
Package ‘BiCausality’
January 20, 2025

Title Binary Causality Inference Framework

Version 0.1.4

Maintainer Chainarong Amornbunchornvej <grandca@gmail.com>

Description A framework to infer causality on binary data using techniques in frequent pattern min-
ing and estimation statistics. Given a set of individual vectors S={x} where x(i) is a realiza-
tion value of binary variable i, the framework infers empirical causal relations of binary vari-
ables i,j from S in a form of causal graph G=(V,E) where V is a set of nodes representing bi-
nary variables and there is an edge from i to j in E if the variable i causes j. The framework deter-
mines dependency among variables as well as analyzing confounding factors before decid-
ing whether i causes j. The publication of this package is at Chainarong Amornbunchorn-
vej, Navaporn Surasvadi, Anon Plangprasopchok, and Suttipong Tha-
jchayapong (2023) <doi:10.1016/j.heliyon.2023.e15947>.

License MIT + file LICENSE

URL https://github.com/DarkEyes/BiCausality

BugReports https://github.com/DarkEyes/BiCausality/issues

Depends R (>= 3.5.0)

Encoding UTF-8

LazyData TRUE

Suggests knitr, rmarkdown, markdown, igraph

VignetteBuilder knitr

RoxygenNote 7.2.3

NeedsCompilation no

Author Chainarong Amornbunchornvej [aut, cre]
(<https://orcid.org/0000-0003-3131-0370>)

Repository CRAN

Date/Publication 2023-11-28 07:50:02 UTC

1

https://doi.org/10.1016/j.heliyon.2023.e15947
https://github.com/DarkEyes/BiCausality
https://github.com/DarkEyes/BiCausality/issues
https://orcid.org/0000-0003-3131-0370

2 adjustmentProb

Contents
adjustmentProb . 2
assocSignTest . 3
bin2dec . 4
bIndpTest . 5
bSCMCausalGraphFunc . 6
bSCMdeConfoundingGraphFunc . 8
bSCMDepndentGraphFastFunc . 9
bSCMDepndentGraphFunc . 9
CausalGraphInferMainFunc . 11
comparePredAdjMatrix2TrueAdjMat . 13
CondProb . 14
confNetFunc . 15
D . 16
getReachableNodes . 16
getTransitiveClosureMat . 17
indpFunc . 18
mat . 18
num2Bits . 19
oddDiffFunc . 20
oddRatioFunc . 21
resC . 21
supp . 22
VecAlignment . 23

Index 24

adjustmentProb adjustmentProb function

Description

This function evaluates the P(Y=yflag|do(X=xflag)) given only marginal distributions using parent
adjustment method.

Usage

adjustmentProb(EValHat, mat, yflag = 1, xflag = 1)

Arguments

EValHat is an adjacency matrix of weighted directed causal graph where edge weights are
P(Y=yflag|X=xflag) or probabilities of effect being 1 given cause being either 1
for positive association or 0 for negative association.

mat is a matrix n by d where n is a number of transactions or samples and d is a
number of dimensions.

yflag is value set for Y in P(Y=yflag|X=xflag,z) for the adjustment method.
xflag is value set for X in P(Y=yflag|X=xflag,z) for the adjustment method.

assocSignTest 3

Value

This function returns an adjacency matrix of weighted directed causal graph where the edge weights
are P(Y=yflag|do(X=xflag)).

Examples

adjustmentProb(resC$CausalGRes$EValHat,mat)

assocSignTest indpFunc function

Description

This function provides association signs (positive/negative association) inference between i and j.
If there is a positive association, it implies i and j trend to have a similar value. For a negative
association, however, i and j trend to have an opposite value.

Usage

assocSignTest(mat, i, j, z = c(), alpha = 0.05, IndpThs = 0.05, nboot = 100)

Arguments

mat is a matrix n by d where n is a number of transactions or samples and d is a
number of dimensions.

i is an ith dimension in mat.

j is an jth dimension in mat.

z is a conditioning d-dimensional vector on mat. Given k non-negative-bit posi-
tions of z, all k bit positions of samples in the subset of mat must have similar
values with these bits.

alpha is a significance threshold for hypothesis tests (Mann Whitney) that deploys for
testing degrees of dependency, association direction, and causal direction. The
default is 0.5.

IndpThs is a threshold for the degree of dependency. In the independence test, to claim
that any variables are dependent, the dependency degree must greater than this
value significantly. The default is 0.05.

nboot is a number of bootstrap replicates for bootstrapping deployed to infer confi-
dence intervals and distributions for hypothesis tests. The default is 100.

4 bin2dec

Value

This function returns results of inference of association signs (positive/negative association) be-
tween i and j.

bmean A mean of sign dependency degrees between variables i and j.

confInv An alpha*100th percentile confidence interval of sign dependency degrees be-
tween variables i and j.

testRes A Mann-Whitney hypothesis test result for an independence test between vari-
ables i and j. The null hypothesis is that the distributions of dependency degrees
of i,j differ by a location shift of IndpThs and the alternative is that distributions
of dependency degrees of i,j is shifted greater than IndpThs.

Examples

assocSignTest(mat=mat,i=1,j=2)

bin2dec bin2dec function

Description

This function convertes a binary vector into its decimal value.

Usage

bin2dec(X)

Arguments

X is a binary vector where X[i] is the ith bit of vector.

Value

This function returns a decimal value of X.

Examples

bin2dec(X=c(1,1,1,0))

bIndpTest 5

bIndpTest bIndpTest function

Description

This function infers dependency for a pair of variables i,j with bootstrapping.

Usage

bIndpTest(
mat,
i,
j,
z = c(),
alpha = 0.05,
IndpThs = 0.05,
nboot = 100,
pflag = FALSE

)

Arguments

mat is a matrix n by d where n is a number of transactions or samples and d is a
number of dimensions.

i is an ith dimension in mat.

j is an jth dimension in mat.

z is a conditioning d-dimensional vector on mat. Given k non-negative-bit posi-
tions of z, all k bit positions of samples in the subset of mat must have similar
values with these bits.

alpha is a significance threshold for hypothesis tests (Mann Whitney) that deploys for
testing degrees of dependency, association direction, and causal direction. The
default is 0.5.

IndpThs is a threshold for the degree of dependency. In the independence test, to claim
that any variables are dependent, the dependency degree must greater than this
value significantly. The default is 0.05.

nboot is a number of bootstrap replicates for bootstrapping deployed to infer confi-
dence intervals and distributions for hypothesis tests. The default is 100.

pflag is a flag for printing progress message (TRUE). The default is FALSE (no print-
ing).

Value

This function returns results of dependency inference between i and j.

bmean A mean of dependency degrees between variables i and j.

6 bSCMCausalGraphFunc

confInv An alpha*100th percentile confidence interval of dependency degrees between
variables i and j.

testRes A Mann-Whitney hypothesis test result for an independence test between vari-
ables i and j. The null hypothesis is that the distributions of dependency degrees
of i,j differ by a location shift of IndpThs and the alternative is that distributions
of dependency degrees of i,j is shifted greater than IndpThs.

Examples

bIndpTest(mat=mat,i=1,j=2)

bSCMCausalGraphFunc bSCMCausalGraphFunc function

Description

This function infers a causal graph from a result of confounding factor filtering by bSCMdeConfoundingGraphFunc().

Usage

bSCMCausalGraphFunc(E1, Dboot, alpha = 0.05, SignThs = 0.05, CausalThs = 0.25)

Arguments

E1 is an adjacency matrix of undirected graph after filtering associations without
true causal directions from any confounding factor.

Dboot is a list of Ds (aligned list of transactions) that are generated from sampling with
replacement on input samples (mat) nboot times.

alpha is a significance threshold for hypothesis tests (Mann Whitney) that deploys for
testing degrees of dependency, association direction, and causal direction. The
default is 0.5.

SignThs is a threshold for the degree of dependency for association direction inference.
In the independence test of sign direction, to claim that any variables are de-
pendent, the dependency degree must greater than this value significantly. The
default is 0.05.

CausalThs is a threshold for the degree of causal direction In the causal-direction test, to
claim that any variables have causal relations, the degree of causal direction
must greater than this value significantly. The default is 0.1.

bSCMCausalGraphFunc 7

Value

This function returns causal inference results from E1 matrix that is an output of bSCMdeConfoundingGraphFunc.

Ehat An adjacency matrix of directed causal graph where CausalGRes$Ehat[i,j]=1
implies i causes j.

EValHat An adjacency matrix of weighted directed causal graph where edge weights are
estimated means of probabilities of effect being 1 given cause being either 1 for
positive association or 0 for negative association using CondProb() and boot-
strapping to estimate.

i An index

j An index
causalInfo$’i, j’$CDirConfValInv

An alpha*100th percentile confidence interval of estimated conditional proba-
bility of effect j being 1/0 given cause i’s value being either the same (positive
association) or opposite (negative association).

causalInfo$’i, j’$CDirConfInv
An alpha*100th percentile confidence interval of estimated causal direction de-
gree of i cause j.

causalInfo$’i, j’$CDirmean
A mean-estimated-causal-direction degree of i cause j.

causalInfo$’i, j’$testRes2
A Mann-Whitney hypothesis test result for existence of causal direction. The
null hypothesis is that the distributions of causal-direction degrees of i,j differ by
a location shift of CausalThs and the alternative is that distributions of causal-
direction degrees of i,j is shifted greater than CausalThs.

causalInfo$’i, j’$testRes1
A Mann-Whitney hypothesis test result for existence of association by odd dif-
ferences from oddDiffFunc(). The null hypothesis is that the distributions of
absolute odd difference of i,j differ by a location shift of IndpThs and the alter-
native is that distributions of absolute odd difference of i,j is shifted greater than
IndpThs.

causalInfo$’i, j’$sign
A direction of i,j association: 1 for positive, 0 for negative, and -1 for no associ-
ation.

causalInfo$’i, j’$SignConfInv
An alpha*100th percentile confidence interval of i,j odd difference from boot-
strapping.

causalInfo$’i, j’$Signmean
A mean of i,j odd difference from bootstrapping.

Examples

bSCMCausalGraphFunc(resC$ConfoundRes$E1,resC$depRes$Dboot)

8 bSCMdeConfoundingGraphFunc

bSCMdeConfoundingGraphFunc

bSCMdeConfoundingGraphFunc function

Description

This function removes any association/dependency of variables i,j that have any confounding factor
k s.t. given k, i and j are independent.

Usage

bSCMdeConfoundingGraphFunc(dat, IndpThs = 0.05, alpha = 0.05)

Arguments

dat is the result of inferring dependencies between all pairs of variables from bSCMDepndentGraphFunc().

IndpThs is a threshold for the degree of dependency. In the independence test, to claim
that any variables are dependent, the dependency degree must greater than this
value significantly. The default is 0.05.

alpha is a significance threshold for hypothesis tests (Mann Whitney) that deploys for
testing degrees of dependency, association direction, and causal direction. The
default is 0.5.

Value

This function returns an adjacency matrix of dependencies that have no confounding factors.

E1 An adjacency matrix of undirected graph after filtering associations without true
causal directions from any confounding factor.

E2 A matrix of associations that have confounding factors where E2[i,j]=0 if no
confounding factor and E2[i,j]=k if k is a confounding factor of i and j.

Examples

bSCMdeConfoundingGraphFunc(resC$depRes)

bSCMDepndentGraphFastFunc 9

bSCMDepndentGraphFastFunc

bSCMDepndentGraphFastFunc function

Description

This function infers dependencies for all pairs of variables without bootstrapping.

Usage

bSCMDepndentGraphFastFunc(mat, IndpThs = 0.05)

Arguments

mat is a matrix n by d where n is a number of transactions or samples and d is a
number of dimensions.

IndpThs is a threshold for the degree of dependency. In the independence test, to claim
that any variables are dependent, the dependency degree must greater than this
value significantly. The default is 0.05.

Value

This function returns results of dependency inference among variables.

E0 An adjacency matrix of undirected graph where there is an edge between any
pair of variables if they are dependent.

E0raw A matrix of the degree of dependency of variable pairs.

Examples

bSCMDepndentGraphFastFunc(mat)

bSCMDepndentGraphFunc bSCMDepndentGraphFunc function

Description

This function infers dependencies for all pairs of variables with bootstrapping.

10 bSCMDepndentGraphFunc

Usage

bSCMDepndentGraphFunc(
mat,
nboot = 100,
alpha = 0.05,
IndpThs = 0.05,
pflag = FALSE

)

Arguments

mat is a matrix n by d where n is a number of transactions or samples and d is a
number of dimensions.

nboot is a number of bootstrap replicates for bootstrapping deployed to infer confi-
dence intervals and distributions for hypothesis tests. The default is 100.

alpha is a significance threshold for hypothesis tests (Mann Whitney) that deploys for
testing degrees of dependency, association direction, and causal direction. The
default is 0.5.

IndpThs is a threshold for the degree of dependency. In the independence test, to claim
that any variables are dependent, the dependency degree must greater than this
value significantly. The default is 0.05.

pflag is a flag for printing progress message (TRUE). The default is FALSE (no print-
ing).

Value

This function returns results of dependency inference among variables.

E0 An adjacency matrix of undirected graph where there is an edge between any
pair of variables if they are dependent.

E0pval A matrix of p-values from independence test of pairs of variables.

E0mean A matrix of means of dependency degrees between variables.

E0lowbound A matrix of lower bounds of dependency-degree confidence intervals between
variables.

depInfo$’i, j’$bmean
A mean of dependency degrees between variables i and j.

depInfo$’i, j’$confInv
An alpha*100th percentile confidence interval of dependency degrees between
variables i and j.

depInfo$’i, j’$testRes
A Mann-Whitney hypothesis test result for an independence test between vari-
ables i and j. The null hypothesis is that the distributions of dependency degrees
of i,j differ by a location shift of IndpThs and the alternative is that distributions
of dependency degrees of i,j is shifted greater than IndpThs.

depInfo$’i, j’$indices
A pair of indices of i and j in a numeric vector.

CausalGraphInferMainFunc 11

Dboot A list of Ds (aligned list of transactions) that are generated from sampling with
replacement on input samples (mat) nboot times.

Examples

bSCMDepndentGraphFunc(mat, nboot=50)

CausalGraphInferMainFunc

CausalGraphInferMainFunc function

Description

A framework to infer causality on binary data using techniques in frequent pattern mining and
estimation statistics. Given a set of individual vectors S={x} where x(i) is a realization value of
binary variable i, the framework infers empirical causal relations of binary variables i,j from S in
a form of causal graph G=(V,E) where V is a set of nodes representing binary variables and there
is an edge from i to j in E if the variable i causes j. The framework determines dependency among
variables as well as analyzing confounding factors before deciding whether i causes j.

Note that all statistics (e.g. means) and confidence intervals as well as hypothesis testing are inferred
by bootstrapping.

Usage

CausalGraphInferMainFunc(
mat,
alpha = 0.05,
nboot = 100,
IndpThs = 0.05,
CausalThs = 0.1

)

Arguments

mat is a matrix n by d where n is a number of transactions or samples and d is a
number of dimensions.

alpha is a significance threshold for hypothesis tests (Mann Whitney) that deploys for
testing degrees of dependency, association direction, and causal direction. The
default is 0.5.

nboot is a number of bootstrap replicates for bootstrapping deployed to infer confi-
dence intervals and distributions for hypothesis tests. The default is 100.

IndpThs is a threshold for the degree of dependency. In the independence test, to claim
that any variables are dependent, the dependency degree must greater than this
value significantly. The default is 0.05.

CausalThs is a threshold for the degree of causal direction In the causal-direction test, to
claim that any variables have causal relations, the degree of causal direction
must greater than this value significantly. The default is 0.1.

12 CausalGraphInferMainFunc

Value

This function returns causal inference results. #TODO: provide list of results.

depRes The result of inferring dependencies between all pairs of variables.

ConfoundRes The result of filtering associations without true causal directions from any con-
founding factor.

CausalGRes The result of inferring causal directions between all pairs of dependent variables
that have no confounding factors.

depRes$E0 An adjacency matrix of undirected graph where there is an edge between any
pair of variables if they are dependent.

depRes$E0pval A matrix of p-values from independence test of pairs of variables.

depRes$E0mean A matrix of means of dependency degrees between variables.
depRes$E0lowbound

A matrix of lower bounds of dependency-degree confidence intervals between
variables.

depRes$depInfo$’i, j’$bmean
A mean of dependency degrees between variables i and j.

depRes$depInfo$’i, j’$confInv
An alpha*100th percentile confidence interval of dependency degrees between
variables i and j.

depRes$depInfo$’i, j’$testRes
A Mann-Whitney hypothesis test result for an independence test between vari-
ables i and j. The null hypothesis is that the distributions of dependency degrees
of i,j differ by a location shift of IndpThs and the alternative is that distributions
of dependency degrees of i,j is shifted greater than IndpThs.

depRes$depInfo$’i, j’$indices
A pair of indices of i and j in a numeric vector.

depRes$Dboot A list of Ds (aligned list of transactions) that are generated from sampling with
replacement on input samples (mat) nboot times.

ConfoundRes$E1 An adjacency matrix of undirected graph after filtering associations without true
causal directions from any confounding factor.

ConfoundRes$E2 A matrix of associations that have confounding factors where E2[i,j]=0 if no
confounding factor and E2[i,j]=k if k is a confounding factor of i and j.

CausalGRes$Ehat

An adjacency matrix of directed causal graph where CausalGRes$Ehat[i,j]=1
implies i causes j.

CausalGRes$EValHat

An adjacency matrix of weighted directed causal graph where edge weights are
estimated means of probabilities of effect being 1 given cause being either 1 for
positive association or 0 for negative association using CondProb() and boot-
strapping to estimate

CausalGRes$causalInfo$’i, j’$CDirConfValInv
An alpha*100th percentile confidence interval of estimated conditional proba-
bility of effect j being 1/0 given cause i’s value being either the same (positive
association) or opposite (negative association).

comparePredAdjMatrix2TrueAdjMat 13

CausalGRes$causalInfo$’i, j’$CDirConfInv
An alpha*100th percentile confidence interval of estimated causal direction de-
gree of i cause j.

CausalGRes$causalInfo$’i, j’$CDirmean
A mean-estimated-causal-direction degree of i cause j.

CausalGRes$causalInfo$’i, j’$testRes2
A Mann-Whitney hypothesis test result for existence of causal direction. The
null hypothesis is that the distributions of causal-direction degrees of i,j differ by
a location shift of CausalThs and the alternative is that distributions of causal-
direction degrees of i,j is shifted greater than CausalThs.

CausalGRes$causalInfo$’i, j’$testRes1
A Mann-Whitney hypothesis test result for existence of association by odd dif-
ferences from oddDiffFunc(). The null hypothesis is that the distributions of
absolute odd difference of i,j differ by a location shift of IndpThs and the alter-
native is that distributions of absolute odd difference of i,j is shifted greater than
IndpThs.

CausalGRes$causalInfo$’i, j’$sign
A direction of i,j association: 1 for positive, 0 for negative, and -1 for no associ-
ation.

CausalGRes$causalInfo$’i, j’$SignConfInv
An alpha*100th percentile confidence interval of i,j odd difference from boot-
strapping.

CausalGRes$causalInfo$’i, j’$Signmean
A mean of i,j odd difference from bootstrapping.

Examples

resC<-CausalGraphInferMainFunc(mat = mat, nboot =50)

comparePredAdjMatrix2TrueAdjMat

comparePredAdjMatrix2TrueAdjMat

Description

comparePredAdjMatrix2TrueAdjMat is a support function that can compare two adjacency matri-
ces: ground-truth and inferred matrices.

Usage

comparePredAdjMatrix2TrueAdjMat(trueAdjMat, adjMat)

Arguments

trueAdjMat a ground-truth matrix.

adjMat an inferred matrix.

14 CondProb

Value

This function returns a list of precision prec, recall rec, and F1 score F1 of inferred vs. groundtruth
matrices.

Examples

Generate simulation data
G<-matrix(FALSE,10,10) # groundtruth
G[1,c(4,7,8,10)]<-TRUE
G[2,c(5,7,9,10)]<-TRUE
G[3,c(6,8,9,10)]<-TRUE
comparePredAdjMatrix2TrueAdjMat(trueAdjMat=G,adjMat=G)

CondProb CondProb function

Description

This function computes a confidence value of y given c or conf(y|z) from an aligned list D. For
anyy[i],z[j], their values are -1 by default. The function computes the numbers of transactions
that satisfy the following conditions.

1. All transactions must have values at any k position equal to z[k] for any z[k] that is not -1.
Let count be the number of these transactions in D.

2. All transactions must have values at any k position equal to either z[k] or y[k] that is not -1.
Let countTotal be the number of these transactions in D.

Usage

CondProb(D, y, z)

Arguments

D is an aligned list of transactions that was converted from any matrix n by d mat
using D<-VecAlignment(mat) where n is a number of transactions or samples
and d is a number of dimensions for each sample.

y is a d-dimensional vector.

z is a d-dimensional vector.

Value

This function returns the ratio condP=count/countTotal, which is the confidence of y given z.

condP The confidence of y given z in D.

nD The subset of D such that all transactions have values at any position similar to
z[k] when z[k] is not -1.

confNetFunc 15

count A number of transactions that have values at any position similar to either z[k]
or y[k] that is not -1.

countTotal A number of transactions in nD

Examples

d=10 # dimensions of example vectors
z<-numeric(d)-1
y<-numeric(d)-1
y[1]<-c(1)
z[c(2,3)]<-c(1,1)
CondProb(BiCausality::D,y=y,z=z)$condP # conf(inx1 is 1 |inx 2,3 are 1) y|z

confNetFunc confNetFunc function

Description

This function Computes a confidence network in data mining. Given a set of n transactions or sam-
ples in mat s.t. each transaction has d binary items. The conf(mat[,j]=1|mat[,i]=1) is a ratio of
a number of samples in jth and ith dimensions that have values equal to one divided by a number of
samples in the ith dimension that has a value equal to one. The confNetFunc computes the network
where the nodes are dimensions and the edge weights are conf(mat[,j]=1|mat[,i]=1) for any
directed edge from i to j.

Usage

confNetFunc(mat, ths = 0.1)

Arguments

mat is a matrix n by d where n is a number of transactions or samples and d is a
number of dimensions.

ths is a threshold parameter for cutting of the edge weights. There exists the directed
edge from i to j if its edge weight if above or equal ths.

Value

This function returns a binary adjacency matrix confNet and the weighted adjacency matrix confValMat.

confNet A binary adjacency matrix that has confNet[i,j]=1 if confValMat[i,j]>=ths.
Otherwise, it is zero.

confValMat A weighted adjacency matrix where confValMat[i,j] is conf(mat[,j]=1|mat[,i]=1).

Examples

res<-confNetFunc(mat)

16 getReachableNodes

D An example of aligned list of transactions

Description

A dataset containing simulated data that is used for examples in the package.

The D is an aligned list of transactions that was converted by using D<-VecAlignment(mat).

Usage

D

Format

An aligned list of a matrix with 200 samples and 10 dimensions generated from Bernoulli distribu-
tion.

D It is an aligned list of transactions that was converted from mat.

getReachableNodes getReachableNodes function

Description

getReachableNodes is a support function for inferring reachable nodes that have some directed path
to a node targetNode. This function uses Breadth-first search (BFS) algorithm.

Usage

getReachableNodes(adjMat, targetNode)

Arguments

adjMat is an adjacency matrix of a directed graph of which its elements are binary: zero
for no edge, and one for having an edge.

targetNode is a node in a graph that we want to find a set of nodes that can reach this target
node via some paths.

Value

This function returns a set of node IDs that have some directed path to a node targetNode.

getTransitiveClosureMat 17

Examples

Given an example of adjacency matrix
A<-matrix(FALSE,5,5)
A[2,1]<-TRUE
A[c(3,4),2]<-TRUE
A[5,3]<-TRUE
Get a set of reachable nodes of targetNode.

followers<-getReachableNodes(adjMat=A,targetNode=1)

getTransitiveClosureMat

getTransitiveClosureMat function

Description

getTransitiveClosureMat is a support function for inferring a transitive-closure adjacency matrix.

Usage

getTransitiveClosureMat(adjMat)

Arguments

adjMat is an adjacency matrix of a directed graph of which its elements are binary: zero
for no edge, and one for having an edge.

Value

This function returns a transitive-closure adjacency matrix.

Examples

Given an example of adjacency matrix
A<-matrix(FALSE,5,5)
A[2,1]<-TRUE
A[c(3,4),2]<-TRUE
A[5,3]<-TRUE
Get a set of reachable nodes of targetNode.

trsClosureMat<-getTransitiveClosureMat(adjMat=A)

18 mat

indpFunc indpFunc function

Description

This function computes the degree of dependency between variables. Let i and j be variables, if
they are independent, then |p(i,j) -p(i)*p(j)| should be zero. Given the samples in the n by d matrix
mat where n is a number of samples and d is a number of dimensions, an aligned list of transactions
D is computed by D<-VecAlignment(mat).

Usage

indpFunc(D, i, j, z = c())

Arguments

D is an aligned list of transactions that was converted from mat.

i is an ith dimension in mat.

j is an jth dimension in mat.

z is a conditioning d-dimensional vector on D. Given k non-negative-bit positions
of z, all k bit positions of samples in the subset of D must have similar values
with these bits.

Value

This function returns the degree of dependency between variables: zero implies both variables are
independent, and non-zero value implies the degree of dependency (higher implies more dependent
degree).

Examples

indpFunc(D,i=1,j=2)

mat A simulation dataset

num2Bits 19

Description

A dataset containing simulated data that is used for examples in the package. The matrix mat is
generated by the following code.

seedN<-2022

n<-200 # 200 individuals

d<-10 # 10 variables

mat<-matrix(nrow=n,ncol=d) # the input of framework

#Simulate binary data from Bernoulli distribution distribution where the probability of value being
1 is 0.5.

for(i in seq(n)) { set.seed(seedN+i)

mat[i,] <- rbinom(n=d, size=1, prob=0.5) }

mat[,1]<-mat[,2] | mat[,3] # 1 causes by 2 and 3

mat[,4] <-mat[,2] | mat[,5] # 4 causes by 2 and 5

mat[,6] <- mat[,1] | mat[,4] # 6 causes by 1 and 4

Usage

mat

Format

A matrix with 200 samples and 10 dimensions generated from Bernoulli distribution.

mat It is a 200 by 10 matrix where n is a number of transactions or samples and d is a number of
dimensions. ...

num2Bits num2Bits function

Description

Given a natural number and number of bits, the function provides an n-dimensional vector of bits
that represents num. The ith bits of binary vector represents the ith bit of num. For example, if
vec<-num2Bits(num=2,n=4), the first bit vec[1] is 0 and the second bit vec[2] is 1.

Usage

num2Bits(num, n = 32)

Arguments

num is a natural number.

n is a number of bits representing num.

20 oddDiffFunc

Value

This function returns an n-dimensional vector of bits that represents num.

Examples

num2Bits(num=10,n=4)

oddDiffFunc oddDiffFunc function

Description

Given the samples in the n by d matrix mat where n is a number of samples and d is a number of
dimensions. This function computes an odd difference value of variables of ith and jth dimensions
from a given an aligned list of transactions D (compute by D<-VecAlignment(mat)).

Usage

oddDiffFunc(D, i, j, z = c())

Arguments

D is an aligned list of transactions that was converted from mat.

i is an ith dimension in mat for computing the odd difference with.

j is an jth dimension in mat for computing compute the odd difference with.

z is a conditioning d-dimensional vector on D. Given k non-negative-bit positions
of z, all k bit positions of samples in the subset of D must have similar values
with these bits.

Value

This function returns an odd difference value of variables of ith and jth dimensions from D.

Examples

oddDiffFunc(D,i=1,j=2)

oddRatioFunc 21

oddRatioFunc oddRatioFunc function

Description

Given the samples in the n by d matrix mat where n is a number of samples and d is a number of
dimensions. This function computes an odd ratio value of variables of ith and jth dimensions from
a given an aligned list of transactions D (compute by D<-VecAlignment(mat)).

Usage

oddRatioFunc(D, i, j, z = c(), slack = 0.001)

Arguments

D is an aligned list of transactions that was converted from mat.

i is an ith dimension in mat for computing the odd ratio with.

j is an jth dimension in mat for computing compute the odd ratio with.

z is a conditioning d-dimensional vector on D. Given k non-negative-bit positions
of z, all k bit positions of samples in the subset of D must have similar values
with these bits.

slack is a parameter to prevent the issue of division by zero.

Value

This function returns an odd ratio value of variables of ith and jth dimensions from D.

Examples

oddRatioFunc(D,i=1,j=2)

resC An example of causal inference result

Description

A dataset containing a result of causal inference from simulated data that is used for examples in
the package.

Usage

resC

22 supp

Format

A result of causal inference using mat as an input.

resC It is a result of causal inference using simData$mat as an input by running resC<-BiCausality::CausalGraphInferMainFunc(mat
= mat,CausalThs=0.1, nboot =50, IndpThs=0.05). .

supp supp function

Description

This function computes a support value from a matrix X given a values.

Usage

supp(X, values)

Arguments

X is a matrix n by d where n is a number of transactions or samples and d is a
number of dimensions for each sample.

values is a d-dimensional vector we use to count how many of it within X.

Value

This function returns the support of values in X by counting the ratio of how many samples in X
are similar to values

Examples

x <- rbinom(n=100, size=1, prob=0.5)
ny<-rbinom(n=100, size=1, prob=0.25)
y <- x | ny
supp(X=cbind(x,y),values=c(1,1))

VecAlignment 23

VecAlignment VecAlignment function

Description

This function rearranges the samples in the mat into an aligned list of transactions, which is mainly
used by other functions in the package. Suppose mat[i,] is a binary vector we are interested, we
use A<-bin2dec(mat[i,]) to store the decimal value of mat[i,] in A. Then, we call D[[A]]$count
to get number of samples in mat that are similar to mat[i,] and the D[[A]]$name is mat[i,].

Usage

VecAlignment(mat)

Arguments

mat is a matrix n by d where n is a number of transactions or samples and d is a
number of dimensions.

Value

This function returns an aligned list of transactions D, is an aligned list of transactions that was
converted from any matrix n by d mat.

Examples

VecAlignment(mat=mat)

Index

∗ datasets
D, 16
mat, 18
resC, 21

adjustmentProb, 2
assocSignTest, 3

bin2dec, 4
bIndpTest, 5
bSCMCausalGraphFunc, 6
bSCMdeConfoundingGraphFunc, 8
bSCMDepndentGraphFastFunc, 9
bSCMDepndentGraphFunc, 9

CausalGraphInferMainFunc, 11
comparePredAdjMatrix2TrueAdjMat, 13
CondProb, 14
confNetFunc, 15

D, 16

getReachableNodes, 16
getTransitiveClosureMat, 17

indpFunc, 18

mat, 18

num2Bits, 19

oddDiffFunc, 20
oddRatioFunc, 21

resC, 21

supp, 22

VecAlignment, 23

24

	adjustmentProb
	assocSignTest
	bin2dec
	bIndpTest
	bSCMCausalGraphFunc
	bSCMdeConfoundingGraphFunc
	bSCMDepndentGraphFastFunc
	bSCMDepndentGraphFunc
	CausalGraphInferMainFunc
	comparePredAdjMatrix2TrueAdjMat
	CondProb
	confNetFunc
	D
	getReachableNodes
	getTransitiveClosureMat
	indpFunc
	mat
	num2Bits
	oddDiffFunc
	oddRatioFunc
	resC
	supp
	VecAlignment
	Index

