CompositionalRF: Multivariate Random Forest with Compositional Responses

Non linear regression with compositional responses and Euclidean predictors is performed. The compositional data are first transformed using the additive log-ratio transformation, and then the multivariate random forest of Rahman R., Otridge J. and Pal R. (2017), <doi:10.1093/bioinformatics/btw765>, is applied.

Version: 1.1
Depends: R (≥ 4.0)
Imports: Compositional, doParallel, foreach, RcppParallel, Rcpp, Rfast, stats
LinkingTo: Rcpp, RcppParallel
Published: 2025-05-07
DOI: 10.32614/CRAN.package.CompositionalRF
Author: Michail Tsagris [aut, cre], Christos Adam [aut]
Maintainer: Michail Tsagris <mtsagris at uoc.gr>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: yes
SystemRequirements: GNU make
CRAN checks: CompositionalRF results

Documentation:

Reference manual: CompositionalRF.pdf

Downloads:

Package source: CompositionalRF_1.1.tar.gz
Windows binaries: r-devel: CompositionalRF_1.0.zip, r-release: CompositionalRF_1.0.zip, r-oldrel: CompositionalRF_1.0.zip
macOS binaries: r-release (arm64): CompositionalRF_1.1.tgz, r-oldrel (arm64): CompositionalRF_1.1.tgz, r-release (x86_64): CompositionalRF_1.1.tgz, r-oldrel (x86_64): CompositionalRF_1.1.tgz
Old sources: CompositionalRF archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=CompositionalRF to link to this page.