
Package ‘Certara.RsNLME’
January 20, 2025

Title Pharmacometric Modeling

Version 3.0.1

Description Facilitate Pharmacokinetic (PK) and Pharmacodynamic (PD) modeling
and simulation with powerful tools for Nonlinear Mixed-Effects (NLME)
modeling. The package provides access to the same advanced Maximum Likelihood
algorithms used by the NLME-Engine in the Phoenix platform. These tools support
a range of analyses, from parametric methods to individual and pooled data
analysis <https://www.certara.com/app/uploads/2020/06/BR_PhoenixNLME-v4.pdf>.
Execution is supported both locally or on remote machines.

Depends R (>= 4.0)

License LGPL-3

URL https://certara.github.io/R-RsNLME/

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Suggests rlang, knitr, rmarkdown, testthat, magrittr

Imports xml2, assertthat, Certara.NLME8, data.table, jsonlite,
methods, utils, ssh

Collate 'BootstrapParams.R' 'NlmeParallelMethod.R'
'NlmeUserAuthentication.R' 'NlmeParallelHost.R'
'SimpleNlmeJob.R' 'BootNlmeJob.R' 'CovariateEffectModel.R'
'GenerateControlfile.R' 'GenerateParamsfile.R'
'NlmeColumnMapping.r' 'NlmeCovariateParameter.r'
'NlmeDataset.r' 'NlmeDoseMapping.R' 'NlmeEmaxParameters.R'
'NlmeIndirectParameters.R' 'NlmeModelAbsorption.R'
'NlmeModelParameterization.R' 'NlmeModelType.R'
'NlmeParamsMapping.R' 'NlmePkParameters.R' 'NlmePmlModelInfo.R'
'NlmeRandParamsMapping.R' 'NlmeRandomEffectBlock.r'
'NlmeRemoteExecutor.R' 'NlmeScenario.R' 'NlmeTableDef.R'
'SortColumns.R' 'ProfileParameters.R' 'ProfileNlmeJob.R'
'ProfileVar.R' 'error_model.r' 'pml_model.r'
'RandomEffectsMethods.R' 'ShotgunNlmeJob.R' 'SortByNlmeJob.R'

1

https://www.certara.com/app/uploads/2020/06/BR_PhoenixNLME-v4.pdf
https://certara.github.io/R-RsNLME/

2 Contents

'StepwiseParams.R' 'StepwiseNlmeJob.R' 'acceptAllEffects.R'
'addInfusion.R' 'addLabel.R' 'addTablesToColumnMapping.R'
'add_input_dosingCycles.R' 'bootstrap.r' 'built_in_models.r'
'checkHostParams.R' 'colMapping.R' 'copyModel.R'
'covariateModel.R' 'covariateNames.R' 'createInitialMapping.R'
'create_model_from_metamodel.R' 'create_model_info.R' 'data.r'
'dosing.r' 'editModel.R' 'emaxmodel.R' 'engine_params.r'
'extract_mmdl.R' 'fitmodel.R' 'fitmodelHelperFunctions.R'
'fixedEffect.R' 'generateCovarSearchArgsFile.R' 'getThetas.R'
'get_omega_omegaSE.R' 'globals.R' 'hostParams.R' 'job.r'
'linearmodel.R' 'log_Execution.R' 'map_covariates.R'
'map_dosepoints.R' 'modelVariableNames.R' 'observation.r'
'obtain_NLMELicense.R' 'parameterNames.R' 'parseControlFile.R'
'parsePMLColMap.R' 'parse_mmdl.R' 'pkemaxmodel.R'
'pkindirectmodel.R' 'pklinearmodel.R' 'pkmodel.R'
'profile_estimation.r' 'randomEffect.R'
'readInitialEstimatesParams.R' 'run_metamodel.R' 'saveModel.R'
'saveUpdatedMetamodel.R' 'secondary_variable.r'
'shotgunSearch.R' 'simParams.R' 'sortfit.R' 'stepwiseSearch.R'
'structural_param.r' 'tableParams.R' 'update_PMLwithThetas.R'
'vpc.r' 'writeColumnMapping.R' 'writeDefaultFiles.R'

NeedsCompilation no

Author James Craig [aut, cre],
Michael Tomashevskiy [aut],
Vitalii Nazarov [aut],
Shuhua Hu [ctb],
Soltanshahi Fred [aut],
Certara USA, Inc. [cph, fnd]

Maintainer James Craig <james.craig@certara.com>

Repository CRAN

Date/Publication 2024-11-20 11:20:02 UTC

Contents
addADDL . 4
addCovariate . 4
addDoseCycle . 7
addExtraDef . 8
addInfusion . 9
addLabel . 9
addMDV . 10
addReset . 11
addSecondary . 11
addSteadyState . 12
bootstrap . 13
cancelJob . 15

Contents 3

colMapping . 15
copyModel . 16
covariateNames . 17
createModelInfo . 18
dataMapping . 19
doseNames . 19
editModel . 20
emaxmodel . 21
engineParams . 22
extraDoseLines . 26
extraDoseNames . 27
fitmodel . 28
fixedEffect . 31
getRandomEffectNames . 32
getThetas . 33
hostParams . 33
initFixedEffects . 34
linearmodel . 36
listCovariateEffectNames . 37
modelVariableNames . 38
obtain_NLMELicense . 38
OneCpt_IVInfusionData . 39
parsePMLColMap . 40
pkcovbqlData . 41
pkData . 42
pkemaxmodel . 42
pkindirectmodel . 47
pklinearmodel . 52
pkmodel . 57
pkpdData . 60
print.NlmePmlModel . 61
randomEffect . 61
removeCovariate . 62
remove_NLMELicense . 63
residualEffectNames . 64
residualError . 65
secondaryParameterNames . 66
shotgunSearch . 67
simmodel . 69
sortfit . 70
stepwiseSearch . 74
structuralParameter . 76
structuralParameterNames . 77
tableParams . 78
textualmodel . 80
vpcmodel . 80

Index 83

4 addCovariate

addADDL Adds ADDL extra column definition to model object

Description

Specify ADDL column definition in model object instead of specifying ADDL through addDoseCycle

Usage

addADDL(.Object, ADDL, II)

Arguments

.Object Model object

ADDL Column mapping argument specifying corresponding "ADDL" column in input
data set

II Column mapping argument specifying corresponding "II" column in input data
set

Value

Modified NlmePmlModel object

Examples

model <- addADDL(model, ADDL = "addl", II = "ii")

addCovariate Add covariate to model object

Description

Add a continuous, categorical, or occasion covariate to model object and set covariate effect on
structural parameters.

Usage

addCovariate(
.Object,
covariate,
effect = NULL,
type = c("Continuous", "Categorical", "Occasion"),
direction = c("Forward", "Interpolate", "Backward"),

addCovariate 5

option = c("Yes", "PlusOne", "No"),
center = NULL,
centerValue = NULL,
levels = NULL,
labels = NULL,
isDiagonal = TRUE,
values = NULL,
isPositive = TRUE

)

Arguments

.Object Model object

covariate Name of covariate. If the involved model has columns mapped (i.e. model with
columnMap = TRUE) use named character if the name of the covariate is different
from the corresponding column in the input dataset, for example, covariate
= c(BW = "BodyWeight"), where BW denotes the name of the covariate, and
"BodyWeight" is the name of the corresponding column in the input dataset.

effect Name of structural parameter(s) on which the covariate has an effect. Specify
effect as character or character vector if the covariate has an effect on multiple
structural parameters.

type Type of covariate. Options are "Continuous", "Categorical", "Occasion".

direction Direction of missing values propagation (if no covariate value is given). Options
are "Forward", "Interpolate", "Backward", where "Interpolate" is only
applicable to type = "Continuous".

option Options are "Yes", "PlusOne", or "No", where option = "No" will remove the
covariate effect from the specified structural parameter(s), but retain the covari-
ate in the model. Note: option = "PlusOne" is only applicable to continuous
and categorical covariates in the case where structural parameters have style =
"LogNormal". Multiple options are not supported (i.e. all covariate effects in
the call are supposed to have the same option. If different options are required
for different covariate effects, sequential calls of current method could be done.

center Centering method. Options are "Mean", "Median", "Value" or "None". Only
applicable to covariate type = "Continuous". Must include argument centerValue
if center = "Value".

centerValue Value used to center covariate. Only applicable if argument center = "Value"
and type = "Continuous".

levels Unique values of categorical or occasion covariate. Only applicable to covariate
type = "Categorical" or type = "Occasion".

labels Label names (in the same order as levels) for unique levels of categorical or
occasion covariate in data. Only applicable to covariate type = "Categorical"
or type = "Occasion" where its corresponding column in the input dataset has
character type.

isDiagonal Set to FALSE if inter-occasion covariance matrix is not diagonal matrix. Only
applicable to covariate type = "Occasion".

6 addCovariate

values Initial values for the diagonal elements of the inter-occasion covariance matrix
(if isDiagonal = TRUE) or initial values for the lower triangular elements (in-
cluding diagonal elements) of inter-occasion covariance matrix (if isDiagonal
= FALSE) in a row-wise order. Only applicable for covariate type = "Occasion".

isPositive Set to FALSE if covariate contains negative values. Only applicable to covariate
type = "Continuous".

Details

The following relationships are applicable for covariates:

• direction = "Forward" is equivalent to PML code ’fcovariate(CovName)’;

• direction = "Backward" is equivalent to PML code ’covariate(CovName)’;

• direction = "Interpolate" is equivalent to PML code ’interpolate(CovName)’.
If the structural parameter has style = "LogNormal", the options are reflected in PML code
as follows:

• option = "Yes" is equivalent to stparm(V = tvV * wt^dVdwt * exp(dVdsex1*(sex==1)) *
exp(nV));

• option = "PlusOne is equivalent to stparm(V = tvV * (1+wt*dVdwt) * (1+dVdsex1*(sex==1))
* exp(nV)).

Value

Modified NlmePmlModel object

Examples

model <- pkmodel(
numCompartments = 2,
data = pkData,
ID = "Subject",
Time = "Act_Time",
A1 = "Amount",
CObs = "Conc"

)

Add Gender covariate of type categorical
model <- addCovariate(model,

covariate = "Gender",
type = "Categorical",
effect = c("V2", "Cl2"),
levels = c(0, 1),
labels = c("Female", "Male")

)

Add BodyWeight covariate of type continuous
model <- addCovariate(model,

covariate = "BodyWeight",
type = "Continuous",
direction = "Backward",

addDoseCycle 7

center = "Mean",
effect = c("V", "Cl")

)

addDoseCycle Adds a dosing cycle to model

Description

Add Steady State or ADDL dosing cycle to model object.

Usage

addDoseCycle(
.Object,
type = "SteadyState",
name,
administration = "Bolus",
amount = NULL,
II = NULL,
rate = NULL,
duration = NULL,
isSecondDose = FALSE,
colName = NULL

)

Arguments

.Object Model object

type Specification of dose type. Options are "SteadyState"and "ADDL"

name Dose point name. See doseNames

administration Mechanism for administering dose. Options are "Bolus" or "Infusion"

amount Optional. Column mapping argument specifying corresponding "ADDL" col-
umn in input data, or numeric value specifiying dose amount.

II Optional. Column mapping argument specifying corresponding "II" column in
input data, or numeric value specifying delta time.

rate Optional. Column mapping argument specifying corresponding "Rate" column
in input data, or numeric specifying dose rate.

duration Optional. Column mapping argument specifying corresponding "Duration" col-
umn in data, or numeric specifying duration value.

isSecondDose Use second dose point on compartment

colName Column name in input data corresponding to column mapping for "SteadyState"
or "ADDL" as supplied in type argument.

8 addExtraDef

Value

Modified NlmePmlModel object

See Also

doseNames

Examples

model <- pkmodel(columnMap = FALSE) %>%
addDoseCycle(type = "SteadyState", name = "A1", amount = "Amount", II = "II")

addExtraDef Adds user defined extra column/table definitions to column definition
file

Description

Adds user defined extra column/table definitions to column definition file

Usage

addExtraDef(.Object, value)

Arguments

.Object PK/PD model

value Character vector of extra column/table definitions

Value

Modified NlmePmlModel object

Examples

model <- addExtraDef(model, c("addlcol(ADDL)", "table(file=\"res.csv\",time(0),Ka,V,Cl,Tlg)"))

addInfusion 9

addInfusion Change existing dosing compartment to infusion

Description

Allows user to switch any dosing compartment to infusion

Usage

addInfusion(
.Object,
doseCptName,
isDuration = FALSE,
isSecondDose = FALSE,
colName = NULL

)

Arguments

.Object Model object

doseCptName Name of the compartment to which the dose is administered

isDuration Set TRUE if duration is used to specify infusion information

isSecondDose Set TRUE if doseCptName is specified in the model through dosepoint2 statement

colName Name of the input data column that represents the corresponding infusion rate.
If not provided, colName must be mapped through colMapping().

Value

Modified NlmePmlModel object

Examples

newModel <- addInfusion(model, "A1", FALSE, FALSE, "A1_1")

addLabel Add levels and labels to categorical or occasion covariate

Description

Allows users to specify the name and the associated value for each category/occasion of a categori-
cal/occasion covariate in a textual model object. Only applicable to the case where the correspond-
ing input data column of a categorical/occasion covariate is of class character.

10 addMDV

Usage

addLabel(.Object, covariate, levels, labels)

Arguments

.Object Model object

covariate Existing covariate name

levels Unique values of categorical or occasion covariate column specified as numeric
vector

labels Unique values specifying corresponding label names for levels of categorical or
occasion covariate column in data specified as character vector.

Value

Modified NlmePmlModel object

Examples

model <- addLabel(model, covariate, c(1, 2, 3), c("a", "b", "c"))

addMDV Adds MDV extra column definition to model object

Description

Use to add MDV statement to model@userDefinedExtraDefs

Usage

addMDV(.Object, MDV)

Arguments

.Object Model object

MDV Column mapping argument specifying corresponding "MDV" column in input
data set

Value

Modified NlmePmlModel object

Examples

model <- addMDV(model, MDV = "MDV")

addReset 11

addReset Adds reset instructions to the model

Description

Adds reset instructions to the model

Usage

addReset(.Object, low, hi, Reset = NULL)

S4 method for signature 'NlmePmlModel'
addReset(.Object, low, hi, Reset = NULL)

Arguments

.Object An ’NlmePmlModel’ object to which you want to add reset instructions.

low Lower value of reset range.

hi Upper value of reset range.

Reset Name of reset column in input data set for column mapping. The default is
NULL.

Value

Depends on the specific methods

Returns the ’NlmePmlModel’ object with updated reset information and definitions.

Functions

• addReset(NlmePmlModel): Method for the ’NlmePmlModel’ class
This method adds reset instructions to the NlmePmlModel object. It updates the reset in-
formation, checks column mappings if input data is not null, and adds a reset definition to
user-defined extra definitions.

addSecondary Adds a secondary parameter to model definition

Description

Adds a secondary parameter to model definition

12 addSteadyState

Usage

addSecondary(.Object, name, definition, unit = "")

S4 method for signature 'NlmePmlModel'
addSecondary(.Object, name, definition, unit = "")

Arguments

.Object An ’NlmePmlModel’ object to which you want to add a secondary parameter.

name Name of the secondary parameter.

definition Definition of secondary parameter.

unit Optional units of the secondary parameter. The default is "".

Value

Depends on the specific methods

Returns the ’NlmePmlModel’ object with the added secondary parameter.

Functions

• addSecondary(NlmePmlModel): Method for the ’NlmePmlModel’ class
This method adds a secondary parameter to the NlmePmlModel object. It checks for duplicate
parameter names, and if there is no duplicate, it adds the new secondary parameter to the object
and updates the PML model.

Examples

model <- addSecondary(model, "Spc_Param", "log(2)/tvKe")
model <- addSecondary(

model, "Tmax",
"CalcTMax(tvA,tvAlpha,tvB,tvBeta,C,Gamma)"

)

addSteadyState Adds Steady State extra column definition to model object

Description

Use to add Steady State column definition statement to model@userDefinedExtraDefs

Usage

addSteadyState(.Object, SS, II, SSOffset = NULL)

bootstrap 13

Arguments

.Object Model object

SS Column mapping argument specifying corresponding "SS" column in input data
set

II Column mapping argument specifying corresponding "II" column in input data
set

SSOffset Optional. Column mapping argument specifying corresponding "SSOffset" col-
umn in input data set

Value

Modified NlmePmlModel object

Examples

model <- addSteadyState(model, SS = "ss", II = "ii")

bootstrap Executes an NLME Bootstrap

Description

Method to execute an NLME Bootstrap

Usage

bootstrap(
model,
hostPlatform = NULL,
params,
bootParams,
runInBackground = FALSE,
...

)

Arguments

model PK/PD model class object.

hostPlatform Host definition for model execution. See hostParams. If missing, multicore
local host with 4 threads is used.

params Engine parameters. See engineParams. If missing, default parameters gener-
ated by engineParams(model) are used.

bootParams Bootstrap parameters. See BootstrapParams. If missing, default parameters
generated by BootstrapParams() are used.

14 bootstrap

runInBackground

Set to TRUE to run in background and return prompt.
... Additional class initializer arguments for BootstrapParams or hostParams, or

arguments available inside engineParams functions. If engineParams argu-
ments are supplied through both params argument and additional argument (i.e.,
ellipsis), then the arguments in params will be ignored and only the additional
arguments will be used with warning. If hostParams arguments are supplied
through both hostPlatform argument and additional argument, then its values
will be overridden by additional arguments. In addition, if BootstrapParams
arguments are supplied through both bootParams argument and additional ar-
gument, then its slots will be overridden by additional arguments.

Value

if runInBackground = FALSE, a list is returned with bootstrap results, i.e. "BootOverall", "Boot-
Theta", "BootOmega", "BootOmegaStderr", "BootVarCoVar" comma separated files. Otherwise
the BootNlmeJob class object is returned.

See Also

hostParams, engineParams, BootstrapParams

Examples

input_data <- pkData

model <-
pkmodel(
numCompartments = 2,
data = input_data,
ID = "Subject",
Time = "Act_Time",
A1 = "Amount",
CObs = "Conc"

)

multicore
multicoreHost <- hostParams(

parallelMethod = "Multicore",
hostName = "local_multicore",
numCores = 4

)

bootstrapdf <- bootstrap(model,
hostPlatform = multicoreHost,
params = engineParams(model),
numReplicates = 5,
randomNumSeed = 1234,
runInBackground = FALSE

)

cancelJob 15

cancelJob Generic function for cancelling a job

Description

Generic function for cancelling a job

Usage

cancelJob(.Object)

S4 method for signature 'SimpleNlmeJob'
cancelJob(.Object)

Arguments

.Object A ’SimpleNlmeJob’ object that you want to cancel

Value

Depends on the specific methods

Prints the ’SimpleNlmeJob’ object after attempting to cancel the job. No return value.

Functions

• cancelJob(SimpleNlmeJob): Method for cancelling a job of the ’SimpleNlmeJob’ class
This method attempts to cancel a job of the ’SimpleNlmeJob’ class. If the job is running on a
local host or is not running in the background, it throws an error and does nothing. Otherwise,
it uploads a ’STOP’ command to the host’s remote executor.

colMapping Add column mappings

Description

Piping compatible function for modelColumnMapping used to add column mappings from input
data to model object

Usage

colMapping(.Object, mappings = NULL, ...)

16 copyModel

Arguments

.Object Model (NlmePmlModel) object

mappings Named character vector specifying valid column names in the input data. Char-
acter vector names must be valid model variable names contained in modelVariableNames(model).

... optional pairs ModelTerm = ColumnName or ModelTerm = "ColumnName".
Has higher precedence than mappings if some ModelTerm is mapped twice in
mappings and in For multiple mapping, i.e. id mapping, a vector should
be provided with the names of columns. See example below.

Value

modified NlmePmlModel object

See Also

dataMapping modelVariableNames

Examples

pkData$id2 <- pkData$Subject
model <- pkmodel(columnMap = FALSE,

data = pkData)

modelvar <- unlist(modelVariableNames(model))

colnames <- c("Subject", "Act_Time", "Amount", "Conc")
names(colnames) <- modelvar
will map subject directly
colnames <- colnames[-c(1)]

model <- colMapping(model, colnames, id = c(Subject, id2))
also possible:
model <- colMapping(model, colnames, id = c("Subject", "id2"))
not recommended since only not quoted names are identified
if both types are provided:
model <- colMapping(model, colnames, id = c("Subject", id2))

copyModel Copy model object to iterate over base model

Description

Copies previously executed model into a new object and optionally accept all estimates returned
from model execution. A new working directory is created and all files from base model are copied
into it.

covariateNames 17

Usage

copyModel(model, acceptAllEffects = FALSE, modelName = "", workingDir = "")

Arguments

model Model object to be copied
acceptAllEffects

Set to TRUE to accept all effects, update PML statements, and test.mdl file from
original model run

modelName New model name for subdirectory created for model output. Subdirectory is
created in current working directory.

workingDir Working directory to run the model. Current working directory will be used if
workingDir not specified.

Value

Modified NlmePmlModel object

Examples

Create initial model
model <- pkmodel(

parameterization = "Clearance",
absorption = "Intravenous",
numCompartments = 2,
data = pkData,
ID = "Subject",
A1 = "Amount",
CObs = "Conc",
Time = "Act_Time",
modelName = "pk_model"

)

Fit Model
job <- fitmodel(model)

Copy model and accept all effects from the original model run
vpcModel <- copyModel(model, acceptAllEffects = TRUE, modelName = "vpc_model")

covariateNames Return covariate names

Description

Use to return character vector of covariate names available in model object.

18 createModelInfo

Usage

covariateNames(model)

Arguments

model Model object

Value

Character vector of covariate names defined in model

Examples

model <- pkmodel(columnMap = FALSE)
model <- addCovariate(model, covariate = "BW", effect = "V")
model <- addCovariate(model, covariate = "Age", effect = "Cl")

covariateNames(model)

createModelInfo Parse the model and get the list of terms

Description

Calls TDL5 to parse the model and get the list of terms

Usage

createModelInfo(model, ForceRun = FALSE)

Arguments

model Model object

ForceRun Set to TRUE to force run

Value

List of model information

Examples

createModelInfo(model)

dataMapping 19

dataMapping Initialize input data for PK/PD model

Description

Used to initialize input data for PK/PD model

Usage

dataMapping(.Object, data)

Arguments

.Object Model object

data Input data of class data.frame.

Value

Modified NlmePmlModel object

See Also

colMapping

Examples

model <- pkmodel(columnMap = FALSE)

model <- dataMapping(model, pkData)

doseNames Return dose names

Description

Use to return character vector of dose point names in model object.

Usage

doseNames(model)

Arguments

model Model object

20 editModel

Value

Character vector of dose names defined in model

Examples

model <- pkmodel(columnMap = FALSE)

doses <- doseNames(model)

editModel Directly edit PML text in model object

Description

Allows user to edit PML text in model object using internal text editor and return a new textual
model containing the edited PML statements.

Usage

editModel(.Object)

Arguments

.Object Model object

Value

Modified NlmePmlModel object

Examples

model <- pkmodel(columnMap = FALSE)

newModel <- editModel(model)

emaxmodel 21

emaxmodel Create an Emax or Imax model

Description

Use to create an Emax or Imax model

Usage

emaxmodel(
isPopulation = TRUE,
checkBaseline = FALSE,
checkFractional = FALSE,
checkInhibitory = FALSE,
checkSigmoid = FALSE,
data = NULL,
columnMap = TRUE,
modelName = "",
workingDir = "",
...

)

Arguments

isPopulation Is this a population model TRUE or individual model FALSE?

checkBaseline Set to TRUE if the model contains a baseline response.
checkFractional

Set to TRUE to modify the default form for the model. Only applicable to models
with checkBaseline = TRUE.

checkInhibitory

Set to TRUE to change the model from an Emax to an Imax model.

checkSigmoid Set to TRUE to change the model to its corresponding signmoid form.

data Input dataset

columnMap If TRUE (default) column mapping arguments are required. Set to FALSE to man-
ually map columns after defining model using colMapping.

modelName Model name for subdirectory created for model output in current working direc-
tory.

workingDir Working directory to run the model. Current working directory will be used if
workingDir not specified.

... Arguments passed on to emaxmodel_MappingParameters

ID Column mapping argument for input dataset column(s) that identify individ-
ual data profiles. Only applicable to population models isPopulation =
TRUE.

22 engineParams

C Column mapping argument that represents the input dataset column for the in-
dependent variable that is treated as a covariate during the estimation/simulation
process.

EObs Column mapping argument that represents the input dataset column for
the observed drug effect (i.e., the dependent variable).

Value

NlmePmlModel object

Column mapping

Note that quoted and unquoted column names are supported. Please see colMapping.

Examples

model <- emaxmodel(data = pkpdData, ID = "ID", C = "CObs", EObs = "EObs")

model <- emaxmodel(
checkBaseline = TRUE,
checkFractional = TRUE,
checkInhibitory = TRUE,
data = pkpdData,
ID = "ID",
C = "CObs",
EObs = "EObs"

)

View PML Code
print(model)

engineParams Specify engine parameters for model execution

Description

Use to define extra engine parameters for model execution.

Usage

engineParams(
model,
sort = NULL,
ODE = "MatrixExponent",
rtolODE = 1e-06,
atolODE = 1e-06,
maxStepsODE = 50000,
numIterations = 1000,

engineParams 23

method = NULL,
stdErr = NULL,
isCentralDiffStdErr = TRUE,
stepSizeStdErr = NULL,
numIntegratePtsAGQ = 1,
numIterNonParametric = 0,
allowSyntheticGradient = FALSE,
numIterMAPNP = 0,
numRepPCWRES = 0,
stepSizeLinearize = 0.002,
numDigitLaplacian = 7,
numDigitBlup = 13,
mapAssist = 0,
iSample = 300,
iAcceptRatio = 0.1,
impDist = "Normal",
tDOF = 4,
numSampleSIR = 10,
numBurnIn = 0,
freezeOmega = FALSE,
MCPEM = FALSE,
runAllIterations = FALSE,
scramble = "Owen",
stepSizePartialDeriv = 1e-05,
numTimeStepPartialDeriv = 20

)

Arguments

model Model object
sort Logical; Specifying whether or not to sort the input data by subject and time

values.
• If model@hasResetInfo = TRUE, then sort must be set to FALSE (default);
• Otherwise, the default value for sort is TRUE.

ODE Character; Specifying the solver used to numerically solve Ordinary Differential
Equations (ODEs). Options are ‘"MatrixExponent"‘, ‘"Higham"‘, ‘"DVERK"‘,
‘"DOPRI5"‘, ‘"AutoDetect"‘, ‘"Stiff"‘. See Details section.

rtolODE Numeric; Specifying relative tolerance for the numerical ODE solver.
atolODE Numeric; Specifying absolute tolerance for the numerical ODE solver.
maxStepsODE Numeric; Specifying maximum number of allowable steps or function evalua-

tions for the ODE solver.
numIterations Numeric; Specifying maximum number of iterations for estimation.
method Character; Specifying engine method for estimation. For population models, op-

tions are "QRPEM", "IT2S-EM", "FOCE-LB", "FO", "FOCE-ELS", "Laplacian",
"Naive-Pooled". While, for individual models, "Naive-Pooled" is the only
option.

24 engineParams

Note: For population models, if model involves any discontinuous observed
variable (e.g., count data) or BQL data, the default method is "Laplacian";
otherwise, the default method is "FOCE-ELS".

stdErr Character; Specifying method for standard error computations.

• For individual models, options are "Hessian" (default) and "None";
• For population models with method = "QRPEM", options are "Fisher-Score"

(default) and "None";
• For population models with method = "IT2s-EM", the only option is "None";
• For population models with method set to either "FOCE-LB", "FO", "FOCE-ELS",
"Laplacian", or "Naive-Pooled", options are "Sandwich" (default), "Hessian",
"Fisher-Score", "Auto-Detect", and "None".

Here "None" means that standard error calculations are not performed.
isCentralDiffStdErr

Logical; Default TRUE uses central difference for stdErr calculations. Set to
FALSE for forward difference method.

stepSizeStdErr Numeric; Specifying the step size used for stdErr calculations. If not specified,
0.01 is used for population models and 0.001 for individual models.

numIntegratePtsAGQ

Numeric; Specifying the number of integration points for adaptive Gaussian
quadrature (AGQ) algorithm. Only applicable to population models with method
set to either "FOCE-ELS" or "Laplacian".

numIterNonParametric

Numeric; Specifying the number of iterations to perform non-parametric es-
timation. Only applicable to population models when method is not set to
Naive-Pooled.

allowSyntheticGradient

Logical, Set to TRUE to use synthetic gradient during the estimation process.
Only applicable to population models when method is not set to Naive-Pooled.

numIterMAPNP Numeric; Specifying the number of iterations to perform Maximum A Posterior
(MAP) initial Naive Pooling (NP) run before estimation. Only applicable to
population models when method is not set to Naive-Pooled.

numRepPCWRES Numeric; Specifying the number of replicates to generate the PCWRES after
the simple estimation. Only applicable to population models when method is
not set to Naive-Pooled.

stepSizeLinearize

Numeric; Specifying the step size used for numerical differentiation when lin-
earizing the model function during the estimation process.

numDigitLaplacian

Numeric; Specifying the number of significant decimal digits for the Laplacian
algorithm to use to reach convergence. Only applicable to population models.

numDigitBlup Numeric; Specifying the number of significant decimal digits for the individual
estimation to use to reach convergence. Only applicable to population models.

mapAssist Numeric; Specifying the period used to perform MAP assistance (mapAssist =
0 means that MAP assistance is not performed). Only applicable to population
models with method = "QRPEM".

engineParams 25

iSample Numeric; Specifying the number of samples. Only applicable to population
models with method = "QRPEM".

iAcceptRatio Numeric; Specifying the acceptance ratio. Only applicable to population models
with method = "QRPEM".

impDist Character; Specifying the distribution used for important sampling, and options
are "Normal" (default), "DoubleExponential", "Direct", "T", "Mixture-2",
Mixture-3. Only applicable to population models with method = "QRPEM".

tDOF Numeric; Specifing the degree of freedom (allowed value is between 3 and 30)
for T distribution. Only applicable to population models with method = "QRPEM"
and impDist = "T".

numSampleSIR Numeric; Specifying the number of samples per subject used in the Sampling
Importance Re-Sampling (SIR) algorithm to determine the number of SIR sam-
ples taken from the empirical discrete distribution that approximates the target
conditional distribution. Only applicable to population models with method =
"QRPEM".

numBurnIn Numeric; Specifying the number of burn-in iterations to perform at startup to
adjust certain internal parameters. Only applicable to population models with
method = "QRPEM".

freezeOmega Logical; Set to TRUE to freeze Omega but not Theta for the number of iterations
specified in the numBurnIn. Only applicable to population models with method
= "QRPEM".

MCPEM Logical; Set to TRUE to use Monte-Carlo sampling instead of Quasi-Random.
Only applicable to population models with method = "QRPEM".

runAllIterations

Logical; Set to TRUE to execute all requested iterations specified in numIterations.
Only applicable to population models with method = "QRPEM".

scramble Character; Specifying the quasi-random scrambling method to use, and options
are "Owen", "Tezuka-Faur", or "None". Only applicable to population models
with method = "QRPEM".

stepSizePartialDeriv

Numeric; Specifying the step size used to numerically calculate the partial deriva-
tives of observed variables with respect to parameters. Only applicable to indi-
vidual models.

numTimeStepPartialDeriv

Numeric; Specifying the number of time steps used to output the partial deriva-
tives of observed variables with respect to parameters. Only applicable to indi-
vidual models.

Details

Both ‘"DVERK"‘ and ‘"DOPRI5"‘ are non-stiff solvers. ‘"Higham"‘ is a matrix exponent based
ODE solver which could be useful when overscaling issue should be avoided, i.e. the ratio between
observed values and doses is too high or too low. ‘"AutoDetect"‘ represents LSODA solver imple-
menation, which solves the initial value problem for stiff or nonstiff systems of first order ordinary
differential equations. ‘"Stiff"‘ is a LSODE (Livermore solver). It is best suited for stiff problems.

26 extraDoseLines

Value

List of engine parameters to be used during fitting or simulation

extraDoseLines Return extra dose lines

Description

Use to return extra dose lines for model object

Usage

extraDoseLines(model)

Arguments

model Model object

Value

List of extra dose information

Examples

data <- pkData
data$II <- 24
data$ADDL <- 1

model <-
pkmodel(

parameterization = "Clearance",
numCompartments = 2,
data = data,
ID = "Subject",
Time = "Act_Time",
A1 = "Amount",
CObs = "Conc") |>

addDoseCycle(
name = "A1",
amount = 30000,
II = 24,
type = "ADDL",
colName = "ADDL")

extraDoseLines(model)

extraDoseNames 27

extraDoseNames Return extra dose names

Description

Use to return extra dose names for model object

Usage

extraDoseNames(model)

Arguments

model Model object

Value

Character vector of extra dose names

Examples

data <- pkData
data$II <- 24
data$ADDL <- 1

model <-
pkmodel(

parameterization = "Clearance",
numCompartments = 2,
data = data,
ID = "Subject",
Time = "Act_Time",
A1 = "Amount",
CObs = "Conc") |>

addDoseCycle(
name = "A1",
amount = 30000,
II = 24,
type = "ADDL",
colName = "ADDL")

extraDoseNames(model)

28 fitmodel

fitmodel Executes an NLME simple estimation

Description

Executes an NLME simple estimation

Usage

fitmodel(
model,
hostPlatform = NULL,
params,
simpleTables,
runInBackground = FALSE,
filesToReturn = "*",
...

)

Arguments

model PK/PD model class object.

hostPlatform Host definition for model execution. See hostParams. If missing, PhoenixM-
PIDir64 is given and MPI is installed, MPI local host with 4 threads is used. If
MPI is not found, local host without parallelization is used.

params Engine parameters. See engineParams. If missing, default parameters gener-
ated by engineParams(model) are used.

simpleTables Optional list of simple tables. See tableParams. By default a table named
’posthoc.csv’ is returned with structural parameters values for all source data
rows.

runInBackground

Set to TRUE to run in background and return prompt.

filesToReturn Used to specify which files to be outputted to the model directory and loaded
as returned value. By default, all the applicable files listed in the Value section
will be outputted to the model directory and loaded as returned value. Only
those files listed in the Value section can be specified. Simple regex patterns are
supported for the specification.

... Additional arguments for hostParams or arguments available inside engineParams
functions. If engineParams arguments are supplied through both params argu-
ment and additional argument (i.e., ellipsis), then the arguments in params will
be ignored and only the additional arguments will be used with warning. If
hostParams arguments are supplied through both the hostPlatform argument
and the ellipses, values supplied to hostPlatform will be overridden by addi-
tional arguments supplied via the ellipses e.g.,

fitmodel 29

Value

if runInBackground is FALSE, a list with main resulted dataframes is returned:

• Overall

• ConvergenceData

• residuals

• Secondary

• StrCovariate - if continuous covariates presented

• StrCovariateCat - if categorical covariates presented

• theta

• posthoc table

• posthocStacked table

• Requested tables

nlme7engine.log textual output is returned and loaded with the main information related to fitting.
dmp.txt structure with the results of fitting (including LL by subject information) is returned and
loaded. These 2 files are returned and loaded irrespective of filesToReturn argument value.

For individual models, additional dataframe with partial derivatives is returned:

• ParDer

For population models and the method specified is NOT Naive-Pooled, additional dataframes are
returned:

• omega

• Eta

• EtaStacked

• EtaEta

• EtaCov

• EtaCovariate - if continuous covariates presented

• EtaCovariateCat - if categorical covariates presented

• bluptable.dat

If standard error computation was requested and it was successful, additional dataframes are re-
turned:

• thetaCorrelation

• thetaCovariance

• Covariance

• omega_stderr

If nonparametric method was requested (numIterNonParametric > 0) and the method specified in
engineParams is NOT Naive-Pooled, additional dataframes are returned:

• nonParSupportResult

30 fitmodel

• nonParStackedResult

• nonParEtaResult

• nonParOverallResult

if runInBackground is TRUE, only current status of job is returned.

filesToReturn with Certara.Xpose.NLME

If filesToReturn is used and "ConvergenceData.csv" and "residuals.csv" are not in the patterns,
these files won’t be returned and loaded. These files are essential for Certara.Xpose.NLME::xposeNlmeModel
and Certara.Xpose.NLME::xposeNlme functions. This makes impossible to use the resulted ob-
ject in Certara.Xpose.NLME functions.

Non-loaded but returned files

The non-loaded but returned files in the model working directory are:

• err1.txt - concatenated for all runs detailed logs for all steps of optimization,

• out.txt - general pivoted information about results,

• doses.csv - information about doses given for all subjects,

• iniest.csv - information about initial estimates

See Also

tableParams, hostParams,engineParams

Examples

Define the host
host <- hostParams(parallelMethod = "None",

hostName = "local",
numCores = 1)

Define the model
model <- pkmodel(numComp = 2,

absorption = "FirstOrder",
ID = "Subject",
Time = "Act_Time",
CObs = "Conc",
Aa = "Amount",
data = pkData,
modelName = "PkModel")

Table01 <- tableParams(name = "SimTableObs.csv",
timesList = "0,1,2,4,4.9,55.1,56,57,59,60",
variablesList = "C, CObs",
timeAfterDose = FALSE,
forSimulation = FALSE)

Update fixed effects

fixedEffect 31

model <- fixedEffect(model,
effect = c("tvV", "tvCl", "tvV2", "tvCl2"),
value = c(16, 41, 7, 14))

Define the engine parameters
params <- engineParams(model)

Fit model
res <- fitmodel(model = model,

hostPlatform = host,
params = params,
simpleTables = Table01)

fixedEffect Specifies the initial values, lower bounds, upper bounds, and units for
fixed effects in a model

Description

Specifies the initial values, lower bounds, upper bounds, and units for fixed effects in a model

Usage

fixedEffect(
.Object,
effect,
value = NULL,
lowerBound = NULL,
upperBound = NULL,
isFrozen = NULL,
unit = NULL

)

Arguments

.Object Model object in which to define fixed effects values
effect Character or character vector specifying names of fixed effects
value Numeric or numeric vector specifying the initial values of fixed effects. If sup-

plying vector, must be in the same order/length as corresponding effect.
lowerBound Numeric or numeric vector specifying the lower limit values of fixed effects. If

supplying vector, must be in the same order as effect.
upperBound Numeric or numeric vector specifying the upper limit values of fixed effects. If

supplying vector, must be in the same order as effect.
isFrozen Logical or logical vector. Set to TRUE to freeze the fixed effect to the specified

initial value. If supplying vector, must be in the same order as effect.
unit Character or character vector specifying units of measurement for the fixed ef-

fects. If supplying a vector, must be in the same order as effect.

32 getRandomEffectNames

Value

Modified NlmePmlModel object

Examples

model <- pkmodel(
numCompartments = 2,
data = pkData,
ID = "Subject",
Time = "Act_Time",
A1 = "Amount",
CObs = "Conc",
modelName = "TwCpt_IVBolus_FOCE_ELS"
)

View initial/current fixed effect values
initFixedEffects(model)

model <- model |>
fixedEffect(

effect = c("tvV", "tvCl", "tvV2", "tvCl2"),
value = c(15, 5, 40, 15)
)

getRandomEffectNames Return random effect names in model

Description

Use to return character vector of random effect names (if available) in model object

Usage

getRandomEffectNames(model)

Arguments

model Model object

Value

Characters vector of random effect names

Examples

model <- pkmodel(columnMap = FALSE)
getRandomEffectNames(model)

getThetas 33

getThetas Return theta names and values

Description

Returns named character vector of theta values by parsing PML fixed effect statements

Usage

getThetas(model)

Arguments

model PK/PD model

Value

Character vector of theta names defined in model

Examples

getThetas(pkpdmodel)

hostParams Initialize for NlmeParallelHost

Description

Initialize for NlmeParallelHost

Usage

hostParams(
sharedDirectory,
installationDirectory = Sys.getenv("INSTALLDIR"),
hostName = Sys.info()[["nodename"]],
machineName = "127.0.0.1",
hostType = Sys.info()[["sysname"]],
numCores = 4,
parallelMethod = "LOCAL_MPI",
userName = "",
privateKeyFile = NULL,
userPassword = "",
scriptPath = "",
rLocation = "",
isLocal = TRUE

)

34 initFixedEffects

Arguments

sharedDirectory

Directory where temporary NLME run folder is created during execution. If
missing, the current working directory will be used.

installationDirectory

Directory containing NLME libraries/scripts

hostName Visual name of the host (default A name by which the machine is known on the
network)

machineName IP address or name of the host(default 127.0.0.1)

hostType windows or linux. Current OS by default. For remote runs it is possible to point
the distro suppported, i.e. RHEL8 or UBUNTU2204. In such case the corresponding
PML_BIN_DIR variable will be created and NLME Engine libraries will be looked
in installationDirectory/{$PML_BIN_DIR}.

numCores Integer; Number of compute cores. 4 by default

parallelMethod String; Options are: None|Multicore|LOCAL_MPI|SGE|SGE_MPI| TORQUE|TORQUE_MPI|LSF|LSF_MPI|SLURM_SLURM_MPI.

userName String; How the user is identified to the remote system

privateKeyFile Path to private key file, see ssh::ssh_connect() for details

userPassword Either a string or a callback function for password prompt, see ssh::ssh_connect()
for details

scriptPath a path to the script to be executed before starting Rscript within Certara.NLME8
package on the remote host. Ignored when running locally.

rLocation Path to Rscript executable on remote host; ignored on local host

isLocal Is this a local TRUE or remote FALSE host?

Value

NlmeParallelHost class instance

Examples

host <- hostParams(sharedDirectory = tempdir(),
parallelMethod = "LOCAL_MPI",
hostName = "Local",
numCores = 4)

initFixedEffects Display/Set initial estimates for fixed effects

Description

Display/Set initial estimates for fixed effects

initFixedEffects 35

Usage

initFixedEffects(.Object)

S4 method for signature 'NlmePmlModel'
initFixedEffects(.Object)

initFixedEffects(.Object) <- value

S4 replacement method for signature 'NlmePmlModel'
initFixedEffects(.Object) <- value

Arguments

.Object PK/PD model

value Named numeric vector

Value

Named numeric vector of fixed effects estimates

See Also

fixedEffect

Examples

model <- pkmodel(
numCompartments = 2,
data = pkData,
ID = "Subject",
Time = "Act_Time",
A1 = "Amount",
CObs = "Conc",
modelName = "TwCpt_IVBolus_FOCE_ELS"
)

View initial/current fixed effect values
initFixedEffects(model)

May also use as a 'replacement function' to set the values
initFixedEffects(model) <- c(tvV = 15, tvCl = 5, tvV2 = 40, tvCl2 = 15)

36 linearmodel

linearmodel Create linear model

Description

Use to create a constant, linear, or quadratic PD model

Usage

linearmodel(
isPopulation = TRUE,
type = "Constant",
data = NULL,
columnMap = TRUE,
modelName = "",
workingDir = "",
...

)

Arguments

isPopulation Is this a population model TRUE or individual model FALSE?

type Model type. Options are "Constant", "Linear", "Quadratic".

data Input dataset

columnMap If TRUE (default) column mapping arguments are required. Set to FALSE to man-
ually map columns after defining model using colMapping.

modelName Model name for subdirectory created for model output in current working direc-
tory.

workingDir Working directory to run the model. Current working directory will be used if
workingDir not specified.

... Arguments passed on to linearmodel_MappingParameters

ID Column mapping argument for input dataset column(s) that identify individ-
ual data profiles. Only applicable to population models isPopulation =
TRUE.

C Column mapping argument that represents the input dataset column for the in-
dependent variable that is treated as a covariate during the estimation/simulation
process.

EObs Column mapping argument that represents the input dataset column for
the observed drug effect (i.e., the dependent variable).

Value

NlmePmlModel object

listCovariateEffectNames 37

Column mapping

Note that quoted and unquoted column names are supported. Please see colMapping.

Examples

model <- linearmodel(type = "Linear", data = pkpdData, ID = "ID", C = "CObs", EObs = "EObs")

View PML Code
print(model)

listCovariateEffectNames

Lists covariate effect names in the model

Description

This function lists the names of covariate effects in a provided pharmacokinetic/pharmacodynamic
(PK/PD) model.

Usage

listCovariateEffectNames(.Object)

S4 method for signature 'NlmePmlModel'
listCovariateEffectNames(.Object)

Arguments

.Object PK/PD model

Value

A vector of character strings containing the names of the covariate effects in the model.

Examples

listCovariateEffectNames(model)

38 obtain_NLMELicense

modelVariableNames Return model variable names

Description

Return a vector of model variable names from model object

Usage

modelVariableNames(model)

Arguments

model Model object

Value

Character vector of required model variable names

Examples

modelVariableNames(model)

obtain_NLMELicense Obtain NLME License

Description

This function attempts to authenticate and obtain an NLME license using the specified installation
directory and licensing tool.

Usage

obtain_NLMELicense(
InstallDir = Sys.getenv("INSTALLDIR"),
ForceAuth = FALSE,
ForceLicenseGet = FALSE,
verbose = getOption("verbose")

)

OneCpt_IVInfusionData 39

Arguments

InstallDir A character string specifying the directory where the NLME Engine is installed
e.g., INSTALLDIR environment variable. The cadlicensingtool executable is
expected to be located within this directory, or within a subdirectory specified
by the PML_BIN_DIR environment variable.

ForceAuth A logical value indicating whether to force re-authentication even if already
authenticated. Default is FALSE.

ForceLicenseGet

A logical value indicating whether to force obtaining the license even if already
licensed. Default is FALSE.

verbose A logical value indicating whether to print verbose output. Default is getOption("verbose").

Details

This function checks for the presence of the necessary appsettings.json file as indicated by
the CAD_CONFIG_FILE environment variable, runs the licensing tool to authenticate the user, and
attempts to obtain an NLME license. It prints detailed messages if the verbose parameter is set to
TRUE.

Value

A logical value indicating whether the license was successfully obtained.

Examples

result <- obtain_NLMELicense("C:/Program Files/Certara/NLME_Engine", verbose = TRUE)
if (result) {

message("License obtained successfully!")
} else {

message("Failed to obtain license.")
}

OneCpt_IVInfusionData Pharmacokinetic dataset containing 100 subjects with single dose
given by infusion

Description

Pharmacokinetic dataset containing 16 subjects with single dose given by infusion.

Usage

OneCpt_IVInfusionData

40 parsePMLColMap

Format

A data frame with 800 rows and 6 variables:

Subject Subject ID

Time Time point

Dose Amount of dose

CObs Observations of drug concentration in blood

Rate Rate of infusion

Duration Duration of infusion

Source

The data is simulated using a PK model described by a one-compartment model with IV infusion

parsePMLColMap Embed column definition info into the model

Description

Add/update column definition information for the model object

Usage

parsePMLColMap(.Object, ForceRun = TRUE)

Arguments

.Object Model (NlmePmlModel) object

ForceRun Set to TRUE to force run

Details

Intended to be used by other packages

Value

modified NLMEPmlModel object with column mapping definitions

pkcovbqlData 41

pkcovbqlData Pharmacokinetic pediatric dataset containing 80 subjects with single
bolus dose.

Description

Pharmacokinetic pediatric dataset containing 80 subjects with single bolus dose. Dataset includes
covariates and observations Below Quantification Limit (BQL).

Usage

pkcovbqlData

Format

A data frame with 880 rows and 8 variables:

ID Subject ID

Time Nominal Time

Dose Amount of dose

CObs Observations of drug concentration in blood

LLOQ Lower Limit of Quantification

CObsBQL Variable that indicates whether the observed drug concentration is below the limit of
quantification

BW Body weight

PMA Postmenstrual age

Source

The data is simulated using a one-compartment model with IV bolus, where the central volume
is allometric weight scaled, and the clearance is scaled by a combination of allometric weight
scaling and a sigmoidal maturation function driven by PMA. Germovsek E., et al, Pharmacoki-
netic–Pharmacodynamic Modeling in Pediatric Drug Development, and the Importance of Stan-
dardized Scaling of Clearance, Clin Pharmacokinet (2019) 58:39–52.

42 pkemaxmodel

pkData Pharmacokinetic dataset containing 16 subjects with single bolus dose

Description

Pharmacokinetic dataset containing 16 subjects with single bolus dose.

Usage

pkData

Format

A data frame with 112 rows and 8 variables:

Subject Subject ID

Nom_Time Nominal Time

Act_Time Actual Time

Amount Amount of dose

Conc Observations of drug concentration in blood

Age Age

BodyWeight Body weight

Gender Gender ("male", "female")

Source

Certara University

pkemaxmodel Create a PK/Emax or PK/Imax model

Description

Use to create a PK/Emax or PK/Imax model

https://www.certara.com/training/

pkemaxmodel 43

Usage

pkemaxmodel(
isPopulation = TRUE,
parameterization = "Clearance",
absorption = "Intravenous",
numCompartments = 1,
isClosedForm = TRUE,
isTlag = FALSE,
hasEliminationComp = FALSE,
isFractionExcreted = FALSE,
isSaturating = FALSE,
infusionAllowed = FALSE,
isDuration = FALSE,
isSequential = FALSE,
isPkFrozen = FALSE,
hasEffectsCompartment = FALSE,
checkBaseline = FALSE,
checkFractional = FALSE,
checkInhibitory = FALSE,
checkSigmoid = FALSE,
isEmaxFrozen = FALSE,
data = NULL,
columnMap = TRUE,
modelName = "",
workingDir = "",
...

)

Arguments

isPopulation Is this a population model TRUE or individual model FALSE?
parameterization

Type of parameterization. Options are "Clearance", "Micro", "Macro", or
"Macro1".

absorption Type of absorption. Options are "Intravenous", "FirstOrder", "Gamma",
"InverseGaussian", "Weibull" .

numCompartments

Value of either 1, 2, or 3.
isClosedForm Set to TRUE to convert model from a differential equation to close form.
isTlag Set to TRUE to add a lag time parameter to the model.
hasEliminationComp

Set to TRUE to add an elimination compartment to the model.
isFractionExcreted

Set to TRUE if elimination compartment (hasEliminationComp = TRUE) con-
tains a fraction excreted parameter.

isSaturating Set to TRUE to use Michaelis-Menten kinetics for elimination. Only applicable
to models with paramteterization = "Clearance"

44 pkemaxmodel

infusionAllowed

Set to TRUE if infusions allowed.

isDuration Set to TRUE if infusions use duration instead of rate (must also set infusionAllowed
= TRUE).

isSequential Set to TRUE to freeze PK fixed effects and convert the corresponding random
effects into covariates as well as remove the PK observed variable from the
model.

isPkFrozen Set to TRUE to freeze PK fixed effects and remove the corresponding random
effects as well as the PK observed variable from the model.

hasEffectsCompartment

Set to TRUE to include an effect compartment into the model.

checkBaseline Does Emax/Imax model have a baseline response?
checkFractional

Set to TRUE to modify the default form for the Emax/Imax model. Only applica-
ble to models with checkBaseline = TRUE.

checkInhibitory

Set to TRUE to change the default Emax to Imax model.

checkSigmoid Set to TRUE to change the Emax/Imax to its corresponding sigmoid form.

isEmaxFrozen Set to TRUE to freeze PD fixed effects and remove the corresponding random
effects as well as the PD observed variable from the model.

data Input dataset

columnMap If TRUE (default) column mapping arguments are required. Set to FALSE to man-
ually map columns after defining model using colMapping.

modelName Model name for subdirectory created for model output in current working direc-
tory.

workingDir Working directory to run the model. Current working directory will be used if
workingDir not specified.

... Arguments passed on to pkindirectmodel_MappingParameters

ID Column mapping argument for input dataset column(s) that identify individ-
ual data profiles. Only applicable to population models isPopulation =
TRUE.

Time Column mapping argument that represents the input dataset column for
the relative time used in a study and only applicable to time-based models.

A1 Column mapping argument that represents the input dataset column for the
amount of drug administered. Only applicable to the following types of
models:

• Models with absorption = "Intravenous" and parameterization set
to either "Clearance","Micro", or "Macro"

• Models with absorption set to either "Gamma", "InverseGaussian",
or "Weibull"

Aa Column mapping argument that represents the input dataset column for the
amount of drug administered and only applicable to models with absorption
= "FirstOrder".

pkemaxmodel 45

A Column mapping argument that represents the input dataset column for the
amount of drug administered and only applicable to models with absorption
= "Intravenous" and parameterization = "Macro1".

A1_Rate Column mapping argument that represents the input dataset column
for the rate of drug administered. Only applicable to the following types of
models:

• Models with absorption = "Intravenous", infusionAllowed = TRUE
and parameterization set to either "Clearance","Micro" or "Macro"

• Models with absorption set to either "Gamma", "InverseGaussian",
or "Weibull" and infusionAllowed = TRUE

A1_Duration Column mapping argument that represents the input dataset col-
umn for the duration of drug administered. Only applicable to the following
types of models:

• Models with absorption = "Intravenous", infusionAllowed = TRUE
with isDuration = TRUE and parameterization set to either "Clearance","Micro"
or "Macro"

• Models with absorption set to either "Gamma", "InverseGaussian",
or "Weibull" and infusionAllowed = TRUE with isDuration = TRUE

Aa_Rate Column mapping argument that represents the input dataset column
for the rate of drug administered and only applicable to models with absorption
= "FirstOrder", infusionAllowed = TRUE.

Aa_Duration Column mapping argument that represents the input dataset col-
umn for the duration of drug administered and only applicable to models
with absorption = "FirstOrder", infusionAllowed = TRUE, and isDuration
= TRUE.

A_Rate Column mapping argument that represents the input dataset column for
the rate of drug administered and only applicable to models with absorption
= "Intravenous", infusionAllowed = TRUE, and parameterization = "Macro1".

A_Duration Column mapping argument that represents the input dataset col-
umn for the duration of drug administered and only applicable to models
with absorption = "Intravenous", infusionAllowed = TRUE, isDuration
= TRUE, and parameterization = "Macro1".

A1Strip Column mapping argument that represents the input dataset column
for the stripping dose and only applicable to models with parameterization
= "Macro".

CObs Column mapping argument that represents the input dataset column for
the observations of drug concentration in the central compartment and only
applicable to models with parameterization being either set to either
"Clearance" or "Micro".

C1Obs Column mapping argument that represents the input dataset column for
the observations of drug concentration in the central compartment and only
applicable to models with parameterization being either set to either
"Macro" or "Macro1".

A0Obs Column mapping argument that represents the input dataset column for
the observed amount of drug in the elimination compartment. (hasEliminationComp
= TRUE).

46 pkemaxmodel

EObs Column mapping argument that represents the input dataset column for
the observed drug effect.

nV If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nV.

nV2 If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nV2.

nV3 If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nV3.

nCl If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nCl.

nCl2 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nCl2.

nCl3 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nCl3.

nKa If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nKa.

nA If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nA.

nAlpha If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nAlpha.

nB If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nB.

nBeta If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nBeta.

nC If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nC.

nGamma If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nGamma.

nKe If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nKe.

nK12 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nK12.

nK21 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nK21.

nK13 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nK13.

nK31 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nK31.

nTlag If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nTlag.

nKm If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nKm.

nVmax If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nVmax.

nFe If isSequential = TRUE and isFractionExcreted = TRUE, mapped to the
input dataset column that lists the values for random effect nFe.

pkindirectmodel 47

nMeanDelayTime If isSequential = TRUE, mapped to the input dataset column
that lists the values for random effect nMeanDelayTime.

nShapeParam If isSequential = TRUE, mapped to the input dataset column
that lists the values for random effect nShapeParam.

nShapeParamMinusOne If isSequential = TRUE, mapped to the input dataset
column that lists the values for random effect nShapeParamMinusOne.

Value

NlmePmlModel object

Column mapping

Note that quoted and unquoted column names are supported. Please see colMapping.

Examples

model <- pkemaxmodel(
parameterization = "Macro",
data = pkpdData,
Time = "Time",
ID = "ID",
A1 = "Dose",
C1Obs = "CObs",
EObs = "EObs"

)

View the model as well as its associated column mappings
print(model)

pkindirectmodel Create a PK/Indirect response model

Description

Use to create a PK/Indirect response model.

Usage

pkindirectmodel(
isPopulation = TRUE,
parameterization = "Clearance",
absorption = "Intravenous",
numCompartments = 1,
isClosedForm = TRUE,
isTlag = FALSE,
hasEliminationComp = FALSE,

48 pkindirectmodel

isFractionExcreted = FALSE,
isSaturating = FALSE,
infusionAllowed = FALSE,
isDuration = FALSE,
isSequential = FALSE,
isPkFrozen = FALSE,
hasEffectsCompartment = FALSE,
indirectType = "LimitedStimulation",
isBuildup = TRUE,
isExponent = FALSE,
indirectFrozen = FALSE,
data = NULL,
columnMap = TRUE,
modelName = "",
workingDir = "",
...

)

Arguments

isPopulation Is this a population model TRUE or individual model FALSE?
parameterization

Type of parameterization. Options are "Clearance", "Micro", "Macro", or
"Macro1".

absorption Type of absorption. Options are "Intravenous", "FirstOrder", "Gamma",
"InverseGaussian", "Weibull" .

numCompartments

Value of either 1, 2, or 3.

isClosedForm Set to TRUE to convert model from a differential equation to close form.

isTlag Set to TRUE to add a lag time parameter to the model.
hasEliminationComp

Set to TRUE to add an elimination compartment to the model.
isFractionExcreted

Set to TRUE if elimination compartment (hasEliminationComp = TRUE) con-
tains a fraction excreted parameter.

isSaturating Set to TRUE to use Michaelis-Menten kinetics for elimination. Only applicable
to models with paramteterization = "Clearance"

infusionAllowed

Set to TRUE if infusions allowed.

isDuration Set to TRUE if infusions use duration instead of rate (must also set infusionAllowed
= TRUE).

isSequential Set to TRUE to freeze PK fixed effects and convert the corresponding random
effects into covariates as well as remove the PK observed variable from the
model.

isPkFrozen Set to TRUE to freeze PK fixed effects and remove the corresponding random
effects as well as the PK observed variable from the model.

pkindirectmodel 49

hasEffectsCompartment

Set to TRUE to include an effect compartment into the model.

indirectType Type of drug actions for the indirect response model. Options are "LimitedStimulation",
"InfiniteStimulation", "LimitedInhibition", "InverseInhibition", "LinearStimulation",
or "LogLinearStimulation".

isBuildup Set to FALSE to have the drug actions affect the loss/degradation instead of the
production.

isExponent Set to TRUE to add an exponent parameter to the drug action term.

indirectFrozen Set to TRUE to freeze PD fixed effects and remove the corresponding random
effects as well as the PD observed variable from the model.

data Input dataset

columnMap If TRUE (default) column mapping arguments are required. Set to FALSE to man-
ually map columns after defining model using colMapping.

modelName Model name for subdirectory created for model output in current working direc-
tory.

workingDir Working directory to run the model. Current working directory will be used if
workingDir not specified.

... Arguments passed on to pkindirectmodel_MappingParameters

ID Column mapping argument for input dataset column(s) that identify individ-
ual data profiles. Only applicable to population models isPopulation =
TRUE.

Time Column mapping argument that represents the input dataset column for
the relative time used in a study and only applicable to time-based models.

A1 Column mapping argument that represents the input dataset column for the
amount of drug administered. Only applicable to the following types of
models:

• Models with absorption = "Intravenous" and parameterization set
to either "Clearance","Micro", or "Macro"

• Models with absorption set to either "Gamma", "InverseGaussian",
or "Weibull"

Aa Column mapping argument that represents the input dataset column for the
amount of drug administered and only applicable to models with absorption
= "FirstOrder".

A Column mapping argument that represents the input dataset column for the
amount of drug administered and only applicable to models with absorption
= "Intravenous" and parameterization = "Macro1".

A1_Rate Column mapping argument that represents the input dataset column
for the rate of drug administered. Only applicable to the following types of
models:

• Models with absorption = "Intravenous", infusionAllowed = TRUE
and parameterization set to either "Clearance","Micro" or "Macro"

• Models with absorption set to either "Gamma", "InverseGaussian",
or "Weibull" and infusionAllowed = TRUE

50 pkindirectmodel

A1_Duration Column mapping argument that represents the input dataset col-
umn for the duration of drug administered. Only applicable to the following
types of models:

• Models with absorption = "Intravenous", infusionAllowed = TRUE
with isDuration = TRUE and parameterization set to either "Clearance","Micro"
or "Macro"

• Models with absorption set to either "Gamma", "InverseGaussian",
or "Weibull" and infusionAllowed = TRUE with isDuration = TRUE

Aa_Rate Column mapping argument that represents the input dataset column
for the rate of drug administered and only applicable to models with absorption
= "FirstOrder", infusionAllowed = TRUE.

Aa_Duration Column mapping argument that represents the input dataset col-
umn for the duration of drug administered and only applicable to models
with absorption = "FirstOrder", infusionAllowed = TRUE, and isDuration
= TRUE.

A_Rate Column mapping argument that represents the input dataset column for
the rate of drug administered and only applicable to models with absorption
= "Intravenous", infusionAllowed = TRUE, and parameterization = "Macro1".

A_Duration Column mapping argument that represents the input dataset col-
umn for the duration of drug administered and only applicable to models
with absorption = "Intravenous", infusionAllowed = TRUE, isDuration
= TRUE, and parameterization = "Macro1".

A1Strip Column mapping argument that represents the input dataset column
for the stripping dose and only applicable to models with parameterization
= "Macro".

CObs Column mapping argument that represents the input dataset column for
the observations of drug concentration in the central compartment and only
applicable to models with parameterization being either set to either
"Clearance" or "Micro".

C1Obs Column mapping argument that represents the input dataset column for
the observations of drug concentration in the central compartment and only
applicable to models with parameterization being either set to either
"Macro" or "Macro1".

A0Obs Column mapping argument that represents the input dataset column for
the observed amount of drug in the elimination compartment. (hasEliminationComp
= TRUE).

EObs Column mapping argument that represents the input dataset column for
the observed drug effect.

nV If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nV.

nV2 If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nV2.

nV3 If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nV3.

nCl If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nCl.

pkindirectmodel 51

nCl2 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nCl2.

nCl3 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nCl3.

nKa If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nKa.

nA If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nA.

nAlpha If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nAlpha.

nB If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nB.

nBeta If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nBeta.

nC If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nC.

nGamma If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nGamma.

nKe If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nKe.

nK12 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nK12.

nK21 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nK21.

nK13 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nK13.

nK31 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nK31.

nTlag If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nTlag.

nKm If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nKm.

nVmax If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nVmax.

nFe If isSequential = TRUE and isFractionExcreted = TRUE, mapped to the
input dataset column that lists the values for random effect nFe.

nMeanDelayTime If isSequential = TRUE, mapped to the input dataset column
that lists the values for random effect nMeanDelayTime.

nShapeParam If isSequential = TRUE, mapped to the input dataset column
that lists the values for random effect nShapeParam.

nShapeParamMinusOne If isSequential = TRUE, mapped to the input dataset
column that lists the values for random effect nShapeParamMinusOne.

Value

NlmePmlModel object

52 pklinearmodel

Column mapping

Note that quoted and unquoted column names are supported. Please see colMapping.

Examples

model <- pkindirectmodel(
parameterization = "Micro",
data = pkpdData,
ID = "ID",
Time = "Time",
A1 = "Dose",
CObs = "CObs",
EObs = "EObs"

)

View PML Code
print(model)

pklinearmodel Create PK linear model

Description

Use to create a PK/PD model with PD described by either constant, linear, or quadratic model

Usage

pklinearmodel(
isPopulation = TRUE,
parameterization = "Clearance",
absorption = "Intravenous",
numCompartments = 1,
isClosedForm = TRUE,
isTlag = FALSE,
hasEliminationComp = FALSE,
isFractionExcreted = FALSE,
isSaturating = FALSE,
infusionAllowed = FALSE,
isDuration = FALSE,
isSequential = FALSE,
isPkFrozen = FALSE,
hasEffectsCompartment = FALSE,
linearType = "Constant",
isLinearFrozen = FALSE,
data = NULL,
columnMap = TRUE,
modelName = "",

pklinearmodel 53

workingDir = "",
...

)

Arguments

isPopulation Is this a population model TRUE or individual model FALSE?
parameterization

Type of parameterization. Options are "Clearance", "Micro", "Macro", or
"Macro1".

absorption Type of absorption. Options are "Intravenous", "FirstOrder", "Gamma",
"InverseGaussian", "Weibull" .

numCompartments

Value of either 1, 2, or 3.

isClosedForm Set to TRUE to convert model from a differential equation to close form.

isTlag Set to TRUE to add a lag time parameter to the model.
hasEliminationComp

Set to TRUE to add an elimination compartment to the model.
isFractionExcreted

Set to TRUE if elimination compartment (hasEliminationComp = TRUE) con-
tains a fraction excreted parameter.

isSaturating Set to TRUE to use Michaelis-Menten kinetics for elimination. Only applicable
to models with paramteterization = "Clearance"

infusionAllowed

Set to TRUE if infusions allowed.

isDuration Set to TRUE if infusions use duration instead of rate (must also set infusionAllowed
= TRUE).

isSequential Set to TRUE to freeze PK fixed effects and convert the corresponding random
effects into covariates as well as remove the PK observed variable from the
model.

isPkFrozen Set to TRUE to freeze PK fixed effects and remove the corresponding random
effects as well as the PK observed variable from the model.

hasEffectsCompartment

Set to TRUE to include an effect compartment into the model.

linearType Type of PD model; Options are "Constant", "Linear", "Quadratic".

isLinearFrozen Set to TRUE to freeze PD fixed effects and remove the corresponding random
effects as well as the PD observed variable from the model.

data Input dataset

columnMap If TRUE (default) column mapping arguments are required. Set to FALSE to man-
ually map columns after defining model using colMapping.

modelName Model name for subdirectory created for model output in current working direc-
tory.

workingDir Working directory to run the model. Current working directory will be used if
workingDir not specified.

54 pklinearmodel

... Arguments passed on to pkindirectmodel_MappingParameters

ID Column mapping argument for input dataset column(s) that identify individ-
ual data profiles. Only applicable to population models isPopulation =
TRUE.

Time Column mapping argument that represents the input dataset column for
the relative time used in a study and only applicable to time-based models.

A1 Column mapping argument that represents the input dataset column for the
amount of drug administered. Only applicable to the following types of
models:

• Models with absorption = "Intravenous" and parameterization set
to either "Clearance","Micro", or "Macro"

• Models with absorption set to either "Gamma", "InverseGaussian",
or "Weibull"

Aa Column mapping argument that represents the input dataset column for the
amount of drug administered and only applicable to models with absorption
= "FirstOrder".

A Column mapping argument that represents the input dataset column for the
amount of drug administered and only applicable to models with absorption
= "Intravenous" and parameterization = "Macro1".

A1_Rate Column mapping argument that represents the input dataset column
for the rate of drug administered. Only applicable to the following types of
models:

• Models with absorption = "Intravenous", infusionAllowed = TRUE
and parameterization set to either "Clearance","Micro" or "Macro"

• Models with absorption set to either "Gamma", "InverseGaussian",
or "Weibull" and infusionAllowed = TRUE

A1_Duration Column mapping argument that represents the input dataset col-
umn for the duration of drug administered. Only applicable to the following
types of models:

• Models with absorption = "Intravenous", infusionAllowed = TRUE
with isDuration = TRUE and parameterization set to either "Clearance","Micro"
or "Macro"

• Models with absorption set to either "Gamma", "InverseGaussian",
or "Weibull" and infusionAllowed = TRUE with isDuration = TRUE

Aa_Rate Column mapping argument that represents the input dataset column
for the rate of drug administered and only applicable to models with absorption
= "FirstOrder", infusionAllowed = TRUE.

Aa_Duration Column mapping argument that represents the input dataset col-
umn for the duration of drug administered and only applicable to models
with absorption = "FirstOrder", infusionAllowed = TRUE, and isDuration
= TRUE.

A_Rate Column mapping argument that represents the input dataset column for
the rate of drug administered and only applicable to models with absorption
= "Intravenous", infusionAllowed = TRUE, and parameterization = "Macro1".

A_Duration Column mapping argument that represents the input dataset col-
umn for the duration of drug administered and only applicable to models

pklinearmodel 55

with absorption = "Intravenous", infusionAllowed = TRUE, isDuration
= TRUE, and parameterization = "Macro1".

A1Strip Column mapping argument that represents the input dataset column
for the stripping dose and only applicable to models with parameterization
= "Macro".

CObs Column mapping argument that represents the input dataset column for
the observations of drug concentration in the central compartment and only
applicable to models with parameterization being either set to either
"Clearance" or "Micro".

C1Obs Column mapping argument that represents the input dataset column for
the observations of drug concentration in the central compartment and only
applicable to models with parameterization being either set to either
"Macro" or "Macro1".

A0Obs Column mapping argument that represents the input dataset column for
the observed amount of drug in the elimination compartment. (hasEliminationComp
= TRUE).

EObs Column mapping argument that represents the input dataset column for
the observed drug effect.

nV If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nV.

nV2 If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nV2.

nV3 If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nV3.

nCl If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nCl.

nCl2 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nCl2.

nCl3 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nCl3.

nKa If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nKa.

nA If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nA.

nAlpha If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nAlpha.

nB If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nB.

nBeta If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nBeta.

nC If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nC.

nGamma If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nGamma.

nKe If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nKe.

56 pklinearmodel

nK12 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nK12.

nK21 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nK21.

nK13 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nK13.

nK31 If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nK31.

nTlag If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nTlag.

nKm If isSequential = TRUE, mapped to the input dataset column that lists the
values for random effect nKm.

nVmax If isSequential = TRUE, mapped to the input dataset column that lists
the values for random effect nVmax.

nFe If isSequential = TRUE and isFractionExcreted = TRUE, mapped to the
input dataset column that lists the values for random effect nFe.

nMeanDelayTime If isSequential = TRUE, mapped to the input dataset column
that lists the values for random effect nMeanDelayTime.

nShapeParam If isSequential = TRUE, mapped to the input dataset column
that lists the values for random effect nShapeParam.

nShapeParamMinusOne If isSequential = TRUE, mapped to the input dataset
column that lists the values for random effect nShapeParamMinusOne.

Value

NlmePmlModel object

Column mapping

Note that quoted and unquoted column names are supported. Please see colMapping.

Examples

model <- pklinearmodel(
parameterization = "Clearance",
linearType = "Constant",
data = pkpdData,
ID = "ID",
Time = "Time",
A1 = "Dose",
CObs = "CObs",
EObs = "EObs"

)

View the model as well as its associated column mappings
print(model)

pkmodel 57

pkmodel Creates a PK model

Description

Use to create a PK model

Usage

pkmodel(
isPopulation = TRUE,
parameterization = "Clearance",
absorption = "Intravenous",
numCompartments = 1,
isClosedForm = TRUE,
isTlag = FALSE,
hasEliminationComp = FALSE,
isFractionExcreted = FALSE,
isSaturating = FALSE,
infusionAllowed = FALSE,
isDuration = FALSE,
isStdevFrozen = FALSE,
data = NULL,
columnMap = TRUE,
modelName = "",
workingDir = "",
...

)

Arguments

isPopulation Is this a population model TRUE or individual model FALSE?
parameterization

Type of parameterization. Options are "Clearance", "Micro", "Macro", or
"Macro1".

absorption Type of absorption. Options are "Intravenous", "FirstOrder", "Gamma",
"InverseGaussian", "Weibull" .

numCompartments

Value of either 1, 2, or 3.

isClosedForm Set to TRUE to convert model from a differential equation to close form.

isTlag Set to TRUE to add a lag time parameter to the model.
hasEliminationComp

Set to TRUE to add an elimination compartment to the model.
isFractionExcreted

Set to TRUE if elimination compartment (hasEliminationComp = TRUE) con-
tains a fraction excreted parameter.

58 pkmodel

isSaturating Set to TRUE to use Michaelis-Menten kinetics for elimination. Only applicable
to models with paramteterization = "Clearance"

infusionAllowed

Set to TRUE if infusions allowed.

isDuration Set to TRUE if infusions use duration instead of rate (must also set infusionAllowed
= TRUE).

isStdevFrozen Set to TRUE to freeze value of standard deviation of residual error variable.

data Input dataset

columnMap If TRUE (default) column mapping arguments are required. Set to FALSE to man-
ually map columns after defining model using colMapping.

modelName Model name for subdirectory created for model output in current working direc-
tory.

workingDir Working directory to run the model. Current working directory will be used if
workingDir not specified.

... Arguments passed on to pkmodel_MappingParameters

ID Column mapping argument for input dataset column(s) that identify individ-
ual data profiles. Only applicable to population models isPopulation =
TRUE.

Time Column mapping argument that represents the input dataset column for
the relative time used in a study and only applicable to time-based models.

A1 Column mapping argument that represents the input dataset column for the
amount of drug administered. Only applicable to the following types of
models:

• Models with absorption = "Intravenous" and parameterization set
to either "Clearance","Micro", or "Macro"

• Models with absorption set to either "Gamma", "InverseGaussian",
or "Weibull"

Aa Column mapping argument that represents the input dataset column for the
amount of drug administered and only applicable to models with absorption
= "FirstOrder".

A Column mapping argument that represents the input dataset column for the
amount of drug administered and only applicable to models with absorption
= "Intravenous" and parameterization = "Macro1".

A1_Rate Column mapping argument that represents the input dataset column
for the rate of drug administered. Only applicable to the following types of
models:

• Models with absorption = "Intravenous", infusionAllowed = TRUE
and parameterization set to either "Clearance","Micro" or "Macro"

• Models with absorption set to either "Gamma", "InverseGaussian",
or "Weibull" and infusionAllowed = TRUE

A1_Duration Column mapping argument that represents the input dataset col-
umn for the duration of drug administered. Only applicable to the following
types of models:

pkmodel 59

• Models with absorption = "Intravenous",infusionAllowed = TRUE
with isDuration = TRUE and parameterization set to either "Clearance",
"Micro" or "Macro"

• Models with absorption set to either "Gamma", "InverseGaussian",
or "Weibull" and infusionAllowed = TRUE with isDuration = TRUE

Aa_Rate Column mapping argument that represents the input dataset column
for the rate of drug administered and only applicable to models with absorption
= "FirstOrder", infusionAllowed = TRUE.

Aa_Duration Column mapping argument that represents the input dataset col-
umn for the duration of drug administered and only applicable to models
with absorption = "FirstOrder", infusionAllowed = TRUE, and isDuration
= TRUE.

A_Rate Column mapping argument that represents the input dataset column for
the rate of drug administered and only applicable to models with absorption
= "Intravenous", infusionAllowed = TRUE, and parameterization = "Macro1".

A_Duration Column mapping argument that represents the input dataset col-
umn for the duration of drug administered and only applicable to models
with absorption = "Intravenous", infusionAllowed = TRUE, isDuration
= TRUE, and parameterization = "Macro1".

A1Strip Column mapping argument that represents the input dataset column
for the stripping dose and only applicable to models with parameterization
= "Macro".

CObs Column mapping argument that represents the input dataset column for
the observations of drug concentration in the central compartment and only
applicable to models with parameterization being either set to either
"Clearance" or "Micro".

C1Obs Column mapping argument that represents the input dataset column for
the observations of drug concentration in the central compartment and only
applicable to models with parameterization being either set to either
"Macro" or "Macro1".

A0Obs Column mapping argument that represents the input dataset column for
the observed amount of drug in the elimination compartment. (hasEliminationComp
= TRUE).

Value

NlmePmlModel object

Column mapping

Note that quoted and unquoted column names are supported. Please see colMapping.

Examples

model <- pkmodel(
parameterization = "Clearance",
numCompartments = 2,
data = pkData,

60 pkpdData

ID = "Subject",
Time = "Act_Time",
A1 = "Amount",
CObs = "Conc"

)

View the model as well as its associated column mappings
print(model)

pkpdData Pharmacokinetic/Pharmacodynamic dataset containing 200 subjects
with single bolus dose

Description

Pharmacokinetic/Pharmacodynamic dataset containing 200 subjects with single bolus dose.

Usage

pkpdData

Format

A data frame with 2600 rows and 5 variables:

ID Subject ID

Time Nominal Time

Dose Amount of dose

CObs Observations of drug concentration in blood

EObs Observations of drug effect

Source

The data is simulated using a PKPD model with PK described by a one-compartment model with
IV bolus and PD described by an indirect response model with the loss inhibited.

print.NlmePmlModel 61

print.NlmePmlModel Print generic for class NlmePmlModel

Description

Prints model information, including PML and column mappings.

Usage

S3 method for class 'NlmePmlModel'
print(x, ...)

Arguments

x NlmePmlModel class instance

... Arguments passed to methods.

Value

NULL

Examples

model <- pkmodel(columnMap = FALSE, data = pkData)
print(model)

randomEffect Sets or updates the covariance matrix of random effects

Description

Use to set or update the covariance matrix of random effects in a model object.

Usage

randomEffect(
.Object,
effect,
value = NULL,
isDiagonal = TRUE,
isFrozen = FALSE,
...

)

62 removeCovariate

Arguments

.Object Model object

effect One or more names of available random effects.

value Initial values for the diagonal elements of the covariance matrix of random ef-
fects (if isDiagonal = TRUE, or initial values for the lower triangular elements
(including diagonal elements) of the covariance matrix (if isDiagonal = FALSE)
in a row-wise order.

isDiagonal Set to TRUE to if the covariance matrix of the specified random effects is a diag-
onal matrix. or FALSE if not.

isFrozen Set to TRUE to freeze the covariance matrix of random effects.

... Additional arguments

Value

Modified NlmePmlModel object

Examples

model <- pkmodel(
numCompartments = 2,
data = pkData,
ID = "Subject",
Time = "Act_Time",
A1 = "Amount",
CObs = "Conc",
modelName = "TwCpt_IVBolus_FOCE_ELS"
)

model <- model |>
randomEffect(effect = c("nV", "nCl", "nCl2"), value = rep(0.1, 3))

removeCovariate Remove covariate from structural parameters in a model object.

Description

Remove one or more covariates from structural parameters in a model object.

Usage

removeCovariate(.Object, covariate = NULL, paramName = NULL)

remove_NLMELicense 63

Arguments

.Object Model object

covariate Covariates to remove from model. If NULL all covariates will be removed from
model.

paramName Structural parameters for which to remove covariate effect(s) from. If NULL
covariate effect will be removed from all structural parameters.

Value

Modified NlmePmlModel object

Examples

model <- pkmodel(
numCompartments = 2,
data = pkData,
ID = "Subject",
Time = "Act_Time",
A1 = "Amount",
CObs = "Conc"

)

Add Gender covariate of type categorical
model <- addCovariate(model,

covariate = "Gender",
type = "Categorical",
effect = c("V2", "Cl2"),
levels = c(0, 1),
labels = c("Female", "Male")

)

Add BodyWeight covariate of type continuous
model <- addCovariate(model,

covariate = "BodyWeight",
type = "Continuous",
direction = "Backward",
center = "Mean",
effect = c("V", "Cl")

)

Remove all covariates from model
model <- removeCovariate(model)

remove_NLMELicense Remove NLME License

64 residualEffectNames

Description

This function attempts to remove an NLME license using the specified installation directory and
licensing tool.

Usage

remove_NLMELicense(InstallDir = Sys.getenv("INSTALLDIR"))

Arguments

InstallDir A character string specifying the directory where the NLME Engine is installed
e.g., INSTALLDIR environment variable. The cadlicensingtool executable is
expected to be located within this directory, or within a subdirectory specified
by the PML_BIN_DIR environment variable.

Details

The function checks for the presence of the necessary ‘appsettings.json‘ file in the specified direc-
tory or the CAD config file specified by the ‘CAD_CONFIG_FILE‘ environment variable, runs the
licensing tool to log out the user, and attempts to remove the NLME license.

Value

A logical value indicating whether the license information was successfully removed.

Examples

result <- remove_NLMELicense("/path/to/install/dir")
if (result) {

message("License removed successfully!")
} else {

message("Failed to remove license.")
}

residualEffectNames Return residual effect terms available in model

Description

Use to return character vector of residual effect names in model object

Usage

residualEffectNames(model)

Arguments

model Object of class NlmePmlModel

residualError 65

Value

Character vector of residual effect names

Examples

model <- pkemaxmodel(columnMap = FALSE)
residualEffectNames(model)

residualError Assign residual error model to model object

Description

Use to change or update residual error model for model object

Usage

residualError(
.Object,
predName = "C",
errorType = NULL,
SD = NULL,
isFrozen = FALSE,
isBQL = FALSE,
staticLLOQ = NULL,
EObsBQL = NULL,
CObsBQL = NULL,
C1ObsBQL = NULL,
A0ObsBQL = NULL,
exponent = NULL

)

Arguments

.Object Model object

predName Name of the predicted variable as returned in residualEffectNames.

errorType Options are "Additive", "LogAdditive", "Multiplicative", "AdditiveMultiplicative",
"MixRatio", "Power".

SD Value for the standard deviation of the residual error variable.

isFrozen Set to TRUE to freeze the standard deviation to the value specified for SD.

isBQL Set to TRUE if BQL values present in the observation data.

staticLLOQ Optional LLOQ value if isBQL = TRUE

EObsBQL Column mapping argument that represents the input dataset column that con-
tains the BQL flag for observation values corresponding to EObs. Only applica-
ble to isBQL = TRUE.

66 secondaryParameterNames

CObsBQL Column mapping argument that represents the input dataset column that con-
tains the BQL flag for observation values corresponding to CObs. Only applica-
ble to isBQL = TRUE.

C1ObsBQL Column mapping argument that represents the input dataset column that con-
tains the BQL flag for observation values corresponding to C1Obs. Only appli-
cable to isBQL = TRUE.

A0ObsBQL Column mapping argument that represents the input dataset column that con-
tains the BQL flag for observation values corresponding to AObs. Only applica-
ble to isBQL = TRUE.

exponent Value of exponent. Only applicable to errorType = "Power".

Value

Modified NlmePmlModel object

Examples

model <- pkindirectmodel(indirectType = "LimitedInhibition", isBuildup = FALSE,
data = pkpdData, ID = "ID", Time = "Time", A1 = "Dose", CObs = "CObs", EObs = "EObs")

residualEffectNames(model)

Change error type to "Multiplicative" and value of SD to 0.1 for "E"
model <- residualError(model, predName = "E", errorType = "Multiplicative", SD = 0.1)

Change error type to "Power", value of SD to 0.15, and set exponent = 2 for "C"
model <- residualError(model, predName = "C", errorType = "Power", SD = 0.15, exponent = 2)

secondaryParameterNames

Get secondary parameter names

Description

Returns character vector of secondary parameter names for model object.

Usage

secondaryParameterNames(model)

Arguments

model Object of class NlmePmlModel

Value

Character vector of secondary parameter names defined in model

shotgunSearch 67

Examples

model <- pkemaxmodel(columnMap = FALSE)
secondaryparms <- secondaryParameterNames(model)

shotgunSearch Executes an NLME shotgun covariate search

Description

Executes an NLME shotgun covariate search

Usage

shotgunSearch(
model,
hostPlatform = NULL,
params,
covariateModel,
runInBackground = FALSE,
...

)

Arguments

model PK/PD model class object.
hostPlatform Host definition for model execution. See hostParams. If missing, multicore

local host with 4 threads is used.
params Engine parameters. See engineParams. If missing, default parameters gener-

ated by engineParams(model) are used.
covariateModel Covariate Effects Model providing the relationship between covariates and struc-

tural parameters to test (covariateModel(model)).
runInBackground

Set to TRUE to run in background and return prompt.
... Additional arguments for hostParams or arguments available inside engineParams

functions. If engineParams arguments are supplied through both params argu-
ment and additional argument (i.e., ellipsis), then the arguments in params will
be ignored and only the additional arguments will be used with warning. If
hostParams arguments are supplied through both the hostPlatform argument
and the ellipses, values supplied to hostPlatform will be overridden by addi-
tional arguments supplied via the ellipses e.g.,

Value

if runInBackground = FALSE, a data frame is returned with shotgun (all combinations given the co-
variate model) search results, i.e. "Overall" comma separated file. Otherwise the ShotgunNlmeJob
class object is returned.

68 shotgunSearch

See Also

hostParams, engineParams

Examples

Define the model
model <- pkmodel(numCompartments = 2,

data = pkData,
ID = "Subject",
Time = "Act_Time",
A1 = "Amount",
CObs = "Conc")

Add Gender covariate of type categorical
model <- addCovariate(model,

covariate = "Gender",
type = "Categorical",
effect = c("V2", "Cl2"),
levels = c(0, 1),
labels = c("Female", "Male"))

Add Bodyweight covariate of type continuous
model <- addCovariate(model,

covariate = "BodyWeight",
type = "Continuous",
direction = "Backward",
center = "Mean",
effect = c("V", "Cl"))

Define the host
host <- hostParams(parallelMethod = "None",

hostName = "local",
numCores = 1)

Define the engine parameters
params <- engineParams(model)

Define covariate model
cp <- covariateModel(model)

Perform shotgun search
OverallDF <- shotgunSearch(model = model,

hostPlatform = host,
params = params,
covariateModel = cp,
runInBackground = FALSE)

simmodel 69

simmodel Executes an NLME simulation

Description

Executes an NLME simulation

Usage

simmodel(
model,
simParams,
params,
hostPlatform = NULL,
runInBackground = FALSE,
...

)

Arguments

model PK/PD model class object.

simParams Simulation parameters. See NlmeSimulationParams. If missing, default pa-
rameters generated by NlmeSimulationParams() are used.

params Engine parameters. See engineParams. The common parameters include: sort,
ODE, rtolODE, atolODE, maxStepsODE. If missing, default parameters gen-
erated by engineParams(model) are used.

hostPlatform Host definition for model execution. See hostParams. If missing, simple local
host is used.

runInBackground

Set to TRUE to run in background and return prompt.

... Additional class initializer arguments for NlmeSimulationParams, or arguments
available inside hostParams or engineParams functions. If engineParams ar-
guments are supplied through both params argument and additional argument
(i.e., ellipsis), then the arguments in params will be ignored and only the addi-
tional arguments will be used with warning. If hostParams arguments are sup-
plied through both hostPlatform argument and additional argument, then its
slots will be overridden by additional arguments. In addition, if NlmeSimulationParams
arguments are supplied through both simParams argument and additional argu-
ment, then its slots will be overridden by additional arguments.

Value

returns job properties if runInBackground is TRUE; if runInBackground is FALSE and the function
is called in interactive mode, the resulted simulated tables wil be loaded and presented as a list; if
runInBackground is FALSE and the function is called in non-interactive mode, the list returned will
have just the full paths of the tables generated.

70 sortfit

Examples

SimTableObs <- tableParams(
name = "SimTableObs.csv",
timesList = "0,1,2,4,4.9,55.1,56,57,59,60",
variablesList = "C, CObs",
timeAfterDose = FALSE,
forSimulation = TRUE

)

simParams <- NlmeSimulationParams(
numReplicates = 2,
simulationTables = SimTableObs

)
Define the model
model <- pkmodel(

numComp = 2,
absorption = "Extravascular",
ID = "Subject",
Time = "Act_Time",
CObs = "Conc",
Aa = "Amount",
data = pkData,
modelName = "PkModel"

)
results <- simmodel(model, simParams)
with seed given additionally:
results <- simmodel(model, simParams, seed = 3527)

sortfit Executes an NLME simple estimation with sort keys and given scenar-
ios

Description

Executes an NLME simple estimation with sort keys and given scenarios

Usage

sortfit(
model,
hostPlatform = NULL,
params,
sortColumns,
scenarios = list(),
simpleTables,
runInBackground = FALSE,
filesToReturn = "*",
...

)

sortfit 71

Arguments

model PK/PD model class object.

hostPlatform Host definition for model execution. See hostParams. If missing, PhoenixM-
PIDir64 is given and MPI is installed, MPI local host with 4 threads is used. If
MPI is not found, local host without parallelization is used.

params Engine parameters. See engineParams. If missing, default parameters gener-
ated by engineParams(model) are used.

sortColumns List of sort columns. See SortColumns. If missing, empty sort columns argu-
ment is used and NLME dataset is used as is.

scenarios List of scenarios with different sets of covariates. See NlmeScenario If missing,
all covariates effects are considered as enabled.

simpleTables Optional list of simple tables. See tableParams. By default a table named
’posthoc.csv’ is returned with structural parameters values for all source data
rows.

runInBackground

Set to TRUE to run in background and return prompt.

filesToReturn Used to specify which files to be outputted to the model directory and loaded
as returned value. By default, all the applicable files listed in the Value section
will be outputted to the model directory and loaded as returned value. Only
those files listed in the Value section can be specified. Simple regex patterns are
supported for the specification.

... Additional arguments for hostParams or arguments available inside engineParams
functions. If engineParams arguments are supplied through both params argu-
ment and additional argument (i.e., ellipsis), then the arguments in params will
be ignored and only the additional arguments will be used with warning. If
hostParams arguments are supplied through both the hostPlatform argument
and the ellipses, values supplied to hostPlatform will be overridden by addi-
tional arguments supplied via the ellipses e.g.,

Details

All the results in tabular format have scenario column and sorts columns appended. The resulted
logs (nlme7engine.log, err1.txt, dmp.txt, out.txt) are appended with a row delimiter where the name
of the Scenario and sort values are specified.

Value

if runInBackground is FALSE, a list with main resulted dataframes is returned:

• Overall

• ConvergenceData

• residuals

• Secondary

• StrCovariate - if continuous covariates presented

• StrCovariateCat - if categorical covariates presented

72 sortfit

• theta
• posthoc table
• posthocStacked table
• Requested tables

nlme7engine.log textual output is returned and loaded with the main information related to fitting.
dmp.txt structure with the results of fitting (including LL by subject information) is returned and
loaded. These 2 files are returned and loaded irrespective of filesToReturn argument value.

For individual models, additional dataframe with partial derivatives is returned:

• ParDer

For population models and the method specified is NOT Naive-Pooled, additional dataframes are
returned:

• omega
• Eta
• EtaStacked
• EtaEta
• EtaCov
• EtaCovariate - if continuous covariates presented
• EtaCovariateCat - if categorical covariates presented
• bluptable.dat

If standard error computation was requested and it was successful, additional dataframes are re-
turned:

• thetaCorrelation
• thetaCovariance
• Covariance
• omega_stderr

If nonparametric method was requested (numIterNonParametric > 0) and the method specified in
engineParams is NOT Naive-Pooled, additional dataframes are returned:

• nonParSupportResult
• nonParStackedResult
• nonParEtaResult
• nonParOverallResult

if runInBackground is TRUE, only current status of job is returned.

Non-loaded but returned files

The non-loaded but returned files in the model working directory are:

• err1.txt - concatenated for all runs detailed logs for all steps of optimization,
• out.txt - general pivoted information about results,
• doses.csv - information about doses given for all subjects,
• iniest.csv - information about initial estimates

sortfit 73

See Also

hostParams, engineParams, SortColumns,NlmeScenario, tableParams

Examples

input_data <- pkData

model <-
pkmodel(numCompartments = 2,

data = input_data,
ID = "Subject",
Time = "Act_Time",
A1 = "Amount",
CObs = "Conc")

model <-
addCovariate(model,

covariate = "BodyWeight",
direction = "Backward",
center = "Mean",
effect = c("V", "Cl"))

multicore
multicoreHost <-

hostParams(parallelMethod = "Multicore",
hostName = "multicore",
numCores = 4)

specify scenarios
CovariateEffectNames <- listCovariateEffectNames(model)
combinations <-

combn(c("", CovariateEffectNames),
length(CovariateEffectNames),
simplify = FALSE)

scenarioNames <-
lapply(combinations,

function(x) {paste(x, collapse = " ")})

scenarios <-
lapply(scenarioNames,

function(x, CovariateEffectNames) {
CovariateCombinations <- unlist(strsplit(x, " ", fixed = TRUE))
scenarioIndex <-

paste(which(CovariateEffectNames %in% CovariateCombinations,
arr.ind = TRUE),
collapse = ", ")

NlmeScenario(trimws(x), scenarioIndex)
},
CovariateEffectNames)

res <-

74 stepwiseSearch

sortfit(model,
hostPlatform = multicoreHost,
params = engineParams(model),
sortColumns = SortColumns("Gender"),
scenarios = scenarios)

stepwiseSearch Executes an NLME stepwise covariate search

Description

Executes an NLME stepwise covariate search

Usage

stepwiseSearch(
model,
hostPlatform = NULL,
params,
covariateModel,
stepwiseParams,
runInBackground = FALSE,
...

)

Arguments

model PK/PD model class object.

hostPlatform Host definition for model execution. See hostParams. If missing, multicore
local host with 4 threads is used.

params Engine parameters. See engineParams. If missing, default parameters gener-
ated by engineParams(model) are used.

covariateModel Covariate Effects Model providing the relationship between covariates and struc-
tural parameters to test (covariateModel(model)).

stepwiseParams Stepwise parameters defining decision tree. See StepwiseParams

runInBackground

Set to TRUE to run in background and return prompt.

... Additional arguments for hostParams or arguments available inside engineParams
functions. If engineParams arguments are supplied through both params argu-
ment and additional argument (i.e., ellipsis), then the arguments in params will
be ignored and only the additional arguments will be used with warning. If
hostParams arguments are supplied through both the hostPlatform argument
and the ellipses, values supplied to hostPlatform will be overridden by addi-
tional arguments supplied via the ellipses e.g.,

stepwiseSearch 75

Value

if runInBackground = FALSE, a data frame is returned with stepwise search results, i.e. "Overall"
comma separated file. Otherwise the StepwiseNlmeJob class object is returned.

See Also

hostParams, engineParams

Examples

Define the model
model <- pkmodel(numCompartments = 2,

data = pkData,
ID = "Subject",
Time = "Act_Time",
A1 = "Amount",
CObs = "Conc")

Add Gender covariate of type categorical
model <- addCovariate(model,

covariate = "Gender",
type = "Categorical",
effect = c("V2", "Cl2"),
levels = c(0, 1),
labels = c("Female", "Male"))

Add Bodyweight covariate of type continuous
model <- addCovariate(model,

covariate = "BodyWeight",
type = "Continuous",
direction = "Backward",
center = "Mean",
effect = c("V", "Cl"))

Define the host
defaultHost <- hostParams(parallelMethod = "None",

hostName = "local",
numCores = 1)

Define the engine parameters
params <- engineParams(model)

Define covariate model
cp <- covariateModel(model)

Define the stepwise parameters
sp <- StepwiseParams(0.01, 0.001, "-2LL")

Perform stepwise search
OverallDF <- stepwiseSearch(model = model,

hostPlatform = defaultHost,
params = params,

76 structuralParameter

covariateModel = cp,
stepwiseParams = sp,
runInBackground = FALSE)

structuralParameter Set structural parameter in model object

Description

Use to specify the relationship of the structural parameter with corresponding fixed effect, random
effect, and covariate.

Usage

structuralParameter(
.Object,
paramName,
fixedEffName = NULL,
randomEffName = NULL,
style = "LogNormal",
hasRandomEffect = NULL

)

Arguments

.Object Model object

paramName Name of the structural parameter

fixedEffName Name of the corresponding fixed effect

randomEffName Name of the corresponding random effect; only applicable to population models.

style Use to specify the relationship of the structural parameter with its corresponding
fixed effect, random effect, and covariate, if exists.

• "LogNormal" (Default): The structural parameter is defined as Product *
exp(Eta)

• "LogNormal1": The structural parameter is defined as Sum * exp(Eta)

• "LogNormal2": The structural parameter is defined as exp(Sum + Eta)

• "LogitNormal": The structural parameter is defined as ilogit(Sum + Eta)

• "Normal": The structural parameter is defined as Sum + Eta)

Product denotes the product of the corresponding fixed effect and covariate
effect terms (if exists), Eta represents the corresponding random effect, and Sum
denotes the sum of its corresponding fixed effect and covariate effect terms (if
exists).

structuralParameterNames 77

hasRandomEffect

Set to FALSE to remove the corresponding random effect from the model. Only
applicable to population models. If NULL the system will automatically set
hasRandomEffect = TRUE for population models, and hasRandomEffect = FALSE
for individual models.

Value

Modified NlmePmlModel object

Examples

model <- pkindirectmodel(
indirectType = "LimitedInhibition",
isBuildup = FALSE,
data = pkpdData,
ID = "ID",
Time = "Time",
A1 = "Dose",
CObs = "CObs",
EObs = "EObs"

)

Change style of structural parameter "Imax" to "LogitNormal"
and rename fixed effect to "tvlogitImax"
model <- structuralParameter(model,

paramName = "Imax",
style = "LogitNormal", fixedEffName = "tvlogitImax"

)

Remove random effect for structural parameter "IC50"
model <- structuralParameter(model,

paramName = "IC50",
hasRandomEffect = FALSE

)

structuralParameterNames

Get structural parameter names

Description

Returns character vector of structural parameter names for model object.

Usage

structuralParameterNames(model, omitEmpties = TRUE)

78 tableParams

Arguments

model Object of class NlmePmlModel

omitEmpties Set to TRUE to omit empty names

Value

Character vector of structural parameter names defined in model

Examples

model <- pkemaxmodel(columnMap = FALSE)
stparms <- structuralParameterNames(model)

tableParams Wrapper around NlmeTableDef/NlmeSimTableDef-classes initializers.

Description

Wrapper around NlmeTableDef/NlmeSimTableDef-classes initializers.

Usage

tableParams(
name = "",
timesList = numeric(0),
covrSet = "",
whenDose = "",
whenObs = "",
variablesList = "",
keepSource = FALSE,
timeAfterDose = FALSE,
IRES = FALSE,
Weight = FALSE,
IWRES = FALSE,
mode = "all",
forSimulation = FALSE

)

Arguments

name Name of the generated simulation file.

timesList Numeric; Time values for simulation. Applicable for time-based models only.
Ignored when "keepSource=TRUE"

covrSet Character; Vector of covariate names. Simulation point is added when the co-
variate value is set. See covariateNames

tableParams 79

whenDose Character; Vector of dosing compartment names. Simulation point is added
when the dose value is set.

whenObs Character; String of observed variables names. Simulation point is added when
the observation value is set.

variablesList Character; List of variables from the model for simulation.

keepSource Logical; Set to TRUE to keep the number of rows appearing in the table the same
as the number of rows in the input dataset.

timeAfterDose Set to TRUE to output time after dose.

IRES Logical; Set to TRUE to output individual residuals. Valid only if whenObs is
specified.

Weight Logical; Set to TRUE to output the weight of current observation. Valid only if
whenObs is specified.

IWRES Logical; Set to TRUE to output individual weighted residuals. Valid only if
whenObs is specified.

mode Character; The mode of output. Options are "all" (default), "unique", "first".
Only applicable to non time-based models for the case where only covrSet is
defined or the case where only covrSet and variablesList are defined.
Option "all" (default): it outputs all the rows invoked by specified covariates.
Option "unique": if the values in a row are the same as the ones in the previous
row for the current subject, then the row is omitted; otherwise, it is printed out.
Option "first": it outputs only the first row for each subject.

forSimulation logical. Defining whether the table is for simulation purposes or for postpro-
cessing after fit. Default is FALSE.

Value

NlmeTableDef object if forSimulation is FALSE, NlmeSimTableDef object otherwise.

Examples

Table1 <- tableParams(
name = "Table1.csv",
timesList = seq(0, 24, 2),
whenObs = c("CObs"),
variablesList = "C",
IRES = TRUE,
IWRES = TRUE,
Weight = TRUE)

SimTable1 <- tableParams(
name = "SimTable1.csv",
variablesList = "CL, V",
keepSource = TRUE,
forSimulation = TRUE)

80 vpcmodel

textualmodel Create a textual model object

Description

Use to create an empty model object and optionally supply location of .mdl file to initialize model
with PML statements.

Usage

textualmodel(modelName = "", workingDir = "", data, mdl = NULL)

Arguments

modelName Model name to create subdirectory for model output in current working direc-
tory.

workingDir Working directory to run the model. Current working directory will be used if
workingDir not specified.

data Input dataset
mdl File path specifying location of test.mdl file

Value

NlmePmlModel object

Examples

model <- textualmodel(data = pkData)

vpcmodel Perform visual predictive check for NLME models

Description

Perform visual predictive check for NLME models

Usage

vpcmodel(
model,
vpcParams,
params,
hostPlatform = NULL,
runInBackground = FALSE,
...

)

vpcmodel 81

Arguments

model PK/PD model class object.

vpcParams VPC argument setup. See NlmeVpcParams. If missing, default values generated
by NlmeVpcParams() are used.

params Engine argument setup. See engineParams. The following arguments are the
subject of interest: sort, ODE, rtolODE, atolODE, maxStepsODE. If missing,
default values generated by engineParams(model) are used.

hostPlatform Host definition for model execution. See hostParams. If missing, simple local
host is used.

runInBackground

Set to TRUE to run in background and return prompt.

... Additional class initializer arguments for NlmeVpcParams or hostParams, or ar-
guments available inside engineParams functions. If engineParams arguments
are supplied through both params argument and additional argument (i.e., el-
lipsis), then the arguments in params will be ignored and only the additional
arguments will be used with warning. If hostParams arguments are supplied
through both hostPlatform argument and additional argument, then its values
will be overridden by additional arguments. In addition, if NlmeVpcParams argu-
ments are supplied through both vpcParams argument and additional argument,
then its slots will be overridden by additional arguments.

Value

if runInBackground is TRUE, it returns job properties. Otherwise,

• If the function is called in an interactive mode, the resulting simulated tables and summary
statistics tables will be loaded and presented as a list;

• If the function is called in a non-interactive mode, it returns the full paths of the tables gener-
ated

Examples

job <- fitmodel(model)

View estimation results
print(job)

finalModelVPC <- copyModel(model, acceptAllEffects = TRUE, modelName = "model_VPC")

View the model
print(finalModelVPC)

Set up VPC arguments to have PRED outputted to simulation output dataset "predout.csv"
vpcSetup <- NlmeVpcParams(outputPRED = TRUE)

Run VPC using the default host, default values for the relevant NLME engine arguments
finalVPCJob <- vpcmodel(model = finalModelVPC, vpcParams = vpcSetup)
the same as:

82 vpcmodel

finalVPCJob <- vpcmodel(model = finalModelVPC, outputPRED = TRUE)

Observed dataset predcheck0.csv
dt_ObsData <- finalVPCJob$predcheck0

Simulation output dataset predout.csv
dt_SimData <- finalVPCJob$predout

Add PRED from REPLICATE = 0 of simulation output dataset to observed input dataset
dt_ObsData$PRED <- dt_SimData[REPLICATE == 0]$PRED

tidyvpc package VPC example:
library(tidyvpc)
library(magrittr)
Create a regular VPC plot with binning method set to be "jenks"
binned_VPC <- observed(dt_ObsData, x = IVAR, yobs = DV) %>%

simulated(dt_SimData, ysim = DV) %>%
binning(bin = "jenks") %>%
vpcstats()

plot_binned_VPC <- plot(binned_VPC)

Create a pcVPC plot with binning method set to be "jenks"
binned_pcVPC <- observed(dt_ObsData, x = IVAR, yobs = DV) %>%

simulated(dt_SimData, ysim = DV) %>%
binning(bin = "jenks") %>%
predcorrect(pred = PRED) %>%
vpcstats()

plot_binned_pcVPC <- plot(binned_pcVPC)

Index

∗ NLME
hostParams, 33

∗ NlmeParallelHost
hostParams, 33

∗ datasets
OneCpt_IVInfusionData, 39
pkcovbqlData, 41
pkData, 42
pkpdData, 60

addADDL, 4
addCovariate, 4
addDoseCycle, 4, 7
addExtraDef, 8
addInfusion, 9
addLabel, 9
addMDV, 10
addReset, 11
addReset,NlmePmlModel-method

(addReset), 11
addSecondary, 11
addSecondary,NlmePmlModel-method

(addSecondary), 11
addSteadyState, 12

bootstrap, 13
BootstrapParams, 13, 14

cancelJob, 15
cancelJob,SimpleNlmeJob-method

(cancelJob), 15
colMapping, 15, 19, 21, 22, 36, 37, 44, 47, 49,

52, 53, 56, 58, 59
copyModel, 16
covariateNames, 17, 78
createModelInfo, 18

dataMapping, 16, 19
doseNames, 7, 8, 19

editModel, 20

emaxmodel, 21
emaxmodel_MappingParameters, 21
engineParams, 13, 14, 22, 28, 30, 67–69, 71,

73–75, 81
extraDoseLines, 26
extraDoseNames, 27

fitmodel, 28
fixedEffect, 31, 35

getRandomEffectNames, 32
getThetas, 33

hostParams, 13, 14, 28, 30, 33, 67–69, 71,
73–75, 81

initFixedEffects, 34
initFixedEffects,NlmePmlModel-method

(initFixedEffects), 34
initFixedEffects<- (initFixedEffects),

34
initFixedEffects<-,NlmePmlModel-method

(initFixedEffects), 34

linearmodel, 36
linearmodel_MappingParameters, 36
listCovariateEffectNames, 37
listCovariateEffectNames,NlmePmlModel-method

(listCovariateEffectNames), 37

modelVariableNames, 16, 38

NlmeScenario, 71, 73
NlmeSimulationParams, 69
NlmeVpcParams, 81

obtain_NLMELicense, 38
OneCpt_IVInfusionData, 39

parsePMLColMap, 40
pkcovbqlData, 41

83

84 INDEX

pkData, 42
pkemaxmodel, 42
pkindirectmodel, 47
pkindirectmodel_MappingParameters, 44,

49, 54
pklinearmodel, 52
pkmodel, 57
pkmodel_MappingParameters, 58
pkpdData, 60
print.NlmePmlModel, 61

randomEffect, 61
remove_NLMELicense, 63
removeCovariate, 62
residualEffectNames, 64, 65
residualError, 65

secondaryParameterNames, 66
shotgunSearch, 67
simmodel, 69
SortColumns, 71, 73
sortfit, 70
ssh::ssh_connect(), 34
StepwiseParams, 74
stepwiseSearch, 74
structuralParameter, 76
structuralParameterNames, 77

tableParams, 28, 30, 71, 73, 78
textualmodel, 80

vpcmodel, 80

	addADDL
	addCovariate
	addDoseCycle
	addExtraDef
	addInfusion
	addLabel
	addMDV
	addReset
	addSecondary
	addSteadyState
	bootstrap
	cancelJob
	colMapping
	copyModel
	covariateNames
	createModelInfo
	dataMapping
	doseNames
	editModel
	emaxmodel
	engineParams
	extraDoseLines
	extraDoseNames
	fitmodel
	fixedEffect
	getRandomEffectNames
	getThetas
	hostParams
	initFixedEffects
	linearmodel
	listCovariateEffectNames
	modelVariableNames
	obtain_NLMELicense
	OneCpt_IVInfusionData
	parsePMLColMap
	pkcovbqlData
	pkData
	pkemaxmodel
	pkindirectmodel
	pklinearmodel
	pkmodel
	pkpdData
	print.NlmePmlModel
	randomEffect
	removeCovariate
	remove_NLMELicense
	residualEffectNames
	residualError
	secondaryParameterNames
	shotgunSearch
	simmodel
	sortfit
	stepwiseSearch
	structuralParameter
	structuralParameterNames
	tableParams
	textualmodel
	vpcmodel
	Index

