Package 'BiCausality'

January 20, 2025

Title Binary Causality Inference Framework

Version 0.1.4

Maintainer Chainarong Amornbunchornvej <grandca@gmail.com>

Description A framework to infer causality on binary data using techniques in frequent pattern mining and estimation statistics. Given a set of individual vectors $S=\{x\}$ where x(i) is a realization value of binary variable i, the framework infers empirical causal relations of binary variables i, j from S in a form of causal graph G=(V,E) where V is a set of nodes representing binary variables and there is an edge from i to j in E if the variable i causes j. The framework determines dependency among variables as well as analyzing confounding factors before deciding whether i causes j. The publication of this package is at Chainarong Amornbunchornvej, Navaporn Surasvadi, Anon Plangprasopchok, and Suttipong Thajchayapong (2023) <doi:10.1016/j.heliyon.2023.e15947>.

License MIT + file LICENSE

URL https://github.com/DarkEyes/BiCausality

BugReports https://github.com/DarkEyes/BiCausality/issues

Depends R (>= 3.5.0)

Encoding UTF-8

LazyData TRUE

Suggests knitr, rmarkdown, markdown, igraph

VignetteBuilder knitr

RoxygenNote 7.2.3

NeedsCompilation no

Author Chainarong Amornbunchornvej [aut, cre] (<https://orcid.org/0000-0003-3131-0370>)

Repository CRAN

Date/Publication 2023-11-28 07:50:02 UTC

Contents

adjustmentProb	2
assocSignTest	3
bin2dec	4
bIndpTest	5
bSCMCausalGraphFunc	6
bSCMdeConfoundingGraphFunc	8
bSCMDepndentGraphFastFunc	9
bSCMDepndentGraphFunc	9
CausalGraphInferMainFunc	11
comparePredAdjMatrix2TrueAdjMat	13
CondProb	14
confNetFunc	15
D	16
getReachableNodes	16
getTransitiveClosureMat	17
indpFunc	18
mat	18
num2Bits	19
oddDiffFunc	20
oddRatioFunc	21
resC	21
supp	22
VecAlignment	23
	24

Index

adjustmentProb adjustmentProb function

Description

This function evaluates the P(Y=yflagldo(X=xflag)) given only marginal distributions using parent adjustment method.

Usage

```
adjustmentProb(EValHat, mat, yflag = 1, xflag = 1)
```

EValHat	is an adjacency matrix of weighted directed causal graph where edge weights are $P(Y=yflag X=xflag)$ or probabilities of effect being 1 given cause being either 1 for positive association or 0 for negative association.
mat	is a matrix n by d where n is a number of transactions or samples and d is a number of dimensions.
yflag	is value set for Y in P(Y=yflag X=xflag,z) for the adjustment method.
xflag	is value set for X in P(Y=yflag X=xflag,z) for the adjustment method.

assocSignTest

Value

This function returns an adjacency matrix of weighted directed causal graph where the edge weights are P(Y=yflag|do(X=xflag)).

Examples

adjustmentProb(resC\$CausalGRes\$EValHat,mat)

assocSignTest indpFunc function

Description

This function provides association signs (positive/negative association) inference between i and j. If there is a positive association, it implies i and j trend to have a similar value. For a negative association, however, i and j trend to have an opposite value.

Usage

```
assocSignTest(mat, i, j, z = c(), alpha = 0.05, IndpThs = 0.05, nboot = 100)
```

mat	is a matrix n by d where n is a number of transactions or samples and d is a number of dimensions.
i	is an ith dimension in mat.
j	is an jth dimension in mat.
z	is a conditioning d-dimensional vector on mat. Given k non-negative-bit positions of z, all k bit positions of samples in the subset of mat must have similar values with these bits.
alpha	is a significance threshold for hypothesis tests (Mann Whitney) that deploys for testing degrees of dependency, association direction, and causal direction. The default is 0.5.
IndpThs	is a threshold for the degree of dependency. In the independence test, to claim that any variables are dependent, the dependency degree must greater than this value significantly. The default is 0.05.
nboot	is a number of bootstrap replicates for bootstrapping deployed to infer confi- dence intervals and distributions for hypothesis tests. The default is 100.

This function returns results of inference of association signs (positive/negative association) between i and j.

bmean	A mean of sign dependency degrees between variables i and j.
confInv	An alpha*100th percentile confidence interval of sign dependency degrees be- tween variables i and j.
testRes	A Mann-Whitney hypothesis test result for an independence test between vari- ables i and j. The null hypothesis is that the distributions of dependency degrees of i,j differ by a location shift of IndpThs and the alternative is that distributions of dependency degrees of i,j is shifted greater than IndpThs.

Examples

assocSignTest(mat=mat,i=1,j=2)

bin2dec

bin2dec function

Description

This function convertes a binary vector into its decimal value.

Usage

bin2dec(X)

Arguments

Х

is a binary vector where X[i] is the ith bit of vector.

Value

This function returns a decimal value of X.

Examples

bin2dec(X=c(1,1,1,0))

bIndpTest

Description

This function infers dependency for a pair of variables i,j with bootstrapping.

Usage

```
bIndpTest(
   mat,
   i,
   j,
   z = c(),
   alpha = 0.05,
   IndpThs = 0.05,
   nboot = 100,
   pflag = FALSE
)
```

Arguments

mat	is a matrix n by d where n is a number of transactions or samples and d is a number of dimensions.
i	is an ith dimension in mat.
j	is an jth dimension in mat.
Z	is a conditioning d-dimensional vector on mat. Given k non-negative-bit positions of z, all k bit positions of samples in the subset of mat must have similar values with these bits.
alpha	is a significance threshold for hypothesis tests (Mann Whitney) that deploys for testing degrees of dependency, association direction, and causal direction. The default is 0.5.
IndpThs	is a threshold for the degree of dependency. In the independence test, to claim that any variables are dependent, the dependency degree must greater than this value significantly. The default is 0.05.
nboot	is a number of bootstrap replicates for bootstrapping deployed to infer confi- dence intervals and distributions for hypothesis tests. The default is 100.
pflag	is a flag for printing progress message (TRUE). The default is FALSE (no printing).

Value

This function returns results of dependency inference between i and j.

bmean A mean of dependency degrees between variables i and j.

confInv	An alpha*100th percentile confidence interval of dependency degrees between variables i and j.
testRes	A Mann-Whitney hypothesis test result for an independence test between vari- ables i and j. The null hypothesis is that the distributions of dependency degrees of i,j differ by a location shift of IndpThs and the alternative is that distributions of dependency degrees of i,j is shifted greater than IndpThs.

Examples

bIndpTest(mat=mat,i=1,j=2)

bSCMCausalGraphFunc *bSCMCausalGraphFunc function*

Description

This function infers a causal graph from a result of confounding factor filtering by bSCMdeConfoundingGraphFunc().

Usage

```
bSCMCausalGraphFunc(E1, Dboot, alpha = 0.05, SignThs = 0.05, CausalThs = 0.25)
```

E1	is an adjacency matrix of undirected graph after filtering associations without true causal directions from any confounding factor.
Dboot	is a list of Ds (aligned list of transactions) that are generated from sampling with replacement on input samples (mat) nboot times.
alpha	is a significance threshold for hypothesis tests (Mann Whitney) that deploys for testing degrees of dependency, association direction, and causal direction. The default is 0.5.
SignThs	is a threshold for the degree of dependency for association direction inference. In the independence test of sign direction, to claim that any variables are de- pendent, the dependency degree must greater than this value significantly. The default is 0.05.
CausalThs	is a threshold for the degree of causal direction In the causal-direction test, to claim that any variables have causal relations, the degree of causal direction must greater than this value significantly. The default is 0.1.

 $This function\ returns\ causal\ inference\ results\ from\ E1\ matrix\ that\ is\ an\ output\ of\ bSCMdeConfoundingGraphFunc.$

	Ehat	An adjacency matrix of directed causal graph where CausalGRes\$Ehat[i,j]=1 implies i causes j.
	EValHat	An adjacency matrix of weighted directed causal graph where edge weights are estimated means of probabilities of effect being 1 given cause being either 1 for positive association or 0 for negative association using CondProb() and bootstrapping to estimate.
	i	An index
	j	An index
	causalInfo\$'i,j	'\$CDirConfValInv An alpha*100th percentile confidence interval of estimated conditional proba- bility of effect j being 1/0 given cause i's value being either the same (positive association) or opposite (negative association).
	causalInfo\$'i,j	'\$CDirConfInv
		An alpha*100th percentile confidence interval of estimated causal direction de- gree of i cause j.
	causalInfo\$'i,j	'\$CDirmean
		A mean-estimated-causal-direction degree of i cause j.
	causalInfo\$'i,j	'\$testRes2
		A Mann-Whitney hypothesis test result for existence of causal direction. The null hypothesis is that the distributions of causal-direction degrees of i,j differ by a location shift of CausalThs and the alternative is that distributions of causal-direction degrees of i,j is shifted greater than CausalThs.
	causalInfo\$'i,j	'\$testRes1
		A Mann-Whitney hypothesis test result for existence of association by odd dif- ferences from oddDiffFunc(). The null hypothesis is that the distributions of absolute odd difference of i,j differ by a location shift of IndpThs and the alter- native is that distributions of absolute odd difference of i,j is shifted greater than IndpThs.
	causalInfo\$'i,j	'\$sign
		A direction of i,j association: 1 for positive, 0 for negative, and -1 for no association.
	causalInfo\$'i,j	'\$SignConfInv
		An alpha*100th percentile confidence interval of i,j odd difference from boot- strapping.
	causalInfo\$'i,j	'\$Signmean
		A mean of i,j odd difference from bootstrapping.
Exa	mples	
	bSCMCausalGraphFu	unc(resC\$ConfoundRes\$E1,resC\$depRes\$Dboot)

bSCMdeConfoundingGraphFunc

bSCMdeConfoundingGraphFunc function

Description

This function removes any association/dependency of variables i,j that have any confounding factor k s.t. given k, i and j are independent.

Usage

```
bSCMdeConfoundingGraphFunc(dat, IndpThs = 0.05, alpha = 0.05)
```

Arguments

dat	$is the result of inferring dependencies between all pairs of variables from \verbbSCMDepndentGraphFunc().$
IndpThs	is a threshold for the degree of dependency. In the independence test, to claim that any variables are dependent, the dependency degree must greater than this value significantly. The default is 0.05.
alpha	is a significance threshold for hypothesis tests (Mann Whitney) that deploys for testing degrees of dependency, association direction, and causal direction. The default is 0.5.

Value

This function returns an adjacency matrix of dependencies that have no confounding factors.

E1	An adjacency matrix of undirected graph after filtering associations without true causal directions from any confounding factor.
E2	A matrix of associations that have confounding factors where $E2[i,j]=0$ if no confounding factor and $E2[i,j]=k$ if k is a confounding factor of i and j.

Examples

bSCMdeConfoundingGraphFunc(resC\$depRes)

bSCMDepndentGraphFastFunc

bSCMDepndentGraphFastFunc function

Description

This function infers dependencies for all pairs of variables without bootstrapping.

Usage

```
bSCMDepndentGraphFastFunc(mat, IndpThs = 0.05)
```

Arguments

mat	is a matrix n by d where n is a number of transactions or samples and d is a number of dimensions.
IndpThs	is a threshold for the degree of dependency. In the independence test, to claim that any variables are dependent, the dependency degree must greater than this value significantly. The default is 0.05.

Value

This function returns results of dependency inference among variables.

E0	An adjacency matrix of undirected graph where there is an edge between any
	pair of variables if they are dependent.
E0raw	A matrix of the degree of dependency of variable pairs.

Examples

bSCMDepndentGraphFastFunc(mat)

bSCMDepndentGraphFunc bSCMDepndentGraphFunc function

Description

This function infers dependencies for all pairs of variables with bootstrapping.

Usage

```
bSCMDepndentGraphFunc(
   mat,
   nboot = 100,
   alpha = 0.05,
   IndpThs = 0.05,
   pflag = FALSE
)
```

Arguments

mat	is a matrix n by d where n is a number of transactions or samples and d is a number of dimensions.
nboot	is a number of bootstrap replicates for bootstrapping deployed to infer confi- dence intervals and distributions for hypothesis tests. The default is 100.
alpha	is a significance threshold for hypothesis tests (Mann Whitney) that deploys for testing degrees of dependency, association direction, and causal direction. The default is 0.5.
IndpThs	is a threshold for the degree of dependency. In the independence test, to claim that any variables are dependent, the dependency degree must greater than this value significantly. The default is 0.05.
pflag	is a flag for printing progress message (TRUE). The default is FALSE (no printing).

Value

This function returns results of dependency inference among variables.

EØ	An adjacency matrix of undirected graph where there is an edge between any pair of variables if they are dependent.	
E0pval	A matrix of p-values from independence test of pairs of variables.	
E0mean	A matrix of means of dependency degrees between variables.	
E0lowbound	A matrix of lower bounds of dependency-degree confidence intervals between variables.	
<pre>depInfo\$'i, j'\$b</pre>	mean	
	A mean of dependency degrees between variables i and j.	
depInfo\$'i, j'\$confInv		
	An alpha*100th percentile confidence interval of dependency degrees between variables i and j.	
depInfo\$'i, j'\$testRes		
	A Mann-Whitney hypothesis test result for an independence test between vari- ables i and j. The null hypothesis is that the distributions of dependency degrees of i,j differ by a location shift of IndpThs and the alternative is that distributions of dependency degrees of i,j is shifted greater than IndpThs.	
depInfo\$'i, j'\$indices		
	A pair of indices of i and j in a numeric vector.	

10

CausalGraphInferMainFunc

Dboot A list of Ds (aligned list of transactions) that are generated from sampling with replacement on input samples (mat) nboot times.

Examples

bSCMDepndentGraphFunc(mat, nboot=50)

CausalGraphInferMainFunc

CausalGraphInferMainFunc function

Description

A framework to infer causality on binary data using techniques in frequent pattern mining and estimation statistics. Given a set of individual vectors $S=\{x\}$ where x(i) is a realization value of binary variable i, the framework infers empirical causal relations of binary variables i,j from S in a form of causal graph G=(V,E) where V is a set of nodes representing binary variables and there is an edge from i to j in E if the variable i causes j. The framework determines dependency among variables as well as analyzing confounding factors before deciding whether i causes j.

Note that all statistics (e.g. means) and confidence intervals as well as hypothesis testing are inferred by bootstrapping.

Usage

```
CausalGraphInferMainFunc(
  mat,
  alpha = 0.05,
  nboot = 100,
  IndpThs = 0.05,
  CausalThs = 0.1
)
```

mat	is a matrix n by d where n is a number of transactions or samples and d is a number of dimensions.
alpha	is a significance threshold for hypothesis tests (Mann Whitney) that deploys for testing degrees of dependency, association direction, and causal direction. The default is 0.5.
nboot	is a number of bootstrap replicates for bootstrapping deployed to infer confi- dence intervals and distributions for hypothesis tests. The default is 100.
IndpThs	is a threshold for the degree of dependency. In the independence test, to claim that any variables are dependent, the dependency degree must greater than this value significantly. The default is 0.05.
CausalThs	is a threshold for the degree of causal direction In the causal-direction test, to claim that any variables have causal relations, the degree of causal direction must greater than this value significantly. The default is 0.1.

This function returns causal inference results. #TODO: provide list of results.

depRes	The result of inferring dependencies between all pairs of variables.	
ConfoundRes	The result of filtering associations without true causal directions from any con- founding factor.	
CausalGRes	The result of inferring causal directions between all pairs of dependent variables that have no confounding factors.	
depRes\$E0	An adjacency matrix of undirected graph where there is an edge between any pair of variables if they are dependent.	
depRes\$E0pval	A matrix of p-values from independence test of pairs of variables.	
depRes\$E0mean	A matrix of means of dependency degrees between variables.	
depRes\$E01owbou		
denRes\$denInfo\$	A matrix of lower bounds of dependency-degree confidence intervals between variables.	
deprestdeprintot	A mean of dependency degrees between variables i and i	
depRes\$depInfo\$	'i. i'\$confInv	
	An alpha*100th percentile confidence interval of dependency degrees between variables i and j.	
<pre>depRes\$depInfo\$</pre>	S'i, j'\$testRes	
	A Mann-Whitney hypothesis test result for an independence test between vari- ables i and j. The null hypothesis is that the distributions of dependency degrees of i,j differ by a location shift of IndpThs and the alternative is that distributions of dependency degrees of i,j is shifted greater than IndpThs.	
depRes\$depInfo\$	'i,j'\$indices	
	A pair of indices of i and j in a numeric vector.	
depRes\$Dboot	A list of Ds (aligned list of transactions) that are generated from sampling with replacement on input samples (mat) nboot times.	
ConfoundRes\$E1	An adjacency matrix of undirected graph after filtering associations without true causal directions from any confounding factor.	
ConfoundRes\$E2	A matrix of associations that have confounding factors where E2[i,j]=0 if no confounding factor and E2[i,j]=k if k is a confounding factor of i and j.	
CausalGRes\$Ehat		
	An adjacency matrix of directed causal graph where CausalGRes\$Ehat[i,j]=1 implies i causes j.	
CausalGRes\$EValHat		
	An adjacency matrix of weighted directed causal graph where edge weights are estimated means of probabilities of effect being 1 given cause being either 1 for positive association or 0 for negative association using CondProb() and boot- strapping to estimate	
CausalGRes\$caus	salInfo\$'i, j'\$CDirConfValInv An alpha*100th percentile confidence interval of estimated conditional proba- bility of effect j being 1/0 given cause i's value being either the same (positive association) or opposite (negative association).	

```
CausalGRes$causalInfo$'i, j'$CDirConfInv
```

An alpha*100th percentile confidence interval of estimated causal direction degree of i cause j.

CausalGRes\$causalInfo\$'i, j'\$CDirmean

A mean-estimated-causal-direction degree of i cause j.

CausalGRes\$causalInfo\$'i, j'\$testRes2

A Mann-Whitney hypothesis test result for existence of causal direction. The null hypothesis is that the distributions of causal-direction degrees of i,j differ by a location shift of CausalThs and the alternative is that distributions of causal-direction degrees of i,j is shifted greater than CausalThs.

CausalGRes\$causalInfo\$'i, j'\$testRes1

A Mann-Whitney hypothesis test result for existence of association by odd differences from oddDiffFunc(). The null hypothesis is that the distributions of absolute odd difference of i,j differ by a location shift of IndpThs and the alternative is that distributions of absolute odd difference of i,j is shifted greater than IndpThs.

CausalGRes\$causalInfo\$'i, j'\$sign

A direction of i, j association: 1 for positive, 0 for negative, and -1 for no association.

CausalGRes\$causalInfo\$'i, j'\$SignConfInv

An alpha*100th percentile confidence interval of i,j odd difference from bootstrapping.

CausalGRes\$causalInfo\$'i, j'\$Signmean

A mean of i,j odd difference from bootstrapping.

Examples

resC<-CausalGraphInferMainFunc(mat = mat, nboot =50)</pre>

comparePredAdjMatrix2TrueAdjMat

comparePredAdjMatrix2TrueAdjMat

Description

comparePredAdjMatrix2TrueAdjMat is a support function that can compare two adjacency matrices: ground-truth and inferred matrices.

Usage

comparePredAdjMatrix2TrueAdjMat(trueAdjMat, adjMat)

trueAdjMat	a ground-truth matrix.
adjMat	an inferred matrix.

This function returns a list of precision prec, recall rec, and F1 score F1 of inferred vs. groundtruth matrices.

Examples

```
# Generate simulation data
G<-matrix(FALSE,10,10) # groundtruth
G[1,c(4,7,8,10)]<-TRUE
G[2,c(5,7,9,10)]<-TRUE
G[3,c(6,8,9,10)]<-TRUE
comparePredAdjMatrix2TrueAdjMat(trueAdjMat=G,adjMat=G)
```

CondProb

CondProb function

Description

This function computes a confidence value of y given c or conf(y|z) from an aligned list D. For anyy[i], z[j], their values are -1 by default. The function computes the numbers of transactions that satisfy the following conditions.

- 1. All transactions must have values at any k position equal to z[k] for any z[k] that is not -1. Let count be the number of these transactions in D.
- 2. All transactions must have values at any k position equal to either z[k] or y[k] that is not -1. Let countTotal be the number of these transactions in D.

Usage

CondProb(D, y, z)

Arguments

D	is an aligned list of transactions that was converted from any matrix n by d mat using D<-VecAlignment(mat) where n is a number of transactions or samples and d is a number of dimensions for each sample.
У	is a d-dimensional vector.
Z	is a d-dimensional vector.

Value

This function returns the ratio condP=count/countTotal, which is the confidence of y given z.

condP	The confidence of y given z in D.
nD	The subset of D such that all transactions have values at any position similar to
	z[k] when $z[k]$ is not -1.

14

confNetFunc

count	A number of transactions that have values at any position similar to either $z[k]$
	or y[k] that is not -1.
countTotal	A number of transactions in nD

Examples

```
d=10 # dimensions of example vectors
z<-numeric(d)-1
y[1]<-c(1)
z[c(2,3)]<-c(1,1)
CondProb(BiCausality::D,y=y,z=z)$condP # conf(inx1 is 1 |inx 2,3 are 1 ) y|z
```

confNetFunc

confNetFunc function

Description

This function Computes a confidence network in data mining. Given a set of n transactions or samples in mat s.t. each transaction has d binary items. The conf(mat[,j]=1|mat[,i]=1) is a ratio of a number of samples in jth and ith dimensions that have values equal to one divided by a number of samples in the ith dimension that has a value equal to one. The confNetFunc computes the network where the nodes are dimensions and the edge weights are conf(mat[,j]=1|mat[,i]=1) for any directed edge from i to j.

Usage

confNetFunc(mat, ths = 0.1)

Arguments

mat	is a matrix n by d where n is a number of transactions or samples and d is a number of dimensions.
ths	is a threshold parameter for cutting of the edge weights. There exists the directed edge from i to j if its edge weight if above or equal ths.

Value

This function returns a binary adjacency matrix confNet and the weighted adjacency matrix confValMat.

confNet	A binary adjacency matrix that has confNet[i,j]=1 if confValMat[i,j]>=ths. Otherwise, it is zero.
confValMat	A weighted adjacency matrix where confValMat[i,j] is conf(mat[,j]=1 mat[,i]=1)

Examples

res<-confNetFunc(mat)</pre>

Description

A dataset containing simulated data that is used for examples in the package.

The D is an aligned list of transactions that was converted by using D<-VecAlignment(mat).

Usage

D

Format

An aligned list of a matrix with 200 samples and 10 dimensions generated from Bernoulli distribution.

D It is an aligned list of transactions that was converted from mat.

getReachableNodes getReachableNodes function

Description

getReachableNodes is a support function for inferring reachable nodes that have some directed path to a node targetNode. This function uses Breadth-first search (BFS) algorithm.

Usage

getReachableNodes(adjMat, targetNode)

Arguments

adjMat	is an adjacency matrix of a directed graph of which its elements are binary: zero for no edge, and one for having an edge.
targetNode	is a node in a graph that we want to find a set of nodes that can reach this target node via some paths.

Value

This function returns a set of node IDs that have some directed path to a node targetNode.

D

getTransitiveClosureMat

Examples

Given an example of adjacency matrix
A<-matrix(FALSE,5,5)
A[2,1]<-TRUE
A[c(3,4),2]<-TRUE
A[5,3]<-TRUE
Get a set of reachable nodes of targetNode.</pre>

followers<-getReachableNodes(adjMat=A,targetNode=1)</pre>

getTransitiveClosureMat

getTransitiveClosureMat function

Description

getTransitiveClosureMat is a support function for inferring a transitive-closure adjacency matrix.

Usage

getTransitiveClosureMat(adjMat)

Arguments

adjMat is an adjacency matrix of a directed graph of which its elements are binary: zero for no edge, and one for having an edge.

Value

This function returns a transitive-closure adjacency matrix.

Examples

```
# Given an example of adjacency matrix
A<-matrix(FALSE,5,5)
A[2,1]<-TRUE
A[c(3,4),2]<-TRUE
A[5,3]<-TRUE
# Get a set of reachable nodes of targetNode.</pre>
```

trsClosureMat<-getTransitiveClosureMat(adjMat=A)</pre>

indpFunc

Description

This function computes the degree of dependency between variables. Let i and j be variables, if they are independent, then |p(i,j) - p(i)*p(j)| should be zero. Given the samples in the n by d matrix mat where n is a number of samples and d is a number of dimensions, an aligned list of transactions D is computed by D<-VecAlignment(mat).

Usage

indpFunc(D, i, j, z = c())

Arguments

D	is an aligned list of transactions that was converted from mat.
i	is an ith dimension in mat.
j	is an jth dimension in mat.
Z	is a conditioning d-dimensional vector on D. Given k non-negative-bit positions of z, all k bit positions of samples in the subset of D must have similar values with these bits.

Value

This function returns the degree of dependency between variables: zero implies both variables are independent, and non-zero value implies the degree of dependency (higher implies more dependent degree).

Examples

indpFunc(D,i=1,j=2)

mat

A simulation dataset

num2Bits

Description

A dataset containing simulated data that is used for examples in the package. The matrix mat is generated by the following code.

seedN<-2022

n<-200 # 200 individuals

d<-10 # 10 variables

mat<-matrix(nrow=n,ncol=d) # the input of framework</pre>

#Simulate binary data from Bernoulli distribution distribution where the probability of value being 1 is 0.5.

```
for(i in seq(n)) { set.seed(seedN+i)
```

mat[i,] <- rbinom(n=d, size=1, prob=0.5) }</pre>

mat[,1]<-mat[,2] | mat[,3] # 1 causes by 2 and 3</pre>

mat[,4] <-mat[,2] | mat[,5] # 4 causes by 2 and 5</pre>

mat[,6] <- mat[,1] | mat[,4] # 6 causes by 1 and 4</pre>

Usage

mat

Format

A matrix with 200 samples and 10 dimensions generated from Bernoulli distribution.

mat It is a 200 by 10 matrix where n is a number of transactions or samples and d is a number of dimensions. ...

num2Bits

num2Bits function

Description

Given a natural number and number of bits, the function provides an n-dimensional vector of bits that represents num. The ith bits of binary vector represents the ith bit of num. For example, if vec<-num2Bits(num=2, n=4), the first bit vec[1] is 0 and the second bit vec[2] is 1.

Usage

num2Bits(num, n = 32)

num	is a natural number.
n	is a number of bits representing num

This function returns an n-dimensional vector of bits that represents num.

Examples

```
num2Bits(num=10,n=4)
```

oddDiffFunc oddDiffFunc function

Description

Given the samples in the n by d matrix mat where n is a number of samples and d is a number of dimensions. This function computes an odd difference value of variables of ith and jth dimensions from a given an aligned list of transactions D (compute by D<-VecAlignment(mat)).

Usage

oddDiffFunc(D, i, j, z = c())

Arguments

D	is an aligned list of transactions that was converted from mat.
i	is an ith dimension in mat for computing the odd difference with.
j	is an jth dimension in mat for computing compute the odd difference with.
Z	is a conditioning d-dimensional vector on D. Given k non-negative-bit positions of z , all k bit positions of samples in the subset of D must have similar values with these bits.

Value

This function returns an odd difference value of variables of ith and jth dimensions from D.

Examples

oddDiffFunc(D,i=1,j=2)

oddRatioFunc

Description

Given the samples in the n by d matrix mat where n is a number of samples and d is a number of dimensions. This function computes an odd ratio value of variables of ith and jth dimensions from a given an aligned list of transactions D (compute by D<-VecAlignment(mat)).

Usage

oddRatioFunc(D, i, j, z = c(), slack = 0.001)

Arguments

D	is an aligned list of transactions that was converted from mat.
i	is an ith dimension in mat for computing the odd ratio with.
j	is an jth dimension in mat for computing compute the odd ratio with.
z	is a conditioning d-dimensional vector on D. Given k non-negative-bit positions of z, all k bit positions of samples in the subset of D must have similar values with these bits.
slack	is a parameter to prevent the issue of division by zero.

Value

This function returns an odd ratio value of variables of ith and jth dimensions from D.

Examples

```
oddRatioFunc(D,i=1,j=2)
```

resC

An example of causal inference result

Description

A dataset containing a result of causal inference from simulated data that is used for examples in the package.

Usage

resC

Format

A result of causal inference using mat as an input.

resC It is a result of causal inference using simData\$mat as an input by running resC<-BiCausality::CausalGraphInferM
= mat,CausalThs=0.1, nboot =50, IndpThs=0.05).</pre>

supp

supp function

Description

This function computes a support value from a matrix X given a values.

Usage

supp(X, values)

Arguments

X	is a matrix n by d where n is a number of transactions or samples and d is a number of dimensions for each sample.
values	is a d-dimensional vector we use to count how many of it within X.

Value

This function returns the support of values in X by counting the ratio of how many samples in X are similar to values

Examples

```
x <- rbinom(n=100, size=1, prob=0.5)
ny<-rbinom(n=100, size=1, prob=0.25)
y <- x | ny
supp(X=cbind(x,y),values=c(1,1) )
```

22

VecAlignment

Description

This function rearranges the samples in the mat into an aligned list of transactions, which is mainly used by other functions in the package. Suppose mat[i,] is a binary vector we are interested, we use A<-bin2dec(mat[i,]) to store the decimal value of mat[i,] in A. Then, we call D[[A]]\$count to get number of samples in mat that are similar to mat[i,] and the D[[A]]\$name is mat[i,].

Usage

VecAlignment(mat)

Arguments

mat

is a matrix n by d where n is a number of transactions or samples and d is a number of dimensions.

Value

This function returns an aligned list of transactions D, is an aligned list of transactions that was converted from any matrix n by d mat.

Examples

```
VecAlignment(mat=mat)
```

Index

* datasets D, 16 mat, 18 resC, 21 adjustmentProb, 2 assocSignTest, 3 bin2dec, 4 bIndpTest, 5 bSCMCausalGraphFunc, 6 bSCMdeConfoundingGraphFunc, 8 bSCMDepndentGraphFastFunc, 9 bSCMDepndentGraphFunc, 9 CausalGraphInferMainFunc, 11 comparePredAdjMatrix2TrueAdjMat, 13 CondProb, 14 confNetFunc, 15 D, 16 getReachableNodes, 16 getTransitiveClosureMat, 17 indpFunc, 18 mat, 18num2Bits, 19 oddDiffFunc, 20 oddRatioFunc, 21resC, 21 supp, 22 VecAlignment, 23