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BayesPPD-package Bayesian sample size determination using the power and normalized
power prior for generalized linear models

Description

The BayesPPD (Bayesian Power Prior Design) package provides two categories of functions: func-
tions for Bayesian power/type I error calculation and functions for model fitting. Supported distribu-
tions include normal, binary (Bernoulli/binomial), Poisson and exponential. The power parameter
a0 can be fixed or modeled as random using a normalized power prior.

Details

Following Chen et al.(2011), for two group models (i.e., treatment and control group with no co-
variates), denote the parameter for the treatment group by µt and the parameter for the control group
by µc. Suppose there are K historical datasets D0 = (D01, · · · , D0K)′. We consider the following
normalized power prior for µc given multiple historical datasets D0

π(µc|D0, a0) =
1

C(a0)

K∏
k=1

[L(µc|D0k)
a0k ]π0(µc)

where a0 = (a01, · · · , a0K)′, 0 ≤ a0k ≤ 1 for k = 1, · · · ,K, L(µc|D0k) is the historical data
likelihood, π0(µc) is an initial prior, and C(a0) =

∫ ∏K
k=1[L(µc|D0k)

a0k ]π0(µc)dµc. When a0 is
fixed, the normalized power prior is equivalent to the power prior

π(µc|D0, a0) =

K∏
k=1

[L(µc|D0k)
a0k ]π0(µc).

By default, the power/type I error calculation algorithm assumes the null and alternative hypotheses
are given by

H0 : µt − µc ≥ δ
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and
H1 : µt − µc < δ,

where δ is a prespecified constant. To test hypotheses of the opposite direction, i.e., H0 : µt−µc ≤ δ
and H1 : µt − µc > δ , one can set the parameter nullspace.ineq to "<". To determine Bayesian
sample size, we estimate the quantity

β
(n)
sj = Es[I{P (µt − µc < δ|y(n), π(f)) ≥ γ}]

where γ > 0 is a prespecified posterior probability threshold for rejecting the null hypothesis (e.g.,
0.975), the probability is computed with respect to the posterior distribution given the data y(n)

and the fitting prior π(f), and the expectation is taken with respect to the marginal distribution
of y(n) defined based on the sampling prior π(s)(θ), where θ = (µt, µc, η) and η denotes any
nuisance parameter in the model. Let Θ0 and Θ1 denote the parameter spaces corresponding to
H0 and H1. Let π(s)

0 (θ) denote a sampling prior that puts mass in the null region, i.e., θ ⊂ Θ0.
Let π(s)

1 (θ) denote a sampling prior that puts mass in the alternative region, i.e., θ ⊂ Θ1. Then
β
(n)
s0 corresponding to π(s)(θ) = π

(s)
0 (θ) is a Bayesian type I error, while β

(n)
s1 corresponding to

π(s)(θ) = π
(s)
1 (θ) is a Bayesian power. We compute nα0

= min{n : β
(n)
s0 ≤ α0} and nα1

=

min{n : β
(n)
s1 ≥ 1− α1}. Then Bayesian sample size is max{nα0

, nα1
}. Choosing α0 = 0.05 and

α1 = 0.2 guarantees that the Bayesian type I error rate is at most 0.05 and the Bayesian power is at
least 0.8.

To compute β
(n)
sj , the following algorithm is used:

Step 1: Generate θ ∼ π
(s)
j (θ)

Step 2: Generate y(n) ∼ f(y(n)|θ)
Step 3: Compute P (µt < µc + δ|y(n), π(f))

Step 4: Check whether P (µt < µc + δ|y(n), π(f)) ≥ γ

Step 5: Repeat Steps 1-4 N times

Step 6: Compute the proportion of times that {µt < µc + δ|y(n), π(f) ≥ γ} is true out of the N

simulated datasets, which gives an estimate of β(n)
sj .

For positive continuous data assumed to follow exponential distribution, the hypotheses are given
by

H0 : µt/µc ≥ δ

and
H1 : µt/µc < δ,

where µt and µc are the hazards for the treatment and the control group, respectively. The definition
of β(n)

sj and the algorithm change accordingly.

If there are covariates to adjust for, we assume the first column of the covariate matrix is the treat-
ment indicator, and the corresponding parameter is β1, which, for example, corresponds to a differ-
ence in means for the linear regression model and a log hazard ratio for the exponential regression
model. The hypotheses are given by

H0 : β1 ≥ δ

and
H1 : β1 < δ.
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The definition of β(n)
sj and the algorithm change accordingly.

By default, the package assumes the historical data is composed of control group subjects only. If
the user wants to use historical data to inform treatment effect, one can set borrow.treat=TRUE
and include the treatment indicator in the historical covariate matrix.

This implementation of the method does not assume any particular distribution for the sampling
priors. The user is allowed to specify a vector or matrix of samples for θ (matrix if θ is of dimension
>1) from any distribution, and the algorithm samples with replacement from the vector or matrix at
each iteration of data simulation. In order to accurately approximate a joint distribution for multiple
parameters, the number of iterations should be large (e.g., 10,000).

Gibbs sampling is used for normally distributed data. Slice sampling is used for all other data
distributions. For two group models with fixed a0, numerical integration using the RcppNumerical
package is used.

References

Chen, Ming-Hui, et al. "Bayesian design of noninferiority trials for medical devices using historical
data." Biometrics 67.3 (2011): 1163-1170.

actg019 AIDS Clinical Trial ACTG019 (1990).

Description

A dataset containing the ACTG019 clinical trial placebo group data (1990) in adults with asymp-
tomatic HIV.

Usage

actg019

Format

A data frame with 404 rows and 4 variables:

outcome binary variable with 1 indicating death, development of AIDS or ARC and 0 otherwise

age patient age in years

race binary variable with 1 indicating white and 0 otherwise

T4count CD4 cell count (cell count per cubicmillimetre of serum)

Source

Chen, Ming-Hui, et al. "Prior Elicitation, Variable Selection and Bayesian Computation for Logistic
Regression Models." Journal of the Royal Statistical Society. Series B, vol. 61, no. 1, 1999, pp.
223-242.
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actg036 AIDS Clinical Trial ACTG036 (1991).

Description

A dataset containing the ACTG036 clinical trial data (1991) comparing zidovudine (AZT) with
a placebo in asymptomatic patients with hereditary coagulation disorders and HIV infection. The
ACTG036 trial had the same response variable and covariates as the ACTG019 study. The ATCG019
data can be used as a historical dataset.

Usage

actg036

Format

A data frame with 183 rows and 5 variables:

outcome binary variable with 1 indicating death, development of AIDS or ARC and 0 otherwise

treat binary variable with 1 indicating Zidovudine (AZT) treatment and 0 indicating placebo

age patient age in years

race binary variable with 1 indicating white and 0 otherwise

T4count CD4 cell count (cell count per cubicmillimetre of serum)

Source

Chen, Ming-Hui, et al. "Prior Elicitation, Variable Selection and Bayesian Computation for Logistic
Regression Models." Journal of the Royal Statistical Society. Series B, vol. 61, no. 1, 1999, pp.
223-242.

glm.fixed.a0 Model fitting for generalized linear models with fixed a0

Description

Model fitting using power priors for generalized linear models with fixed a0
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Usage

glm.fixed.a0(
data.type,
data.link,
y = 0,
x = matrix(),
n = 1,
borrow.treat = FALSE,
historical = list(),
lower.limits = rep(-100, 50),
upper.limits = rep(100, 50),
slice.widths = rep(1, 50),
nMC = 10000,
nBI = 250,
current.data = TRUE,
prior.beta.var = rep(10, 50)

)

Arguments

data.type Character string specifying the type of response. The options are "Normal",
"Bernoulli", "Binomial", "Poisson" and "Exponential".

data.link Character string specifying the link function. The options are "Logistic", "Pro-
bit", "Log", "Identity-Positive", "Identity-Probability" and "Complementary Log-
Log". Does not apply if data.type is "Normal".

y Vector of responses.

x Matrix of covariates. The first column should be the treatment indicator with 1
indicating treatment group. The number of rows should equal the length of the
response vector y.

n (For binomial data only) vector of integers specifying the number of subjects
who have a particular value of the covariate vector. If the data is binary and
all covariates are discrete, collapsing Bernoulli data into a binomial structure
can make the slice sampler much faster. The length of n should be equal to the
number of rows of x.

borrow.treat Logical value indicating whether the historical information is used to inform
the treatment effect parameter. The default value is FALSE. If TRUE, the first
column of the historical covariate matrix must be the treatment indicator. If
FALSE, the historical covariate matrix must NOT have the treatment indicator,
since the historical data is assumed to be from the control group only.

historical (Optional) list of historical dataset(s). East historical dataset is stored in a list
which contains three named elements: y0, x0 and a0.

• y0 is a vector of responses.
• x0 is a matrix of covariates. If borrow.treat is FALSE (the default), x0

should NOT have the treatment indicator. Apart from missing the treatment
indicator, x0 should have the same set of covariates in the same order as
x. If borrow.treat is TRUE, x0 should have the same set of covariates
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in the same order as x, where the first column of x0 must be the treatment
indicator.

• a0 is a number between 0 and 1 indicating the discounting parameter value
for that historical dataset.

For binomial data, an additional element n0 is required.

• n0 is vector of integers specifying the number of subjects who have a par-
ticular value of the covariate vector. The length of n0 should be equal to the
number of rows of x0.

lower.limits Vector of lower limits for parameters to be used by the slice sampler. The length
of the vector should be equal to the total number of parameters, i.e. P+1 where
P is the number of covariates. The default is -100 for all parameters (may not be
appropriate for all situations). Does not apply if data.type is "Normal".

upper.limits Vector of upper limits for parameters to be used by the slice sampler. The length
of the vector should be equal to the total number of parameters, i.e. P+1 where
P is the number of covariates. The default is 100 for all parameters (may not be
appropriate for all situations). Does not apply if data.type is "Normal".

slice.widths Vector of initial slice widths for parameters to be used by the slice sampler. The
length of the vector should be equal to the total number of parameters, i.e. P+1
where P is the number of covariates. The default is 1 for all parameter (may not
be appropriate for all situations). Does not apply if data.type is "Normal".

nMC Number of iterations (excluding burn-in samples) for the slice sampler or Gibbs
sampler. The default is 10,000.

nBI Number of burn-in samples for the slice sampler or Gibbs sampler. The default
is 250.

current.data Logical value indicating whether current data is included. The default is TRUE.
If FALSE, only historical data is included in the analysis, and the posterior sam-
ples can be used as a discrete approximation to the sampling prior in power.glm.fixed.a0.

prior.beta.var Only applies if current.data = FALSE. If no current data is provided, the initial
priors used for β are i.i.d. normal distributions with mean zero and variance
equal to prior.beta.var. The length of the vector should be equal to the length
of β. The default variance is 10.

Details

If data.type is "Normal", the response yi is assumed to follow N(x′
iβ, τ

−1) where xi is the vector
of covariates for subject i. Each historical dataset D0k is assumed to have a different precision
parameter τk. The initial prior for τ is the Jeffery’s prior, τ−1, and the initial prior for τk is τ−1

k .
The initial prior for β is the uniform improper prior. Posterior samples are obtained through Gibbs
sampling.

For all other data types, posterior samples are obtained through slice sampling. The default lower
limits for the parameters are -100. The default upper limits for the parameters are 100. The default
slice widths for the parameters are 1. The defaults may not be appropriate for all situations, and the
user can specify the appropriate limits and slice width for each parameter.

When current.data is set to FALSE, only historical data is included in the analysis, and the poste-
rior samples can be used as a discrete approximation to the sampling prior in power.glm.fixed.a0.
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Value

The function returns a S3 object with a summary method. If data.type is "Normal", posterior
samples of β, τ and τk’s (if historical data is given) are returned. For all other data types, a matrix
of posterior samples of β is returned. The first column contains posterior samples of the intercept.
The second column contains posterior samples of β1, the parameter for the treatment indicator.

References

Neal, Radford M. Slice sampling. Ann. Statist. 31 (2003), no. 3, 705–767.

See Also

power.glm.fixed.a0

Examples

data.type <- "Bernoulli"
data.link <- "Logistic"

# Simulate current data
set.seed(1)
p <- 3
n_total <- 100
y <- rbinom(n_total,size=1,prob=0.6)
# The first column of x is the treatment indicator.
x <- cbind(rbinom(n_total,size=1,prob=0.5),

matrix(rnorm(p*n_total),ncol=p,nrow=n_total))

# Simulate two historical datasets
# Note that x0 does not have the treatment indicator
historical <- list(list(y0=rbinom(n_total,size=1,prob=0.2),

x0=matrix(rnorm(p*n_total),ncol=p,nrow=n_total), a0=0.2),
list(y0=rbinom(n_total, size=1, prob=0.5),

x0=matrix(rnorm(p*n_total),ncol=p,nrow=n_total), a0=0.3))

# Set parameters of the slice sampler
lower.limits <- rep(-100, 5) # The dimension is the number of columns of x plus 1 (intercept)
upper.limits <- rep(100, 5)
slice.widths <- rep(1, 5)

nMC <- 1000 # nMC should be larger in practice
nBI <- 250
result <- glm.fixed.a0(data.type=data.type, data.link=data.link, y=y, x=x, historical=historical,

lower.limits=lower.limits, upper.limits=upper.limits,
slice.widths=slice.widths, nMC=nMC, nBI=nBI)

summary(result)
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glm.random.a0 Model fitting for generalized linear models with random a0

Description

Model fitting using normalized power priors for generalized linear models with random a0

Usage

glm.random.a0(
data.type,
data.link,
y,
x,
n = 1,
borrow.treat = FALSE,
historical,
prior.beta.var = rep(10, 50),
prior.a0.shape1 = rep(1, 10),
prior.a0.shape2 = rep(1, 10),
a0.coefficients,
lower.limits = NULL,
upper.limits = NULL,
slice.widths = rep(0.1, 50),
nMC = 10000,
nBI = 250

)

Arguments

data.type Character string specifying the type of response. The options are "Normal",
"Bernoulli", "Binomial", "Poisson" and "Exponential".

data.link Character string specifying the link function. The options are "Logistic", "Pro-
bit", "Log", "Identity-Positive", "Identity-Probability" and "Complementary Log-
Log". Does not apply if data.type is "Normal".

y Vector of responses.

x Matrix of covariates. The first column should be the treatment indicator with 1
indicating treatment group. The number of rows should equal the length of the
response vector y.

n (For binomial data only) vector of integers specifying the number of subjects
who have a particular value of the covariate vector. If the data is binary and all
covariates are discrete, collapsing Bernoulli data into a binomial structure can
make the slice sampler much faster. The sum of n should be equal to data.size.
The length of n should be equal to the number of rows of x0.
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borrow.treat Logical value indicating whether the historical information is used to inform
the treatment effect parameter. The default value is FALSE. If TRUE, the first
column of the historical covariate matrix must be the treatment indicator. If
FALSE, the historical covariate matrix must NOT have the treatment indicator,
since the historical data is assumed to be from the control group only.

historical List of historical dataset(s). East historical dataset is stored in a list which con-
tains two named elements: y0 and x0.

• y0 is a vector of responses.
• x0 is a matrix of covariates. If borrow.treat is FALSE (the default), x0

should NOT have the treatment indicator. Apart from missing the treatment
indicator, x0 should have the same set of covariates in the same order as
x. If borrow.treat is TRUE, x0 should have the same set of covariates
in the same order as x, where the first column of x0 must be the treatment
indicator.

For binomial data, an additional element n0 is required.

• n0 is vector of integers specifying the number of subjects who have a par-
ticular value of the covariate vector. The length of n0 should be equal to the
number of rows of x0.

prior.beta.var Vector of variances of the independent normal initial priors on β with mean zero.
The length of the vector should be equal to the length of β. The default variance
is 10.

prior.a0.shape1

Vector of the first shape parameters of the independent beta priors for a0. The
length of the vector should be equal to the number of historical datasets. The
default is a vector of one’s.

prior.a0.shape2

Vector of the second shape parameters of the independent beta priors for a0. The
length of the vector should be equal to the number of historical datasets. The
default is a vector of one’s.

a0.coefficients

Vector of coefficients for a0 returned by the function normalizing.constant.
This is necessary for estimating the normalizing constant for the normalized
power prior. Does not apply if data.type is "Normal".

lower.limits Vector of lower limits for parameters to be used by the slice sampler. If data.type
is "Normal", slice sampling is used for a0, and the length of the vector should
be equal to the number of historical datasets. For all other data types, slice sam-
pling is used for β and a0. The first P+1 elements apply to the sampling of β and
the rest apply to the sampling of a0. The length of the vector should be equal
to the sum of the total number of parameters (i.e. P+1 where P is the number of
covariates) and the number of historical datasets. The default is -100 for β and
0 for a0 (may not be appropriate for all situations).

upper.limits Vector of upper limits for parameters to be used by the slice sampler. If data.type
is "Normal", slice sampling is used for a0, and the length of the vector should
be equal to the number of historical datasets. For all other data types, slice sam-
pling is used for β and a0. The first P+1 elements apply to the sampling of β and
the rest apply to the sampling of a0. The length of the vector should be equal
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to the sum of the total number of parameters (i.e. P+1 where P is the number of
covariates) and the number of historical datasets. The default is 100 for β and 1
for a0 (may not be appropriate for all situations).

slice.widths Vector of initial slice widths used by the slice sampler. If data.type is "Nor-
mal", slice sampling is used for a0, and the length of the vector should be equal
to the number of historical datasets. For all other data types, slice sampling is
used for β and a0. The first P+1 elements apply to the sampling of β and the rest
apply to the sampling of a0. The length of the vector should be equal to the sum
of the total number of parameters (i.e. P+1 where P is the number of covariates)
and the number of historical datasets. The default is 0.1 for all parameter (may
not be appropriate for all situations).

nMC Number of iterations (excluding burn-in samples) for the slice sampler or Gibbs
sampler. The default is 10,000.

nBI Number of burn-in samples for the slice sampler or Gibbs sampler. The default
is 250.

Details

The user should use the function normalizing.constant to obtain a0.coefficients (does not
apply if data.type is "Normal").

If data.type is "Normal", the response yi is assumed to follow N(x′
iβ, τ

−1) where xi is the vector
of covariates for subject i. Historical datasets are assumed to have the same precision parameter as
the current dataset for computational simplicity. The initial prior for τ is the Jeffery’s prior, τ−1.
Independent normal priors with mean zero and variance prior.beta.var are used for β to ensure
the propriety of the normalized power prior. Posterior samples for β and τ are obtained through
Gibbs sampling. Independent beta(prior.a0.shape1, prior.a0.shape1) priors are used for a0.
Posterior samples for a0 are obtained through slice sampling.

For all other data types, posterior samples are obtained through slice sampling. The default lower
limits are -100 for β and 0 for a0. The default upper limits for the parameters are 100 for β and 1
for a0. The default slice widths for the parameters are 0.1. The defaults may not be appropriate for
all situations, and the user can specify the appropriate limits and slice width for each parameter.

Value

The function returns a S3 object with a summary method. If data.type is "Normal", posterior
samples of β, τ and a0 are returned. For all other data types, posterior samples of β and a0 are
returned. The first column of the matrix of posterior samples of β contains posterior samples of
the intercept. The second column contains posterior samples of β1, the parameter for the treatment
indicator.

References

Neal, Radford M. Slice sampling. Ann. Statist. 31 (2003), no. 3, 705–767.

See Also

normalizing.constant and power.glm.random.a0
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Examples

data.type <- "Bernoulli"
data.link <- "Logistic"

# Simulate current data
set.seed(1)
p <- 3
n_total <- 100
y <- rbinom(n_total,size=1,prob=0.6)
# The first column of x is the treatment indicator.
x <- cbind(rbinom(n_total,size=1,prob=0.5),

matrix(rnorm(p*n_total),ncol=p,nrow=n_total))

# Simulate two historical datasets
# Note that x0 does not have the treatment indicator
historical <- list(list(y0=rbinom(n_total,size=1,prob=0.2),

x0=matrix(rnorm(p*n_total),ncol=p,nrow=n_total)),
list(y0=rbinom(n_total, size=1, prob=0.5),

x0=matrix(rnorm(p*n_total),ncol=p,nrow=n_total)))

# Please see function "normalizing.constant" for how to obtain a0.coefficients
# Here, suppose one-degree polynomial regression is chosen by the "normalizing.constant"
# function. The coefficients are obtained for the intercept, a0_1 and a0_2.
a0.coefficients <- c(1, 0.5, -1)

# Set parameters of the slice sampler
# The dimension is the number of columns of x plus 1 (intercept)
# plus the number of historical datasets
lower.limits <- c(rep(-100, 5), rep(0, 2))
upper.limits <- c(rep(100, 5), rep(1, 2))
slice.widths <- rep(0.1, 7)

nMC <- 500 # nMC should be larger in practice
nBI <- 100
result <- glm.random.a0(data.type=data.type, data.link=data.link, y=y, x=x,

historical=historical, a0.coefficients=a0.coefficients,
lower.limits=lower.limits, upper.limits=upper.limits,
slice.widths=slice.widths, nMC=nMC, nBI=nBI)

summary(result)

normalizing.constant Function for approximating the normalizing constant for generalized
linear models with random a0

Description

This function returns a vector of coefficients that defines a function f(a0) that approximates the
normalizing constant for generalized linear models with random a0. The user should input the
values returned to glm.random.a0 or power.glm.random.a0.
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Usage

normalizing.constant(
grid,
historical,
data.type,
data.link,
prior.beta.var = rep(10, 50),
lower.limits = rep(-100, 50),
upper.limits = rep(100, 50),
slice.widths = rep(1, 50),
nMC = 10000,
nBI = 250

)

Arguments

grid Matrix of potential values for a0, where the number of columns should equal
the number of historial datasets. Note that the algorithm may fail if some grid
values are close to zero. See Details below.

historical List of historical dataset(s). East historical dataset is stored in a list which con-
stains two named elements: y0 and x0.

• y0 is a vector of responses.
• x0 is a matrix of covariates.

For binomial data, an additional element n0 is required.
• n0 is vector of integers specifying the number of subjects who have a par-

ticular value of the covariate vector.
data.type Character string specifying the type of response. The options are "Bernoulli",

"Binomial", "Poisson" and "Exponential".
data.link Character string specifying the link function. The options are "Logistic", "Pro-

bit", "Log", "Identity-Positive", "Identity-Probability" and "Complementary Log-
Log". Does not apply if data.type is "Normal".

prior.beta.var Vector of variances of the independent normal initial priors on β with mean zero.
The length of the vector should be equal to the length of β. The default variance
is 10.

lower.limits Vector of lower limits for parameters to be used by the slice sampler. The length
of the vector should be equal to the total number of parameters, i.e. P+1 where
P is the number of covariates. The default is -100 for all parameters (may not be
appropriate for all situations). Does not apply if data.type is "Normal".

upper.limits Vector of upper limits for parameters to be used by the slice sampler. The length
of the vector should be equal to the total number of parameters, i.e. P+1 where
P is the number of covariates. The default is 100 for all parameters (may not be
appropriate for all situations). Does not apply if data.type is "Normal".

slice.widths Vector of initial slice widths for parameters to be used by the slice sampler. The
length of the vector should be equal to the total number of parameters, i.e. P+1
where P is the number of covariates. The default is 1 for all parameter (may not
be appropriate for all situations). Does not apply if data.type is "Normal".
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nMC Number of iterations (excluding burn-in samples) for the slice sampler or Gibbs
sampler. The default is 10,000.

nBI Number of burn-in samples for the slice sampler or Gibbs sampler. The default
is 250.

Details

This function performs the following steps:

1. Suppose there are K historical datasets. The user inputs a grid of M rows and K columns
of potential values for a0. For example, one can choose the vector v = c(0.1, 0.25, 0.5,
0.75, 1) and use expand.grid(a0_1=v, a0_2=v, a0_3=v) when K = 3 to get a grid with
M = 53 = 125 rows and 3 columns. If there are more than three historical datasets, the
dimension of v can be reduced to limit the size of the grid. A large grid will increase runtime.

2. For each row of a0 values in the grid, obtain M samples for β from the power prior associated
with the current values of a0 using the slice sampler.

3. For each of the M sets of posterior samples, execute the PWK algorithm (Wang et al., 2018)
to estimate the log of normalizing constant d1, ..., dM for the normalized power prior.

4. At this point, one has a dataset with outcomes d1, ..., dM and predictors corresponding to
the rows of the a0 grid matrix. A polynomial regression is applied to estimate a function
d = f(a0). The degree of the polynomial regression is determined by the algorithm to ensure
R2 > 0.99.

5. The vector of coefficients from the polynomial regression model is returned by the function,
which the user must input into glm.random.a0 or power.glm.random.a0.

When a row of the grid contains elements that are close to zero, the resulting power prior will be
flat and estimates of normalizing constants may be inaccurate. Therefore, it is recommended that
grid values should be at least 0.05.

If one encounters the error message "some coefficients are not defined because of singularities",
it could be due to the following factors: number of grid rows too large or too small, insufficient
sample size of the historical data, insufficient number of iterations for the slice sampler, or near-zero
grid values.

Note that due to computational intensity, the normalizing.constant function has not been eval-
uated for accuracy for high dimensional β (e.g., dimension > 10) or high dimensional a0 (e.g.,
dimension > 5).

Value

Vector of coefficients for a0 that defines a function f(a0) that approximates the normalizing con-
stant, necessary for functions glm.random.a0 and power.glm.random.a0. The length of the vector
is equal to 1+K*L where K is the number of historical datasets and L is the degree of the polynomial
regression determined by the algorithm.

References

Wang, Yu-Bo; Chen, Ming-Hui; Kuo, Lynn; Lewis, Paul O. A New Monte Carlo Method for Esti-
mating Marginal Likelihoods. Bayesian Anal. 13 (2018), no. 2, 311–333.
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See Also

glm.random.a0 and power.glm.random.a0

Examples

data.type <- "Bernoulli"
data.link <- "Logistic"
data.size <- 50

# Simulate two historical datasets
p <- 1
set.seed(111)
x1 <- matrix(rnorm(p*data.size),ncol=p,nrow=data.size)
set.seed(222)
x2 <- matrix(rnorm(p*data.size),ncol=p,nrow=data.size)
beta <- c(1,2)
mean1 <- exp(x1*beta)/(1+exp(x1*beta))
mean2 <- exp(x2*beta)/(1+exp(x2*beta))
historical <- list(list(y0=rbinom(data.size,size=1,prob=mean1),x0=x1),

list(y0=rbinom(data.size, size=1, prob=mean2),x0=x2))

# Create grid of possible values of a0 with two columns corresponding to a0_1 and a0_2
g <- c(0.1, 0.25, 0.5, 0.75, 1)
grid <- expand.grid(a0_1=g, a0_2=g)

nMC <- 100 # nMC should be larger in practice
nBI <- 50
result <- normalizing.constant(grid=grid, historical=historical,

data.type=data.type, data.link=data.link,
nMC=nMC, nBI=nBI)

power.glm.fixed.a0 Power/type I error calculation for generalized linear models with fixed
a0

Description

Power/type I error calculation for generalized linear models with fixed a0 using power priors

Usage

power.glm.fixed.a0(
data.type,
data.link = "",
data.size,
n = 1,
borrow.treat = FALSE,
treat.assign.prob = 0.5,
historical = list(),
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nullspace.ineq = ">",
x.samples = matrix(),
samp.prior.beta,
samp.prior.var = 0,
lower.limits = rep(-100, 50),
upper.limits = rep(100, 50),
slice.widths = rep(1, 50),
delta = 0,
gamma = 0.95,
nMC = 10000,
nBI = 250,
N = 10000,
approximate = FALSE,
nNR = 10000,
tol = 1e-05

)

Arguments

data.type Character string specifying the type of response. The options are "Normal",
"Bernoulli", "Binomial", "Poisson" and "Exponential".

data.link Character string specifying the link function. The options are "Logistic", "Pro-
bit", "Log", "Identity-Positive", "Identity-Probability" and "Complementary Log-
Log". Does not apply if data.type is "Normal".

data.size Sample size of the simulated datasets.

n (For binomial data only) vector of integers specifying the number of subjects
who have a particular value of the covariate vector. If the data is binary and all
covariates are discrete, collapsing Bernoulli data into a binomial structure can
make the slice sampler much faster. The sum of n should be equal to data.size.
The length of n should be equal to the number of rows of x0.

borrow.treat Logical value indicating whether the historical information is used to inform
the treatment effect parameter. The default value is FALSE. If TRUE, the first
column of the historical covariate matrix must be the treatment indicator. If
FALSE, the historical covariate matrix must NOT have the treatment indicator,
since the historical data is assumed to be from the control group only.

treat.assign.prob

Probability of being assigned to the treatment group. The default value is 0.5.
Only applies if borrow.treat=FALSE.

historical (Optional) list of historical dataset(s). East historical dataset is stored in a list
which contains three named elements: y0, x0 and a0.

• y0 is a vector of responses.
• x0 is a matrix of covariates. If borrow.treat is FALSE (the default), x0

should NOT have the treatment indicator. If borrow.treat is TRUE, the
first column of x0 must be the treatment indicator.

• a0 is a number between 0 and 1 indicating the discounting parameter value
for that historical dataset.
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For binomial data, an additional element n0 is required.
• n0 is vector of integers specifying the number of subjects who have a par-

ticular value of the covariate vector. The length of n0 should be equal to the
number of rows of x0.

nullspace.ineq Character string specifying the inequality of the null hypothesis. The options
are ">" and "<". If ">" is specified, the null hypothesis is H0: β1 ≥ δ. If "<" is
specified, the null hypothesis is H0: β1 ≤ δ. The default choice is ">".

x.samples (Only applies when there is no historical dataset) matrix of possible values of
covariates from which covariate vectors are sampled with replacement.

samp.prior.beta

Matrix of possible values of β to sample (with replacement) from. Each row is
a possible β vector (a realization from the sampling prior for β), where the first
element is the coefficient for the intercept and the second element is the coeffi-
cient for the treatment indicator. The length of the vector should be equal to the
total number of parameters. If P is the number of columns of x0 in historical,
the total number of parameters is P+2 if borrow.treat=FALSE, and is P+1 if
borrow.treat=TRUE.

samp.prior.var Vector of possible values of σ2 to sample (with replacement) from. Only applies
if data.type is "Normal". The vector contains realizations from the sampling
prior (e.g. inverse-gamma distribution) for σ2.

lower.limits Vector of lower limits for parameters to be used by the slice sampler. The length
of the vector should be equal to the total number of parameters, i.e. P+1 where
P is the number of covariates. The default is -100 for all parameters (may not be
appropriate for all situations). Does not apply if data.type is "Normal".

upper.limits Vector of upper limits for parameters to be used by the slice sampler. The length
of the vector should be equal to the total number of parameters, i.e. P+1 where
P is the number of covariates. The default is 100 for all parameters (may not be
appropriate for all situations). Does not apply if data.type is "Normal".

slice.widths Vector of initial slice widths for parameters to be used by the slice sampler. The
length of the vector should be equal to the total number of parameters, i.e. P+1
where P is the number of covariates. The default is 1 for all parameter (may not
be appropriate for all situations). Does not apply if data.type is "Normal".

delta Prespecified constant that defines the boundary of the null hypothesis. The de-
fault is zero.

gamma Posterior probability threshold for rejecting the null. The null hypothesis is
rejected if posterior probability is greater gamma. The default is 0.95.

nMC Number of iterations (excluding burn-in samples) for the slice sampler or Gibbs
sampler. The default is 10,000.

nBI Number of burn-in samples for the slice sampler or Gibbs sampler. The default
is 250.

N Number of simulated datasets to generate. The default is 10,000.
approximate Logical value indicating whether the approximation method based on asymp-

totic theory is used. The default is FALSE. If TRUE, an approximation method
based on the Newton-Raphson algorithm (assuming canonical links) is used.
This feature helps users quickly obtain a rough estimate of the sample size re-
quired for the desired level of power or type I error rate.
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nNR (Only applies if approximate=TRUE) number of iterations of the Newton-Raphson
algorithm. The default value is 10,000.

tol (Only applies if approximate=TRUE) absolute tolerance of the Newton-Raphson
algorithm. The default value is 0.00001.

Details

If historical datasets are provided, the algorithm samples with replacement from the historical co-
variates to construct the simulated datasets. Otherwise, the algorithm samples with replacement
from x.samples. One of the arguments historical and x.samples must be provided.

The sampling prior for the treatment parameter can be generated from a normal distribution (see
examples). For example, suppose one wants to compute the power for the hypotheses H0 : β1 ≥
0 and H1 : β1 < 0. To approximate the sampling prior for β1, one can simply sample from a
normal distribution with negative mean, so that the mass of the prior falls in the alternative space.
Conversely, to compute the type I error rate, one can sample from a normal distribution with positive
mean, so that the mass of the prior falls in the null space. The sampling prior for the other parameters
can be generated by using the glm.fixed.a0 function with current.data set to FALSE. The
posterior samples based on only historical data can be used as a discrete approximation to the
sampling prior.

samp.prior.var is necessary for generating normally distributed data.

If data.type is "Normal", the response yi is assumed to follow N(x′
iβ, τ

−1) where xi is the vector
of covariates for subject i. Each historical dataset D0k is assumed to have a different precision
parameter τk. The initial prior for τ is the Jeffery’s prior, τ−1, and the initial prior for τk is τ−1

k .
The initial prior for β is the uniform improper prior. Posterior samples are obtained through Gibbs
sampling.

For all other data types, posterior samples are obtained through slice sampling. The default lower
limits for the parameters are -100. The default upper limits for the parameters are 100. The default
slice widths for the parameters are 1. The defaults may not be appropriate for all situations, and the
user can specify the appropriate limits and slice width for each parameter.

If a sampling prior with support in the null space is used, the value returned is a Bayesian type I
error rate. If a sampling prior with support in the alternative space is used, the value returned is a
Bayesian power.

Because running power.glm.fixed.a0() and power.glm.random.a0() is potentially time-consuming,
an approximation method based on asymptotic theory has been implemented for the model with
fixed a0. In order to attain the exact sample size needed for the desired power, the user can start with
the approximation to get a rough estimate of the sample size required, using power.glm.fixed.a0()
with approximate=TRUE.

Value

The function returns a S3 object with a summary method. Power or type I error is returned, de-
pending on the sampling prior used. The posterior probabilities of the alternative hypothesis are
returned. The average posterior mean of β and its corresponding bias are returned. If data.type is
"Normal", average posterior means of τ and τk’s (if historical data is given) are also returned. The
first column of β contains posterior samples of the intercept. The second column contains posterior
samples of β1, the parameter for the treatment indicator.
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References

Chen, Ming-Hui, et al. "Bayesian design of noninferiority trials for medical devices using historical
data." Biometrics 67.3 (2011): 1163-1170.

Neal, Radford M. Slice sampling. Ann. Statist. 31 (2003), no. 3, 705–767.

See Also

glm.fixed.a0

Examples

data.type <- "Bernoulli"
data.link <- "Logistic"
data.size <- 100

# Simulate two historical datasets
p <- 3
historical <- list(list(y0=rbinom(data.size,size=1,prob=0.2),

x0=matrix(rnorm(p*data.size),ncol=p,nrow=data.size), a0=0.2),
list(y0=rbinom(data.size, size=1, prob=0.5),

x0=matrix(rnorm(p*data.size),ncol=p,nrow=data.size), a0=0.3))

# Generate sampling priors

# The null hypothesis here is H0: beta_1 >= 0. To calculate power,
# we can provide samples of beta_1 such that the mass of beta_1 < 0.
# To calculate type I error, we can provide samples of beta_1 such that
# the mass of beta_1 >= 0.
samp.prior.beta1 <- rnorm(100, mean=-3, sd=1)
# Here, mass is put on the alternative region, so power is calculated.
samp.prior.beta <- cbind(rnorm(100), samp.prior.beta1, matrix(rnorm(100*p), 100, p))

nMC <- 100 # nMC should be larger in practice
nBI <- 50
N <- 5 # N should be larger in practice
result <- power.glm.fixed.a0(data.type=data.type, data.link=data.link,

data.size=data.size, historical=historical,
samp.prior.beta=samp.prior.beta,
delta=0, nMC=nMC, nBI=nBI, N=N)

summary(result)

power.glm.random.a0 Power/type I error calculation for generalized linear models with ran-
dom a0

Description

Power/type I error calculation using normalized power priors for generalized linear models with
random a0
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Usage

power.glm.random.a0(
data.type,
data.link,
data.size,
n = 1,
treat.assign.prob = 0.5,
borrow.treat = FALSE,
historical,
nullspace.ineq = ">",
samp.prior.beta,
samp.prior.var,
prior.beta.var = rep(10, 50),
prior.a0.shape1 = rep(1, 10),
prior.a0.shape2 = rep(1, 10),
a0.coefficients,
lower.limits = NULL,
upper.limits = NULL,
slice.widths = rep(0.1, 50),
delta = 0,
gamma = 0.95,
nMC = 10000,
nBI = 250,
N = 10000

)

Arguments

data.type Character string specifying the type of response. The options are "Normal",
"Bernoulli", "Binomial", "Poisson" and "Exponential".

data.link Character string specifying the link function. The options are "Logistic", "Pro-
bit", "Log", "Identity-Positive", "Identity-Probability" and "Complementary Log-
Log". Does not apply if data.type is "Normal".

data.size Sample size of the simulated datasets.

n (For binomial data only) vector of integers specifying the number of subjects
who have a particular value of the covariate vector. If the data is binary and all
covariates are discrete, collapsing Bernoulli data into a binomial structure can
make the slice sampler much faster. The sum of n should be equal to data.size.
The length of n should be equal to the number of rows of x0.

treat.assign.prob

Probability of being assigned to the treatment group. The default value is 0.5.
Only applies if borrow.treat=FALSE.

borrow.treat Logical value indicating whether the historical information is used to inform
the treatment effect parameter. The default value is FALSE. If TRUE, the first
column of the historical covariate matrix must be the treatment indicator. If
FALSE, the historical covariate matrix must NOT have the treatment indicator,
since the historical data is assumed to be from the control group only.
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historical List of historical dataset(s). East historical dataset is stored in a list which con-
tains two named elements: y0 and x0.

• y0 is a vector of responses.
• x0 is a matrix of covariates. If borrow.treat is FALSE (the default), x0

should NOT have the treatment indicator. If borrow.treat is TRUE, the
first column of x0 must be the treatment indicator.

For binomial data, an additional element n0 is required.
• n0 is vector of integers specifying the number of subjects who have a par-

ticular value of the covariate vector. The length of n0 should be equal to the
number of rows of x0.

nullspace.ineq Character string specifying the inequality of the null hypothesis. The options
are ">" and "<". If ">" is specified, the null hypothesis is H0: β1 ≥ δ. If "<" is
specified, the null hypothesis is H0: β1 ≤ δ. The default choice is ">".

samp.prior.beta

Matrix of possible values of β to sample (with replacement) from. Each row is
a possible β vector (a realization from the sampling prior for β), where the first
element is the coefficient for the intercept and the second element is the coeffi-
cient for the treatment indicator. The length of the vector should be equal to the
total number of parameters. If P is the number of columns of x0 in historical,
the total number of parameters is P+2 if borrow.treat=FALSE, and is P+1 if
borrow.treat=TRUE.

samp.prior.var Vector of possible values of σ2 to sample (with replacement) from. Only applies
if data.type is "Normal". The vector contains realizations from the sampling
prior (e.g. inverse-gamma distribution) for σ2.

prior.beta.var Vector of variances of the independent normal initial priors on β with mean zero.
The length of the vector should be equal to the length of β. The default variance
is 10.

prior.a0.shape1

Vector of the first shape parameters of the independent beta priors for a0. The
length of the vector should be equal to the number of historical datasets. The
default is a vector of one’s.

prior.a0.shape2

Vector of the second shape parameters of the independent beta priors for a0. The
length of the vector should be equal to the number of historical datasets. The
default is a vector of one’s.

a0.coefficients

Vector of coefficients for a0 returned by the function normalizing.constant.
This is necessary for estimating the normalizing constant for the normalized
power prior. Does not apply if data.type is "Normal".

lower.limits Vector of lower limits for parameters to be used by the slice sampler. If data.type
is "Normal", slice sampling is used for a0, and the length of the vector should
be equal to the number of historical datasets. For all other data types, slice sam-
pling is used for β and a0. The first P+1 elements apply to the sampling of β and
the rest apply to the sampling of a0. The length of the vector should be equal
to the sum of the total number of parameters (i.e. P+1 where P is the number of
covariates) and the number of historical datasets. The default is -100 for β and
0 for a0 (may not be appropriate for all situations).
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upper.limits Vector of upper limits for parameters to be used by the slice sampler. If data.type
is "Normal", slice sampling is used for a0, and the length of the vector should
be equal to the number of historical datasets. For all other data types, slice sam-
pling is used for β and a0. The first P+1 elements apply to the sampling of β and
the rest apply to the sampling of a0. The length of the vector should be equal
to the sum of the total number of parameters (i.e. P+1 where P is the number of
covariates) and the number of historical datasets. The default is 100 for β and 1
for a0 (may not be appropriate for all situations).

slice.widths Vector of initial slice widths used by the slice sampler. If data.type is "Nor-
mal", slice sampling is used for a0, and the length of the vector should be equal
to the number of historical datasets. For all other data types, slice sampling is
used for β and a0. The first P+1 elements apply to the sampling of β and the rest
apply to the sampling of a0. The length of the vector should be equal to the sum
of the total number of parameters (i.e. P+1 where P is the number of covariates)
and the number of historical datasets. The default is 0.1 for all parameter (may
not be appropriate for all situations).

delta Prespecified constant that defines the boundary of the null hypothesis. The de-
fault is zero.

gamma Posterior probability threshold for rejecting the null. The null hypothesis is
rejected if posterior probability is greater gamma. The default is 0.95.

nMC Number of iterations (excluding burn-in samples) for the slice sampler or Gibbs
sampler. The default is 10,000.

nBI Number of burn-in samples for the slice sampler or Gibbs sampler. The default
is 250.

N Number of simulated datasets to generate. The default is 10,000.

Details

The user should use the function normalizing.constant to obtain a0.coefficients (does not
apply if data.type is "Normal").

The sampling prior for the treatment parameter can be generated from a normal distribution (see
examples). For example, suppose one wants to compute the power for the hypotheses H0 : β1 ≥
0 and H1 : β1 < 0. To approximate the sampling prior for β1, one can simply sample from a
normal distribution with negative mean, so that the mass of the prior falls in the alternative space.
Conversely, to compute the type I error rate, one can sample from a normal distribution with positive
mean, so that the mass of the prior falls in the null space. The sampling prior for the other parameters
can be generated by using the glm.fixed.a0 function with current.data set to FALSE. The
posterior samples based on only historical data can be used as a discrete approximation to the
sampling prior.

samp.prior.var is necessary for generating normally distributed data.

If data.type is "Normal", the response yi is assumed to follow N(x′
iβ, τ

−1) where xi is the vector
of covariates for subject i. Historical datasets are assumed to have the same precision parameter as
the current dataset for computational simplicity. The initial prior for τ is the Jeffery’s prior, τ−1.
Independent normal priors with mean zero and variance prior.beta.var are used for β to ensure
the propriety of the normalized power prior. Posterior samples for β and τ are obtained through
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Gibbs sampling. Independent beta(prior.a0.shape1, prior.a0.shape1) priors are used for a0.
Posterior samples for a0 are obtained through slice sampling.

For all other data types, posterior samples are obtained through slice sampling. The default lower
limits are -100 for β and 0 for a0. The default upper limits for the parameters are 100 for β and 1
for a0. The default slice widths for the parameters are 0.1. The defaults may not be appropriate for
all situations, and the user can specify the appropriate limits and slice width for each parameter.

If a sampling prior with support in the null space is used, the value returned is a Bayesian type I
error rate. If a sampling prior with support in the alternative space is used, the value returned is a
Bayesian power.

Because running power.glm.fixed.a0() and power.glm.random.a0() is potentially time-consuming,
an approximation method based on asymptotic theory has been implemented for the model with
fixed a0. In order to attain the exact sample size needed for the desired power, the user can start with
the approximation to get a rough estimate of the sample size required, using power.glm.fixed.a0()
with approximate=TRUE.

Value

The function returns a S3 object with a summary method. Power or type I error is returned, de-
pending on the sampling prior used. The posterior probabilities of the alternative hypothesis are
returned. The average posterior mean of β and its corresponding bias are returned. The average
posterior mean of a0 is returned. If data.type is "Normal", the average posterior mean of τ is also
returned. The first element of the average posterior means of β is the average posterior mean of the
intercept. The second element is the average posterior mean of β1, the parameter for the treatment
indicator.

References

Chen, Ming-Hui, et al. "Bayesian design of noninferiority trials for medical devices using historical
data." Biometrics 67.3 (2011): 1163-1170.

Neal, Radford M. Slice sampling. Ann. Statist. 31 (2003), no. 3, 705–767.

See Also

normalizing.constant and glm.random.a0

Examples

data.type <- "Bernoulli"
data.link <- "Logistic"
data.size <- 100

# Simulate two historical datasets
p <- 3
historical <- list(list(y0=rbinom(data.size,size=1,prob=0.2),

x0=matrix(rnorm(p*data.size),ncol=p,nrow=data.size)),
list(y0=rbinom(data.size, size=1, prob=0.5),

x0=matrix(rnorm(p*data.size),ncol=p,nrow=data.size)))

# Generate sampling priors
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# The null hypothesis here is H0: beta_1 >= 0. To calculate power,
# we can provide samples of beta_1 such that the mass of beta_1 < 0.
# To calculate type I error, we can provide samples of beta_1 such that
# the mass of beta_1 >= 0.
samp.prior.beta1 <- rnorm(100, mean=-3, sd=1)
# Here, mass is put on the alternative region, so power is calculated.
samp.prior.beta <- cbind(rnorm(100), samp.prior.beta1, matrix(rnorm(100*p), 100, p))

# Please see function "normalizing.constant" for how to obtain a0.coefficients
# Here, suppose one-degree polynomial regression is chosen by the "normalizing.constant"
# function. The coefficients are obtained for the intercept, a0_1 and a0_2.
a0.coefficients <- c(1, 0.5, -1)

nMC <- 100 # nMC should be larger in practice
nBI <- 50
N <- 3 # N should be larger in practice
result <- power.glm.random.a0(data.type=data.type, data.link=data.link,

data.size=data.size, historical=historical,
samp.prior.beta=samp.prior.beta, a0.coefficients=a0.coefficients,

delta=0, nMC=nMC, nBI=nBI, N=N)
summary(result)

power.two.grp.fixed.a0

Power/type I error calculation for data with two groups (treatment and
control group, no covariates) with fixed a0

Description

Power/type I error calculation for data with two groups (treatment and control group, no covariates)
with fixed a0 using power priors

Usage

power.two.grp.fixed.a0(
data.type,
n.t,
n.c,
historical = matrix(0, 1, 4),
nullspace.ineq = ">",
samp.prior.mu.t,
samp.prior.mu.c,
samp.prior.var.t,
samp.prior.var.c,
prior.mu.t.shape1 = 1,
prior.mu.t.shape2 = 1,
prior.mu.c.shape1 = 1,
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prior.mu.c.shape2 = 1,
delta = 0,
gamma = 0.95,
nMC = 10000,
nBI = 250,
N = 10000

)

Arguments

data.type Character string specifying the type of response. The options are "Normal",
"Bernoulli", "Poisson" and "Exponential".

n.t Sample size of the treatment group for the simulated datasets.
n.c Sample size of the control group for the simulated datasets.
historical (Optional) matrix of historical dataset(s). If data.type is "Normal", historical

is a matrix with four columns:
• The first column contains the sum of responses for the control group.
• The second column contains the sample size of the control group.
• The third column contains the sample variance of responses for the control

group.
• The fourth column contains the discounting parameter value a0 (between 0

and 1).
For all other data types, historical is a matrix with three columns:

• The first column contains the sum of responses for the control group.
• The second column contains the sample size of the control group.
• The third column contains the discounting parameter value a0 (between 0

and 1).
Each row represents a historical dataset.

nullspace.ineq Character string specifying the inequality of the null hypothesis. The options are
">" and "<". If ">" is specified, the null hypothesis (for non-exponential data) is
H0: µt - µc ≥ δ. If "<" is specified, the null hypothesis is H0: µt - µc ≤ δ. The
default choice is ">".

samp.prior.mu.t

Vector of possible values of µt to sample (with replacement) from. The vector
contains realizations from the sampling prior (e.g. normal distribution) for µt.

samp.prior.mu.c

Vector of possible values of µc to sample (with replacement) from. The vector
contains realizations from the sampling prior (e.g. normal distribution) for µc.

samp.prior.var.t

Vector of possible values of σ2
t to sample (with replacement) from. Only applies

if data.type is "Normal". The vector contains realizations from the sampling
prior (e.g. inverse-gamma distribution) for σ2

t .
samp.prior.var.c

Vector of possible values of σ2
c to sample (with replacement) from. Only applies

if data.type is "Normal". The vector contains realizations from the sampling
prior (e.g. inverse-gamma distribution) for σ2

c
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prior.mu.t.shape1

First hyperparameter of the initial prior for µt. The default is 1. Does not apply
if data.type is "Normal".

prior.mu.t.shape2

Second hyperparameter of the initial prior for µt. The default is 1. Does not
apply if data.type is "Normal".

prior.mu.c.shape1

First hyperparameter of the initial prior for µc. The default is 1. Does not apply
if data.type is "Normal".

prior.mu.c.shape2

Second hyperparameter of the initial prior for µc. The default is 1. Does not
apply if data.type is "Normal".

delta Prespecified constant that defines the boundary of the null hypothesis. The de-
fault is zero.

gamma Posterior probability threshold for rejecting the null. The null hypothesis is
rejected if posterior probability is greater gamma. The default is 0.95.

nMC Number of iterations (excluding burn-in samples) for the slice sampler or Gibbs
sampler. The default is 10,000.

nBI Number of burn-in samples for the slice sampler or Gibbs sampler. The default
is 250.

N Number of simulated datasets to generate. The default is 10,000.

Details

If data.type is "Bernoulli", "Poisson" or "Exponential", a single response from the treatment group
is assumed to follow Bern(µt), Pois(µt) or Exp(rate=µt), respectively, where µt is the mean of
responses for the treatment group. If data.type is "Normal", a single response from the treatment
group is assumed to follow N(µt, τ

−1) where τ is the precision parameter. The distributional
assumptions for the control group data are analogous.

samp.prior.mu.t and samp.prior.mu.c can be generated using the sampling priors (see exam-
ple).

If data.type is "Bernoulli", the initial prior for µt is beta(prior.mu.t.shape1, prior.mu.t.shape2).
If data.type is "Poisson", the initial prior for µt is Gamma(prior.mu.t.shape1, rate=prior.mu.t.shape2).
If data.type is "Exponential", the initial prior for µt is Gamma(prior.mu.t.shape1, rate=prior.mu.t.shape2).
The initial priors used for the control group data are analogous.

If data.type is "Normal", each historical dataset D0k is assumed to have a different precision
parameter τk. The initial prior for τ is the Jeffery’s prior, τ−1, and the initial prior for τk is τ−1

k .
The initial prior for the µc is the uniform improper prior.

If a sampling prior with support in the null space is used, the value returned is a Bayesian type I
error rate. If a sampling prior with support in the alternative space is used, the value returned is a
Bayesian power.

If data.type is "Normal", Gibbs sampling is used for model fitting. For all other data types,
numerical integration is used for modeling fitting.
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Value

The function returns a S3 object with a summary method. Power or type I error is returned, de-
pending on the sampling prior used. The posterior probabilities of the alternative hypothesis are
returned. Average posterior means of µt and µc and their corresponding biases are returned. If
data.type is "Normal", average posterior means of τ and τk’s (if historical data is given) are also
returned.

References

Yixuan Qiu, Sreekumar Balan, Matt Beall, Mark Sauder, Naoaki Okazaki and Thomas Hahn (2019).
RcppNumerical: ’Rcpp’ Integration for Numerical Computing Libraries. R package version 0.4-0.
https://CRAN.R-project.org/package=RcppNumerical

Chen, Ming-Hui, et al. "Bayesian design of noninferiority trials for medical devices using historical
data." Biometrics 67.3 (2011): 1163-1170.

See Also

two.grp.fixed.a0

Examples

data.type <- "Bernoulli"
n.t <- 100
n.c <- 100

# Simulate three historical datasets
historical <- matrix(0, ncol=3, nrow=3)
historical[1,] <- c(70, 100, 0.3)
historical[2,] <- c(60, 100, 0.5)
historical[3,] <- c(50, 100, 0.7)

# Generate sampling priors
set.seed(1)
b_st1 <- b_st2 <- 1
b_sc1 <- b_sc2 <- 1
samp.prior.mu.t <- rbeta(50000, b_st1, b_st2)
samp.prior.mu.c <- rbeta(50000, b_st1, b_st2)
# The null hypothesis here is H0: mu_t - mu_c >= 0. To calculate power,
# we can provide samples of mu.t and mu.c such that the mass of mu_t - mu_c < 0.
# To calculate type I error, we can provide samples of mu.t and mu.c such that
# the mass of mu_t - mu_c >= 0.
sub_ind <- which(samp.prior.mu.t < samp.prior.mu.c)
# Here, mass is put on the alternative region, so power is calculated.
samp.prior.mu.t <- samp.prior.mu.t[sub_ind]
samp.prior.mu.c <- samp.prior.mu.c[sub_ind]

N <- 1000 # N should be larger in practice
result <- power.two.grp.fixed.a0(data.type=data.type, n.t=n.t, n.c=n.t, historical=historical,

samp.prior.mu.t=samp.prior.mu.t, samp.prior.mu.c=samp.prior.mu.c,
delta=0, N=N)

summary(result)
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power.two.grp.random.a0

Power/type I error calculation for two groups (treatment and control
group, no covariates) with random a0

Description

Power/type I error calculation using normalized power priors for two groups (treatment and control
group, no covariates) with random a0

Usage

power.two.grp.random.a0(
data.type,
n.t,
n.c,
historical,
nullspace.ineq = ">",
samp.prior.mu.t,
samp.prior.mu.c,
samp.prior.var.t = 0,
samp.prior.var.c = 0,
prior.mu.t.shape1 = 1,
prior.mu.t.shape2 = 1,
prior.mu.c.shape1 = 1,
prior.mu.c.shape2 = 1,
prior.a0.shape1 = rep(1, 10),
prior.a0.shape2 = rep(1, 10),
lower.limits = rep(0, 10),
upper.limits = rep(1, 10),
slice.widths = rep(0.1, 10),
delta = 0,
gamma = 0.95,
nMC = 10000,
nBI = 250,
N = 10000

)

Arguments

data.type Character string specifying the type of response. The options are "Normal",
"Bernoulli", "Poisson" and "Exponential".

n.t Sample size of the treatment group for the simulated datasets.

n.c Sample size of the control group for the simulated datasets.

historical Matrix of historical dataset(s). If data.type is "Normal", historical is a
matrix with three columns:
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• The first column contains the sum of responses for the control group.
• The second column contains the sample size of the control group.
• The third column contains the sample variance of responses for the control

group.

For all other data types, historical is a matrix with two columns:

• The first column contains the sum of responses for the control group.
• The second column contains the sample size of the control group.

Each row represents a historical dataset.

nullspace.ineq Character string specifying the inequality of the null hypothesis. The options are
">" and "<". If ">" is specified, the null hypothesis (for non-exponential data) is
H0: µt - µc ≥ δ. If "<" is specified, the null hypothesis is H0: µt - µc ≤ δ. The
default choice is ">".

samp.prior.mu.t

Vector of possible values of µt to sample (with replacement) from. The vector
contains realizations from the sampling prior (e.g. normal distribution) for µt.

samp.prior.mu.c

Vector of possible values of µc to sample (with replacement) from. The vector
contains realizations from the sampling prior (e.g. normal distribution) for µc.

samp.prior.var.t

Vector of possible values of σ2
t to sample (with replacement) from. Only applies

if data.type is "Normal". The vector contains realizations from the sampling
prior (e.g. inverse-gamma distribution) for σ2

t .
samp.prior.var.c

Vector of possible values of σ2
c to sample (with replacement) from. Only applies

if data.type is "Normal". The vector contains realizations from the sampling
prior (e.g. inverse-gamma distribution) for σ2

c

prior.mu.t.shape1

First hyperparameter of the initial prior for µt. The default is 1. Does not apply
if data.type is "Normal".

prior.mu.t.shape2

Second hyperparameter of the initial prior for µt. The default is 1. Does not
apply if data.type is "Normal".

prior.mu.c.shape1

First hyperparameter of the initial prior for µc. The default is 1. Does not apply
if data.type is "Normal".

prior.mu.c.shape2

Second hyperparameter of the initial prior for µc. The default is 1. Does not
apply if data.type is "Normal".

prior.a0.shape1

Vector of the first shape parameters of the independent beta priors for a0. The
length of the vector should be equal to the number of historical datasets. The
default is a vector of one’s.

prior.a0.shape2

Vector of the second shape parameters of the independent beta priors for a0. The
length of the vector should be equal to the number of historical datasets. The
default is a vector of one’s.
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lower.limits Vector of lower limits for parameters to be used by the slice sampler. The length
of the vector should be equal to the number of historical datasets. The default is
0 for all parameters (may not be appropriate for all situations).

upper.limits Vector of upper limits for parameters to be used by the slice sampler. The length
of the vector should be equal to the number of historical datasets. The default is
1 for all parameters (may not be appropriate for all situations).

slice.widths Vector of initial slice widths used by the slice sampler. The length of the vector
should be equal to the number of historical datasets. The default is 0.1 for all
parameter (may not be appropriate for all situations).

delta Prespecified constant that defines the boundary of the null hypothesis. The de-
fault is zero.

gamma Posterior probability threshold for rejecting the null. The null hypothesis is
rejected if posterior probability is greater gamma. The default is 0.95.

nMC Number of iterations (excluding burn-in samples) for the slice sampler or Gibbs
sampler. The default is 10,000.

nBI Number of burn-in samples for the slice sampler or Gibbs sampler. The default
is 250.

N Number of simulated datasets to generate. The default is 10,000.

Details

If data.type is "Bernoulli", "Poisson" or "Exponential", a single response from the treatment group
is assumed to follow Bern(µt), Pois(µt) or Exp(rate=µt), respectively, where µt is the mean of
responses for the treatment group. If data.type is "Normal", a single response from the treatment
group is assumed to follow N(µt, τ

−1) where τ is the precision parameter. The distributional
assumptions for the control group data are analogous.

samp.prior.mu.t and samp.prior.mu.c can be generated using the sampling priors (see exam-
ple).

If data.type is "Bernoulli", the initial prior for µt is beta(prior.mu.t.shape1, prior.mu.t.shape2).
If data.type is "Poisson", the initial prior for µt is Gamma(prior.mu.t.shape1, rate=prior.mu.t.shape2).
If data.type is "Exponential", the initial prior for µt is Gamma(prior.mu.t.shape1, rate=prior.mu.t.shape2).
The initial priors used for the control group data are analogous.

If data.type is "Normal", historical datasets are assumed to have the same precision parameter as
the current dataset for computational simplicity. The initial prior for τ is the Jeffery’s prior, τ−1.
The initial prior for the µc is the uniform improper prior. Posterior samples of µc and τ are obtained
through Gibbs sampling.

Independent beta(prior.a0.shape1,prior.a0.shape1) priors are used for a0. Posterior samples
of a0 are obtained through slice sampling. The default lower limits for the parameters are 0. The
default upper limits for the parameters are 1. The default slice widths for the parameters are 0.1.
The defaults may not be appropriate for all situations, and the user can specify the appropriate limits
and slice width for each parameter.

If a sampling prior with support in the null space is used, the value returned is a Bayesian type I
error rate. If a sampling prior with support in the alternative space is used, the value returned is a
Bayesian power.
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Value

The function returns a S3 object with a summary method. Power or type I error is returned, de-
pending on the sampling prior used. The posterior probabilities of the alternative hypothesis are
returned. Average posterior means of µt and µc and their corresponding biases are returned. The
average posterior mean of a0 is returned. If data.type is "Normal", the average posterior mean of
τ is also returned.

References

Chen, Ming-Hui, et al. "Bayesian design of noninferiority trials for medical devices using historical
data." Biometrics 67.3 (2011): 1163-1170.

Neal, Radford M. Slice sampling. Ann. Statist. 31 (2003), no. 3, 705–767.

See Also

two.grp.random.a0

Examples

data.type <- "Bernoulli"
n.t <- 100
n.c <- 100

# Simulate three historical datasets
historical <- matrix(0, ncol=2, nrow=3)
historical[1,] <- c(70, 100)
historical[2,] <- c(60, 100)
historical[3,] <- c(50, 100)

# Generate sampling priors
set.seed(1)
b_st1 <- b_st2 <- 1
b_sc1 <- b_sc2 <- 1
samp.prior.mu.t <- rbeta(50000, b_st1, b_st2)
samp.prior.mu.c <- rbeta(50000, b_st1, b_st2)
# The null hypothesis here is H0: mu_t - mu_c >= 0. To calculate power,
# we can provide samples of mu.t and mu.c such that the mass of mu_t - mu_c < 0.
# To calculate type I error, we can provide samples of mu.t and mu.c such that
# the mass of mu_t - mu_c >= 0.
sub_ind <- which(samp.prior.mu.t < samp.prior.mu.c)
# Here, mass is put on the alternative region, so power is calculated.
samp.prior.mu.t <- samp.prior.mu.t[sub_ind]
samp.prior.mu.c <- samp.prior.mu.c[sub_ind]

N <- 10 # N should be larger in practice
result <- power.two.grp.random.a0(data.type=data.type, n.t=n.t, n.c=n.c, historical=historical,

samp.prior.mu.t=samp.prior.mu.t, samp.prior.mu.c=samp.prior.mu.c,
delta=0, nMC=10000, nBI=250, N=N)

summary(result)
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two.grp.fixed.a0 Model fitting for two groups (treatment and control group, no covari-
ates) with fixed a0

Description

Model fitting using power priors for two groups (treatment and control group, no covariates) with
fixed a0

Usage

two.grp.fixed.a0(
data.type,
y.c,
n.c,
v.c,
historical = matrix(0, 1, 4),
prior.mu.c.shape1 = 1,
prior.mu.c.shape2 = 1,
nMC = 10000,
nBI = 250

)

Arguments

data.type Character string specifying the type of response. The options are "Normal",
"Bernoulli", "Poisson" and "Exponential".

y.c Sum of responses for the control group.

n.c Sample size of the control group.

v.c (For normal data only) sample variance of responses for the control group.

historical (Optional) matrix of historical dataset(s). If data.type is "Normal", historical
is a matrix with four columns:

• The first column contains the sum of responses for the control group.
• The second column contains the sample size of the control group.
• The third column contains the sample variance of responses for the control

group.
• The fourth column contains the discounting parameter value a0 (between 0

and 1).

For all other data types, historical is a matrix with three columns:

• The first column contains the sum of responses for the control group.
• The second column contains the sample size of the control group.
• The third column contains the discounting parameter value a0 (between 0

and 1).

Each row represents a historical dataset.
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prior.mu.c.shape1

First hyperparameter of the initial prior for µc. The default is 1. Does not apply
if data.type is "Normal".

prior.mu.c.shape2

Second hyperparameter of the initial prior for µc. The default is 1. Does not
apply if data.type is "Normal".

nMC (For normal data only) number of iterations (excluding burn-in samples) for the
Gibbs sampler. The default is 10,000.

nBI (For normal data only) number of burn-in samples for the Gibbs sampler. The
default is 250.

Details

The power prior is applied on the data of the control group only. Therefore, only summaries of the
responses of the control group need to be entered.

If data.type is "Bernoulli", "Poisson" or "Exponential", a single response from the treatment group
is assumed to follow Bern(µt), Pois(µt) or Exp(rate=µt), respectively, where µt is the mean of
responses for the treatment group. The distributional assumptions for the control group data are
analogous.

If data.type is "Bernoulli", the initial prior for µt is beta(prior.mu.t.shape1, prior.mu.t.shape2).
If data.type is "Poisson", the initial prior for µt is Gamma(prior.mu.t.shape1, rate=prior.mu.t.shape2).
If data.type is "Exponential", the initial prior for µt is Gamma(prior.mu.t.shape1, rate=prior.mu.t.shape2).
The initial priors used for the control group data are analogous.

If data.type is "Normal", the responses are assumed to follow N(µc, τ
−1) where µc is the mean

of responses for the control group and τ is the precision parameter. Each historical dataset D0k

is assumed to have a different precision parameter τk. The initial prior for τ is the Jeffery’s prior,
τ−1, and the initial prior for τk is τ−1

k . The initial prior for the µc is the uniform improper prior.
Posterior samples are obtained through Gibbs sampling.

Value

The function returns a S3 object with a summary method. If data.type is "Normal", poste-
rior samples of µc, τ and τk’s (if historical data is given) are returned in the list item named
posterior.params. For all other data types, two scalars, c1 and c2, are returned in the list item
named posterior.params, representing the two parameters of the posterior distribution of µc. For
Bernoulli responses, the posterior distribution of µc is beta(c1, c2). For Poisson responses, the pos-
terior distribution of µc is Gamma(c1, c2) where c2 is the rate parameter. For exponential responses,
the posterior distribution of µc is Gamma(c1, c2) where c2 is the rate parameter.

References

Chen, Ming-Hui, et al. "Bayesian design of noninferiority trials for medical devices using historical
data." Biometrics 67.3 (2011): 1163-1170.

See Also

power.two.grp.fixed.a0
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Examples

data.type <- "Bernoulli"
y.c <- 70
n.c <- 100

# Simulate three historical datasets
historical <- matrix(0, ncol=3, nrow=3)
historical[1,] <- c(70, 100, 0.3)
historical[2,] <- c(60, 100, 0.5)
historical[3,] <- c(50, 100, 0.7)

set.seed(1)
result <- two.grp.fixed.a0(data.type=data.type, y.c=y.c, n.c=n.c, historical=historical)
summary(result)

two.grp.random.a0 Model fitting for two groups (treatment and control group, no covari-
ates) with random a0

Description

Model fitting using normalized power priors for two groups (treatment and control group, no co-
variates) with random a0

Usage

two.grp.random.a0(
data.type,
y.c,
n.c,
v.c,
historical,
prior.mu.c.shape1 = 1,
prior.mu.c.shape2 = 1,
prior.a0.shape1 = rep(1, 10),
prior.a0.shape2 = rep(1, 10),
lower.limits = rep(0, 10),
upper.limits = rep(1, 10),
slice.widths = rep(0.1, 10),
nMC = 10000,
nBI = 250

)

Arguments

data.type Character string specifying the type of response. The options are "Normal",
"Bernoulli", "Poisson" and "Exponential".
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y.c Sum of responses for the control group.

n.c Sample size of the control group.

v.c (For normal data only) sample variance of responses for the control group.

historical Matrix of historical dataset(s). If data.type is "Normal", historical is a
matrix with three columns:

• The first column contains the sum of responses for the control group.

• The second column contains the sample size of the control group.

• The third column contains the sample variance of responses for the control
group.

For all other data types, historical is a matrix with two columns:

• The first column contains the sum of responses for the control group.

• The second column contains the sample size of the control group.

Each row represents a historical dataset.

prior.mu.c.shape1

First hyperparameter of the initial prior for µc. The default is 1. Does not apply
if data.type is "Normal".

prior.mu.c.shape2

Second hyperparameter of the initial prior for µc. The default is 1. Does not
apply if data.type is "Normal".

prior.a0.shape1

Vector of the first shape parameters of the independent beta priors for a0. The
length of the vector should be equal to the number of historical datasets. The
default is a vector of one’s.

prior.a0.shape2

Vector of the second shape parameters of the independent beta priors for a0. The
length of the vector should be equal to the number of historical datasets. The
default is a vector of one’s.

lower.limits Vector of lower limits for parameters to be used by the slice sampler. The length
of the vector should be equal to the number of historical datasets. The default is
0 for all parameters (may not be appropriate for all situations).

upper.limits Vector of upper limits for parameters to be used by the slice sampler. The length
of the vector should be equal to the number of historical datasets. The default is
1 for all parameters (may not be appropriate for all situations).

slice.widths Vector of initial slice widths used by the slice sampler. The length of the vector
should be equal to the number of historical datasets. The default is 0.1 for all
parameter (may not be appropriate for all situations).

nMC Number of iterations (excluding burn-in samples) for the slice sampler or Gibbs
sampler. The default is 10,000.

nBI Number of burn-in samples for the slice sampler or Gibbs sampler. The default
is 250.
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Details

If data.type is "Bernoulli", "Poisson" or "Exponential", a single response from the treatment group
is assumed to follow Bern(µt), Pois(µt) or Exp(rate=µt), respectively, where µt is the mean of
responses for the treatment group. If data.type is "Normal", a single response from the treatment
group is assumed to follow N(µt, τ

−1) where τ is the precision parameter. The distributional
assumptions for the control group data are analogous.

If data.type is "Bernoulli", the initial prior for µt is beta(prior.mu.t.shape1, prior.mu.t.shape2).
If data.type is "Poisson", the initial prior for µt is Gamma(prior.mu.t.shape1, rate=prior.mu.t.shape2).
If data.type is "Exponential", the initial prior for µt is Gamma(prior.mu.t.shape1, rate=prior.mu.t.shape2).
The initial priors used for the control group data are analogous.

If data.type is "Normal", historical datasets are assumed to have the same precision parameter τ
as the current dataset for computational simplicity. The initial prior for τ is the Jeffery’s prior, τ−1.
The initial prior for the µc is the uniform improper prior. Posterior samples of µc and τ are obtained
through Gibbs sampling.

Independent beta(prior.a0.shape1,prior.a0.shape1) priors are used for a0. Posterior samples
of a0 are obtained through slice sampling. The default lower limits for the parameters are 0. The
default upper limits for the parameters are 1. The default slice widths for the parameters are 0.1.
The defaults may not be appropriate for all situations, and the user can specify the appropriate limits
and slice width for each parameter.

Value

The function returns a S3 object with a summary method. If data.type is "Normal", posterior
samples of µc, τ and a0 are returned. For all other data types, posterior samples of µc and a0 are
returned. If there are K historical datasets, then a0 = (a01, · · · , a0K).

References

Neal, Radford M. Slice sampling. Ann. Statist. 31 (2003), no. 3, 705–767.

See Also

power.two.grp.random.a0

Examples

data.type <- "Bernoulli"
y.c <- 70
n.c <- 100

# Simulate three historical datasets
historical <- matrix(0, ncol=2, nrow=3)
historical[1,] <- c(70, 100)
historical[2,] <- c(60, 100)
historical[3,] <- c(50, 100)

# Set parameters of the slice sampler
lower.limits <- rep(0, 3) # The dimension is the number of historical datasets
upper.limits <- rep(1, 3)
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slice.widths <- rep(0.1, 3)

set.seed(1)
result <- two.grp.random.a0(data.type=data.type, y.c=y.c, n.c=n.c, historical=historical,

lower.limits=lower.limits, upper.limits=upper.limits,
slice.widths=slice.widths, nMC=10000, nBI=250)

summary(result)
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