotyping Analysis from the Human ImmunoPhenotyping Consortium. Scientific Reports. 10(6):20686. DOI: 10.1038/srep20686.

KL_plot

Kullback-Leibler divergence plot

Description

A plotting function for displaying Kullback-Liebler (KL) divergence across iterations of the optimization algorithm(s).

Usage

```
KL_plot(
  monitoring,
  n_0 = 10,
  n_stop = 1000,
  title = "Kullback-Liebler divergence trace"
)
```

Arguments

```
monitoring list of monitoring estimates from CytOpt() output.

n_0 first iteration to plot. Default is 10.

n_stop last iteration to plot. Default is 1000.

title plot title. Default is "Kullback-Liebler divergence trace".
```

Value

```
a ggplot object
```

Label_Prop_sto_r

Examples

Label_Prop_sto_r

Computes a classification on the target data

Description

Computes a classification on the target data thanks to the approximation of the transport plan and the classification of the source data. Transport plan is approximated with the stochastic algorithm.

Usage

```
Label_Prop_sto_r(
   X_s,
   X_t,
   Lab_source,
   eps = 1e-04,
   const = 0.1,
   n_iter = 4000,
   minMaxScaler = TRUE,
   monitoring = TRUE,
   thresholding = TRUE
)
```

Arguments

X_s

a cytometry dataframe. The columns correspond to the different biological markers tracked. One line corresponds to the cytometry measurements performed on one cell. The classification of this Cytometry data set must be provided with the Lab_source parameters.

 X_t

a cytometry dataframe. The columns correspond to the different biological markers tracked. One line corresponds to the cytometry measurements performed on one cell. The CytOpT algorithm targets the cell type proportion in this Cytometry data set

12 plot.CytOpt

Lab_source a vector of length n Classification of the X_s cytometry data set

eps an float value of regularization parameter of the Wasserstein distance. Default

is 1e-04

const an float constant. Default is 1e-01

n_iter an integer Constant that iterate method select. Default is 4000

minMaxScaler a logical flag indicating to possibly Scaler

monitoring a logical flag indicating to possibly monitor the gap between the estimated pro-

portions and the manual gold-standard. Default is FALSE

thresholding a logical flag.

Value

```
a ggplot object
```

a vector of length nrow(X_t) with the propagated labels

Examples

plot.CytOpt

CytOpt plot

Description

```
plot S3 method for CytOpt object
```

Usage

```
## S3 method for class 'CytOpt'
plot(x, ...)
```

Arguments

x an object of class CytOpt to plot.

... further arguments passed to or from other methods. Not implemented.

Value

```
a ggplot object, potentially composed through patchwork
```

print.CytOpt 13

Examples

print.CytOpt

CytOpt print

Description

print S3 method for CytOpt object

Usage

```
## S3 method for class 'CytOpt'
print(x, ...)
```

Arguments

x an object of class CytOpt to print.

. . . further arguments passed to or from other methods. Not implemented.

Value

the proportions data. frame from x

Examples

14 summary.CytOpt

Description

```
print S3 method for summary.CytOpt object
```

Usage

```
## S3 method for class 'summary.CytOpt'
print(x, ...)
```

Arguments

x an object of class summary. CytOpt to print.

... further arguments passed to or from other methods. Not implemented.

summary.CytOpt

CytOpt summary

Description

```
summary S3 method for CytOpt object
```

Usage

```
## S3 method for class 'CytOpt'
summary(object, ...)
```

Arguments

object an object of class CytOpt to summarized.

... further arguments passed to or from other methods. Not implemented.

Value

```
a list object
```

summary.CytOpt 15

Examples

Index

```
* data
    {\tt HIPC\_Stanford}, \textcolor{red}{9}
{\tt barplot\_prop,\,2}
Bland_Altman, 3
Cyt0pT, 3, 4
cytopt_desasc_r, 6
cytopt_minmax_r, 7
ggplot, 3, 10, 12
HIPC_Stanford, 9
HIPC_Stanford_1228_1A (HIPC_Stanford), 9
HIPC_Stanford_1228_1A_labels
         (HIPC_Stanford), 9
HIPC_Stanford_1369_1A (HIPC_Stanford), 9
HIPC_Stanford_1369_1A_labels
         (HIPC_Stanford), 9
KL_plot, 10
Label_Prop_sto_r, 11
patchwork, 12
plot.CytOpt, 12
print.CytOpt, 13
print.summary.CytOpt, 14
summary.CytOpt, 14
```