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ADMM Penalized Optimization Framework for Community Detection in Net-
works with Covariates.

Description

Semidefinite programming for optimizing the inner product between combined network and the
solution matrix.

Usage

ADMM(
Adj,
Covariate,
lambda,
K,
alpha,
rho,
TT,
tol,
quiet = NULL,
report_interval = NULL,
r = NULL

)

Arguments

Adj A 0/1 adjacency matrix.

Covariate A covariate matrix. The rows correspond to nodes and the columns correspond
to covariates.

lambda A tuning parameter to weigh the covariate matrix.

K A positive integer, indicating the number of underlying communities in graph
Adj.

alpha A number. The elementwise upper bound in the SDP.
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rho The learning rate of ADMM.

TT The maximum of iteration.

tol The tolerance for stopping criterion.

quiet An optional inoput. Whether to print result at each step.
report_interval

An optional inoput. The frequency to print intermediate result.

r An optional inoput. The expected rank of the solution, leave NULL if no con-
straint is required.

Details

ADMM is proposed in Covariate Regularized Community Detection in Sparse Graphs of Yan &
Sarkar (2021). ADMM relies on semidefinite programming (SDP) relaxations for detecting the
community structure in sparse networks with covariates.

Value

estall A lavel vector.

References

Yan, B., & Sarkar, P. (2021). Covariate Regularized Community Detection in Sparse Graphs. Jour-
nal of the American Statistical Association, 116(534), 734-745.
doi:10.1080/01621459.2019.1706541

Examples

# Simulate the Network
n = 10; K = 2;
theta = 0.4 + (0.45-0.05)*(seq(1:n)/n)^2; Theta = diag(theta);
P = matrix(c(0.8, 0.2, 0.2, 0.8), byrow = TRUE, nrow = K)
set.seed(2022)
l = sample(1:K, n, replace=TRUE); # node labels
Pi = matrix(0, n, K) # label matrix
for (k in 1:K){

Pi[l == k, k] = 1
}
Omega = Theta %*% Pi %*% P %*% t(Pi) %*% Theta;
Adj = matrix(runif(n*n, 0, 1), nrow = n);
Adj = Omega - Adj;
Adj = 1*(Adj >= 0)
diag(Adj) = 0
Adj[lower.tri(Adj)] = t(Adj)[lower.tri(Adj)]
caseno = 4; Nrange = 10; Nmin = 10; prob1 = 0.9; p = n*4;
Q = matrix(runif(p*K, 0, 1), nrow = p, ncol = K)
Q = sweep(Q,2,colSums(Q),`/`)
W = matrix(0, nrow = n, ncol = K);
for(jj in 1:n) {

if(runif(1) <= prob1) {W[jj, 1:K] = Pi[jj, ];}

https://doi.org/10.1080/01621459.2019.1706541
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else W[jj, sample(K, 1)] = 1;
}
W = t(W)
D0 = Q %*% W
X = matrix(0, n, p)
N = switch(caseno, rep(100, n), rep(100, n), round(runif(n)*Nrange+ Nmin),

round(runif(n)* Nrange+Nmin))
for (i in 1: ncol(D0)){

X[i, ] = rmultinom(1, N[i], D0[, i])
}
ADMM(Adj, X, lambda = 0.2, K = K, alpha = 0.5, rho = 2, TT = 100, tol = 5)

CASC Covariate Assisted Spectral Clustering.

Description

CASC clusters graph nodes by applying spectral clustering with the assistance from node covariates.

Usage

CASC(Adj, Covariate, K, alphan = 5, itermax = 100, startn = 10)

Arguments

Adj A 0/1 adjacency matrix.

Covariate A covariate matrix. The rows correspond to nodes and the columns correspond
to covariates.

K A positive integer, indicating the number of underlying communities in graph
Adj.

alphan A tuning parameter to balance between the contributions of the graph and the
covariates.

itermax k-means parameter, indicating the maximum number of iterations allowed. The
default value is 100.

startn k-means parameter. If centers is a number, how many random sets should be
chosen? The default value is 10.

Details

CASC is a community detection algorithm for networks with node covariates, proposed in Covariate-
assisted spectral clustering of Binkiewicz, et al. (2017). CASC applies k-means on the first K
leading eigenvectors of the balanced matrix between the Laplacian matrix and the covariate matrix.

Value

estall A lavel vector.
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References

Binkiewicz, N., Vogelstein, J. T., & Rohe, K. (2017). Covariate-assisted spectral clustering.
Biometrika, 104(2), 361-377.
doi:10.1093/biomet/asx008

Examples

# Simulate the Network
n = 10; K = 2;
theta = 0.4 + (0.45-0.05)*(seq(1:n)/n)^2; Theta = diag(theta);
P = matrix(c(0.8, 0.2, 0.2, 0.8), byrow = TRUE, nrow = K)
set.seed(2022)
l = sample(1:K, n, replace=TRUE); # node labels
Pi = matrix(0, n, K) # label matrix
for (k in 1:K){

Pi[l == k, k] = 1
}
Omega = Theta %*% Pi %*% P %*% t(Pi) %*% Theta;
Adj = matrix(runif(n*n, 0, 1), nrow = n);
Adj = Omega - Adj;
Adj = 1*(Adj >= 0)
diag(Adj) = 0
Adj[lower.tri(Adj)] = t(Adj)[lower.tri(Adj)]
caseno = 4; Nrange = 10; Nmin = 10; prob1 = 0.9; p = n*4;
Q = matrix(runif(p*K, 0, 1), nrow = p, ncol = K)
Q = sweep(Q,2,colSums(Q),`/`)
W = matrix(0, nrow = n, ncol = K);
for(jj in 1:n) {

if(runif(1) <= prob1) {W[jj, 1:K] = Pi[jj, ];}
else W[jj, sample(K, 1)] = 1;

}
W = t(W)
D0 = Q %*% W
X = matrix(0, n, p)
N = switch(caseno, rep(100, n), rep(100, n), round(runif(n)*Nrange+ Nmin),

round(runif(n)* Nrange+Nmin))
for (i in 1: ncol(D0)){

X[i, ] = rmultinom(1, N[i], D0[, i])
}
CASC(Adj, X, 2)

CASCORE Covariate Assisted Spectral Clustering on Ratios of Eigenvectors.

Description

Using ratios-of-eigenvectors to detect underlying communities in networks with node covariates.

https://doi.org/10.1093/biomet/asx008
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Usage

CASCORE(
Adj,
Covariate,
K,
alpha = NULL,
alphan = 5,
itermax = 100,
startn = 10

)

Arguments

Adj A 0/1 adjacency matrix.

Covariate A covariate matrix. The rows correspond to nodes and the columns correspond
to covariates.

K A positive integer, indicating the number of underlying communities in graph
Adj.

alpha A numeric vector, each element of which is a tuning parameter to weigh the
covariate matrix.

alphan The number of candidates α. The default number is 5.

itermax k-means parameter, indicating the maximum number of iterations allowed. The
default value is 100.

startn k-means parameter. If centers is a number, how many random sets should be
chosen? The default value is 10.

Details

CASCORE is fully established in Network-Adjusted Covariates for Community Detection of Hu
& Wang (2023). CASCORE detects the latent community structure under the covariate assisted
degree corrected stochastic block model (CADCSBM), and it allows the disagreement between the
community structures indicated in the graph and the covariates, respectively. K-means is applied on
the entry-wise ratios between first leading eigenvector and each of the other K leading eigenvectors
of the combined matrix of the adjacency matrix and the covariate matrix, to reveal the underlying
memberships.

Value

estall A lavel vector

.

References

Hu, Y., & Wang, W. (2023) Network-AdjustedCovariatesforCommunity Detection,
https://arxiv.org/abs/2306.15616

https://arxiv.org/abs/2306.15616
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Examples

# Simulate the Network
n = 10; K = 2;
theta = 0.4 + (0.45-0.05)*(seq(1:n)/n)^2; Theta = diag(theta);
P = matrix(c(0.8, 0.2, 0.2, 0.8), byrow = TRUE, nrow = K)
set.seed(2022)
l = sample(1:K, n, replace=TRUE); # node labels
Pi = matrix(0, n, K) # label matrix
for (k in 1:K){

Pi[l == k, k] = 1
}
Omega = Theta %*% Pi %*% P %*% t(Pi) %*% Theta;
Adj = matrix(runif(n*n, 0, 1), nrow = n);
Adj = Omega - Adj;
Adj = 1*(Adj >= 0)
diag(Adj) = 0
Adj[lower.tri(Adj)] = t(Adj)[lower.tri(Adj)]
caseno = 4; Nrange = 10; Nmin = 10; prob1 = 0.9; p = n*4;
Q = matrix(runif(p*K, 0, 1), nrow = p, ncol = K)
Q = sweep(Q,2,colSums(Q),`/`)
W = matrix(0, nrow = n, ncol = K);
for(jj in 1:n) {

if(runif(1) <= prob1) {W[jj, 1:K] = Pi[jj, ];}
else W[jj, sample(K, 1)] = 1;

}
W = t(W)
D0 = Q %*% W
X = matrix(0, n, p)
N = switch(caseno, rep(100, n), rep(100, n), round(runif(n)*Nrange+ Nmin),

round(runif(n)* Nrange+Nmin))
for (i in 1: ncol(D0)){

X[i, ] = rmultinom(1, N[i], D0[, i])
}
CASCORE(Adj, X, 2)

Cov_based Covariates-based Clustering.

Description

Covariates-based Clustering is a spectral clustering method that focuses solely on the covariates
structure of a network. It employs k-means on the first K leading eigenvectors of the weighted
cogariates matrix of a graph, with each eigenvector normalized to have unit magnitude.

Usage

Cov_based(Adj, K, tau = NULL, itermax = NULL, startn = NULL)
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Arguments

Adj A 0/1 adjacency matrix.

K A positive integer, indicating the number of underlying communities in graph
Adj.

tau An optional tuning parameter, the default value is the mean of adajacency ma-
trix.

itermax k-means parameter, indicating the maximum number of iterations allowed. The
default value is 100.

startn k-means parameter. If centers is a number, how many random sets should be
chosen? The default value is 10.

Value

A label vector.

Examples

# Simulate the Network
n = 10; K = 2;
theta = 0.4 + (0.45-0.05)*(seq(1:n)/n)^2; Theta = diag(theta);
P = matrix(c(0.8, 0.2, 0.2, 0.8), byrow = TRUE, nrow = K)
set.seed(2022)
l = sample(1:K, n, replace=TRUE); # node labels
Pi = matrix(0, n, K) # label matrix
for (k in 1:K){

Pi[l == k, k] = 1
}
Omega = Theta %*% Pi %*% P %*% t(Pi) %*% Theta;
Adj = matrix(runif(n*n, 0, 1), nrow = n);
Adj = Omega - Adj;
Adj = 1*(Adj >= 0)
diag(Adj) = 0
Adj[lower.tri(Adj)] = t(Adj)[lower.tri(Adj)]
Cov_based(Adj, 2)

Net_based Network-based Clustering.

Description

Network-based Clustering is a spectral clustering method that focuses solely on the topological
structure of a network. It employs k-means on the first K leading eigenvectors of the weighted
adjacency matrix of a graph, with each eigenvector normalized to have unit magnitude.

Usage

Net_based(Adj, K, tau = NULL, itermax = NULL, startn = NULL)
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Arguments

Adj A 0/1 adjacency matrix.

K A positive integer, indicating the number of underlying communities in graph
Adj.

tau An optional tuning parameter, the default value is the mean of adajacency ma-
trix.

itermax k-means parameter, indicating the maximum number of iterations allowed. The
default value is 100.

startn k-means parameter. If centers is a number, how many random sets should be
chosen? The default value is 10.

Value

A label vector.

Examples

# Simulate the Network
n = 10; K = 2;
theta = 0.4 + (0.45-0.05)*(seq(1:n)/n)^2; Theta = diag(theta);
P = matrix(c(0.8, 0.2, 0.2, 0.8), byrow = TRUE, nrow = K)
set.seed(2022)
l = sample(1:K, n, replace=TRUE); # node labels
Pi = matrix(0, n, K) # label matrix
for (k in 1:K){

Pi[l == k, k] = 1
}
Omega = Theta %*% Pi %*% P %*% t(Pi) %*% Theta;
Adj = matrix(runif(n*n, 0, 1), nrow = n);
Adj = Omega - Adj;
Adj = 1*(Adj >= 0)
diag(Adj) = 0
Adj[lower.tri(Adj)] = t(Adj)[lower.tri(Adj)]
Net_based(Adj, 2)

nPCA Normalized Principle Component Analysis.

Description

Normalized Principle Component Analysis (nPCA), also known as spectral clustering on the graph
Laplacian, is a classical spectral clustering method that applies k-means on the first K leading
(unit-norm) eigenvectors of the degree-corrected normalized graph laplacian.

Usage

nPCA(Adj, K, tau = NULL, itermax = 100, startn = 10)
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Arguments

Adj A 0/1 adjacency matrix.
K A positive integer, indicating the number of underlying communities in graph

Adj.
tau An optional regularization parameter for suitable degree normalization. The

default value is the average degree of graph Adj.
itermax k-means parameter, indicating the maximum number of iterations allowed. The

default value is 100.
startn k-means parameter. If centers is a number, how many random sets should be

chosen? The default value is 10.

Value

estall A lavel vector.

References

Chung, F. R., & Graham, F. C. (1997). Spectral graph theory (Vol. 92). American Mathematical
Soc..

Examples

# Simulate the Network
n = 10; K = 2;
theta = 0.4 + (0.45-0.05)*(seq(1:n)/n)^2; Theta = diag(theta);
P = matrix(c(0.8, 0.2, 0.2, 0.8), byrow = TRUE, nrow = K)
set.seed(2022)
l = sample(1:K, n, replace=TRUE); # node labels
Pi = matrix(0, n, K) # label matrix
for (k in 1:K){

Pi[l == k, k] = 1
}
Omega = Theta %*% Pi %*% P %*% t(Pi) %*% Theta;
Adj = matrix(runif(n*n, 0, 1), nrow = n);
Adj = Omega - Adj;
Adj = 1*(Adj >= 0)
diag(Adj) = 0
Adj[lower.tri(Adj)] = t(Adj)[lower.tri(Adj)]
nPCA(Adj, 2)

oPCA Ordinary Principle Component Analysis.

Description

Ordinary Principle Component Analysis (oPCA), also known as spectral clustering on the adjacency
matrix is a classical spectral clustering method that applies k-means on the first K leading (unit-
norm) eigenvectors of the adjacency matrix of a graph.
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Usage

oPCA(Adj, K, itermax = 100, startn = 10)

Arguments

Adj A 0/1 adjacency matrix.

K A positive integer, indicating the number of underlying communities in graph
Adj.

itermax k-means parameter, indicating the maximum number of iterations allowed. The
default value is 100.

startn k-means parameter. If centers is a number, how many random sets should be
chosen? The default value is 10.

Value

estall A lavel vector.

References

Chung, F. R., & Graham, F. C. (1997). Spectral graph theory (Vol. 92). American Mathematical
Soc..

Examples

# Simulate the Network
n = 10; K = 2;
theta = 0.4 + (0.45-0.05)*(seq(1:n)/n)^2; Theta = diag(theta);
P = matrix(c(0.8, 0.2, 0.2, 0.8), byrow = TRUE, nrow = K)
set.seed(2022)
l = sample(1:K, n, replace=TRUE); # node labels
Pi = matrix(0, n, K) # label matrix
for (k in 1:K){

Pi[l == k, k] = 1
}
Omega = Theta %*% Pi %*% P %*% t(Pi) %*% Theta;
Adj = matrix(runif(n*n, 0, 1), nrow = n);
Adj = Omega - Adj;
Adj = 1*(Adj >= 0)
diag(Adj) = 0
Adj[lower.tri(Adj)] = t(Adj)[lower.tri(Adj)]
oPCA(Adj, 2)
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SCORE Spectral Clustering On Ratios-of-Eigenvectors.

Description

Using ratios-of-eigenvectors to detect underlying communities.

Usage

SCORE(G, K, itermax = NULL, startn = NULL)

Arguments

G A 0/1 adjacency matrix of a connected graph.

K A positive integer, indicating the number of underlying communities in graph G.

itermax k-means parameter, indicating the maximum number of iterations allowed. The
default value is 100.

startn k-means parameter. If centers is a number, how many random sets should be
chosen? The default value is 10.

Details

SCORE is fully established in Fast community detection by SCORE of Jin (2015). SCORE uses
the entry-wise ratios between the first leading eigenvector and each of the other K − 1 leading
eigenvectors for clustering. It is noteworthy that SCORE only works on connected graphs, in other
words, it does not allow for isolated vertices.

Value

estall A lavel vector.

References

Jin, J. (2015). Fast community detection by score. The Annals of Statistics 43 (1), 57–89.
doi:10.1214/14AOS1265

Examples

# Simulate the Network
n = 10; K = 2;
theta = 0.4 + (0.45-0.05)*(seq(1:n)/n)^2; Theta = diag(theta);
P = matrix(c(0.8, 0.2, 0.2, 0.8), byrow = TRUE, nrow = K)
set.seed(2022)
l = sample(1:K, n, replace=TRUE); # node labels
Pi = matrix(0, n, K) # label matrix
for (k in 1:K){

Pi[l == k, k] = 1

https://doi.org/10.1214/14-AOS1265
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}
Omega = Theta %*% Pi %*% P %*% t(Pi) %*% Theta;
Adj = matrix(runif(n*n, 0, 1), nrow = n);
Adj = Omega - Adj;
Adj = 1*(Adj >= 0)
diag(Adj) = 0
Adj[lower.tri(Adj)] = t(Adj)[lower.tri(Adj)]
library(igraph)
is.igraph(Adj) # [1] FALSE
ix = components(graph.adjacency(Adj))
componentLabel = ix$membership
giantLabel = which(componentLabel == which.max(ix$csize))
Giant = Adj[giantLabel, giantLabel]
SCORE(Giant, 2)
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