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2 boot.BTdecayLasso

boot.BTdecayLasso Compute the standard deviation of Bradley-Terry decay Lasso model
by bootstrapping

Description

Bootstrapping is done assuming that Maximum Likelihood’s estimation reflects the true abilities.
Same level of Lasso penalty "lambda" should be applied in different simulation models for Lasso
induced estimation.

Usage

boot.BTdecayLasso(
dataframe,
ability,
lambda,
boot = 100,
weight = NULL,
decay.rate = 0,
fixed = 1,
thersh = 1e-05,
max = 100,
iter = 100

)

Arguments

dataframe Generated using BTdataframe given raw data.

ability A column vector of teams ability, the last row is the home parameter. The row
number is consistent with the team’s index shown in dataframe. It can be gener-
ated using BTdataframe given raw data.

lambda The amount of Lasso penalty induced, only a single scalar is accepted in boot-
strapping.

boot Amount of simulations.

weight Weight for Lasso penalty on different abilities.

decay.rate The exponential decay rate. Usually ranging from (0, 0.01), A larger decay rate
weights more importance to most recent matches and the estimated parameters
reflect more on recent behaviour.

fixed A teams index whose ability will be fixed as 0. The worstTeam’s index can be
generated using BTdataframe given raw data.

thersh Threshold for convergence

max Maximum weight for wij (weight used for Adaptive Lasso).

iter Number of iterations used in L-BFGS-B algorithm.
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Details

100 times of simulation will be done by default, user can adjust the numbers of simulation by input
of boot. However, bootstrapping process is time consuming and usually 1000 time of simulations
is enough to provide a stable result.

More detailed description of "lambda", "penalty" and "weight" are documented in BTdecayLasso.

summary() function follows S3 method can be applied to view the outputs.

Value

A list with class "boot" contain Lasso and Hybrid Lasso’s bootstrapping’s mean and standard devi-
ation.

Lasso Lasso bootstrapping’s result. A three column matrix where first column is the
original estimation, the second column is bootstrapping mean and the last col-
umn is the bootstrapping standard deviation

HYBRID.Lasso HYBRID Lasso bootstrapping’s result. A three column matrix where the first
column is the original estimation, the second column is bootstrapping mean and
the last column is the bootstrapping standard deviation

References

Masarotto, G. and Varin, C.(2012) The Ranking Lasso and its Application to Sport Tournaments.
*The Annals of Applied Statistics* **6** 1949–1970.

Zou, H. (2006) The adaptive lasso and its oracle properties. *J.Amer.Statist.Assoc* **101** 1418–
1429.

See Also

BTdataframe for dataframe initialization, BTdecayLasso for detailed description

BTdataframe Dataframe initialization

Description

Dataframe initialization

Usage

BTdataframe(dataframe, home = TRUE)
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Arguments

dataframe Raw dataframe input, an example data "NFL2010" is attached in package for ref-
erence The raw data is a dataframe with 5 columns. First column is home teams.
Second column is away teams. Third column is the number of wins of home
teams (if home team defeats away team, record 1 here, 0 otherwise). Fourth
column is the number of wins of away teams (if home team defeats away team,
record 0 here, 1 otherwise). Fifth column is a scalar of time when the match
is played until now (Time lag). Any time scale can be used here. "NFL2010"
applies the unit of day.

home Whether home effect will be considered, the default is TRUE.

Details

Initial the raw dataframe and return an un-estimated ability vector and the worst team who loses
most.

Note that even if the tournament does not have any home team or away team, you can still provide
the match results according to the description above regardless of who is at home and who is away.
By selecting the home = FALSE, We duplicate the dataset, switch the home, away teams and also
the home, away match results. Then this dataset will be attached to the original dataset and all home
and away win’s number will be divided by 2. MLE estimation of home effect is proved to be an
exact 0.

The elimination of home effect by duplicating the original dataset will be less efficient than elimi-
nating the home parameter directly in iterations. Since most games such as football, basketball have
home effect and this method provides an idea of handling the case where some games have home
effect and some games are played on neutral place, this method is applied here.

Value

dataframe dataframe for Bradley-Terry run

ability Initial ability vector for iterations

worstTeam The worst team whose ability can be set as 0 during any model’s run

BTdecay Bradley-Terry Model with Exponential Decayed weighted likelihood

Description

Exponential decay rate is applied to the likelihood function to achieve a better track of current
abilities. When "decay.rate" is setting as 0, this is a standard Bradley-Terry Model whose estimated
parameters are equivalent to package "BradleyTerry2". Further detailed description is attached in
BTdecayLasso.

Usage

BTdecay(dataframe, ability, decay.rate = 0, fixed = 1, iter = 100)
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Arguments

dataframe Generated using BTdataframe given raw data.

ability A column vector of teams ability, the last row is the home parameter. The row
number is consistent with the team’s index shown in dataframe. It can be gener-
ated using BTdataframe given raw data.

decay.rate The exponential decay rate. Usually ranging from (0, 0.01), A larger decay rate
weights more importance to most recent matches and the estimated parameters
reflect more on recent behaviour.

fixed A teams index whose ability will be fixed as 0. The worstTeam’s index can be
generated using BTdataframe given raw data.

iter Number of iterations used in L-BFGS-B algorithm.

Details

The standard Bradley-Terry Model defines the winning probability of i against j,

P (Yij = 1) =
exp(τhtk

ij + µi − µj)

1 + exp(τhtk
ij + µi − µj)

τ is the home parameter and µi is the team i’s ability score. hij takes 1 if team i is at home,
-1 otherwise. Given, a complete tournament’s result. The objective likelihood function with an
exponential decay rate is,

n∑
k=1

∑
i<j

exp(−αtk) · (yij(τhtk
ij + µi − µj)− log(1 + exp(τhtk

ij + µi − µj)))

where n is the number of matches, α is the exponential decay rate and yij takes 0 if i is defeated
by j, 1 otherwise. tk is the time lag (time until now). This likelihood function is optimized using
L-BFGS-B method with package optimr and summary() function with S3 method can be applied
to view the outputs.

Value

List with class "BT" contains estimated abilities and convergent code, 0 stands for convergence
reaches, 1 stands for convergence not reaches. If 1 is returned, we suggest that decay rate should
be set lower. Bradley-Terry model fails to model the situation when a team wins or loses in all
matches. If a high decay rate is considered, a team who only loses or wins 1 matches long time ago
will also causes the same problem.

ability Estimated ability scores

convergence 0 stands for convergent, 1 stands for not convergent

decay.rate Decay rate of this model

Examples

##Initializing Dataframe
x <- BTdataframe(NFL2010)
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##Standard Bradley-Terry Model optimization
y <- BTdecay(x$dataframe, x$ability, decay.rate = 0, fixed = x$worstTeam)
summary(y)

##Dynamic approximation of current ability scores using exponential decayed likelihood.
##If we take decay.rate = 0.005
##Match happens one month before will weight exp(-0.15)=0.86 on log-likelihood function
z <- BTdecay(x$dataframe, x$ability, decay.rate = 0.005, fixed = x$worstTeam)
summary(z)

BTdecayLasso Bradley-Terry Model with Exponential Decayed weighted likelihood
and Adaptive Lasso

Description

Bradley-Terry model is applied for paired comparison data. Teams’ ability score is estimated by
maximizing log-likelihood function.

To achieve a better track of current abilities, we apply an exponential decay rate to weight the log-
likelihood function. The most current matches will weight more than previous matches. Parameter
"decay.rate" in most functions of this package is used to set the amount of exponential decay rate.
decay.rate should be non-negative and the appropriate range of it depends on time scale in original
dataframe. (see BTdataframe and parameter "dataframe"’s definition of fifth column) For example,
a unit of week with a "decay.rate" 0.007 is equivalent to the unit of day with "decay.rate" 0.001.
Usually, for sports matches, if we take the unit of day, it’s ranging from 0 to 0.01. The higher
choice of "decay.rate", the better track of current teams’ ability with a side effect of higher variance.

If "decay.rate" is too large, for example "0.1" with a unit of day, exp(−0.7) = 0.50. Only half weight
will be add to the likelihood for matches played one week ago and exp(−3.1) = 0.05 suggests that
previous matches took place one month ago will have little effect. Therefore, Only a few matches
are accounted for ability’s estimation. It will lead to a very high variance and uncertainty. Since
standard Bradley-Terry model can not handle the case where there is a team who wins or loses
all matches, such estimation may not provide convergent results. Thus, if our estimation provides
divergent result, an error will be returned and we suggest user to chose a smaller "decay.rate" or
adding more match results into the same modeling period.

By default, the Adaptive Lasso is implemented for variance reduction and team’s grouping. Adap-
tive Lasso is proved to have good grouping property. Apart from adaptive lasso, user can define
own weight for different Lasso constraint |µi − µj | where µi is team i’s ability.

Also by default, the whole Lasso path will be run. Similar to package "glmnet", user can provide
their own choice of Lasso penalty "lambda" and determine whether the whole Lasso path will be
run (since such run is time-consuming). However, we suggest that if user is not familiar with the
actual relationship among lambda, the amount of penalty, the amount of shrinkage and grouping
effect, a whole Lasso path should be run and selection of an appropriate lambda is done by AIC or
BIC criteria using BTdecayLassoC (since this model is time related, cross-validation method cannot
be applied). Also, users can use BTdecayLassoF to run with a specific Lasso penalty ranging from
0 to 1 (1 penalty means all estimators will shrink to 0).
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Two sets of estimated abilities will be given, the biased Lasso estimation and the HYBRID Lasso’s
estimation. HYBRID Lasso estimation solves the restricted Maximum Likelihood optimization
based on the group determined by Lasso’s estimation (Different team’s ability will converges to the
same value if Lasso penalty is added and these teams’ ability is setting to be equal as a restriction).

In addition, summary() using S3 method can be applied to view the outputs.

Usage

BTdecayLasso(
dataframe,
ability,
lambda = NULL,
weight = NULL,
path = TRUE,
decay.rate = 0,
fixed = 1,
thersh = 1e-05,
max = 100,
iter = 100

)

Arguments

dataframe Generated using BTdataframe given raw data.
ability A column vector of teams ability, the last row is the home parameter. The row

number is consistent with the team’s index shown in dataframe. It can be gener-
ated using BTdataframe given raw data.

lambda The amount of Lasso penalty induced. The input should be a positive scalar or
a sequence.

weight Weight for Lasso penalty on different abilities.
path whether the whole Lasso path will be run (plot.BTdecayLasso is enabled only if

path = TRUE)
decay.rate A non-negative exponential decay rate. Usually ranging from (0, 0.01), A larger

decay rate weights more importance to most recent matches and the estimated
parameters reflect more on recent behaviour.

fixed A teams index whose ability will be fixed as 0. The worstTeam’s index can be
generated using BTdataframe given raw data.

thersh Threshold for convergence used for Augmented Lagrangian Method.
max Maximum weight for wij (weight used for Adaptive Lasso)
iter Number of iterations used in L-BFGS-B algorithm.

Details

According to BTdecay, the objective likelihood function to be optimized is,
n∑

k=1

∑
i<j

exp(−αtk) · (yij(τhtk
ij + µi − µj)− log(1 + exp(τhtk

ij + µi − µj)))
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The Lasso constraint is given as, ∑
i<j

wij |µi − µj | ≤ s

where wij are predefined weight. For Adaptive Lasso,
∣∣wij = 1/(µMLE

i − µMLE
j )

∣∣.
Maximize this constraint objective function is equivalent to minimizing the following equation,

−l(µ, τ) + λ
∑
i<j

wij |µi − µj |

Where −l(µ, τ) is taking negative value of objective function above. Increase "lambda" will de-
crease "s", their relationship is monotone. Here, we define "penalty" as 1 − s/max(s). Thus,
"lambda" and "penalty" has a positive correlation.

Value

ability Estimated ability scores with user given lambda

likelihood Negative likelihood of objective function with user given lambda

df Degree of freedom with user given lambda(number of distinct µ)

penalty s/max(s) with user given lambda

Lambda User given lambda

ability.path if path = TRUE, estimated ability scores on whole Lasso path
likelihood.path

if path = TRUE, negative likelihood of objective function on whole Lasso path

df.path if path = TRUE, degree of freedom on whole Lasso path(number of distinct µ)

penalty.path if path = TRUE, s/max(s) on whole Lasso path

Lambda.path if path = TRUE, Whole Lasso path

path Whether whole Lasso path will be run
HYBRID.ability.path

If path = TRUE, the whole path of evolving of HYBRID ability
HYBRID.likelihood.path

if path = TRUE, the whole path of HYBRID likelihood

References

Masarotto, G. and Varin, C.(2012) The Ranking Lasso and its Application to Sport Tournaments.
*The Annals of Applied Statistics* **6** 1949–1970.

Zou, H. (2006) The adaptive lasso and its oracle properties. *J.Amer.Statist.Assoc* **101** 1418–
1429.

See Also

BTdataframe for dataframe initialization, plot.swlasso, plot.wlasso are used for Lasso path
plot if path = TRUE in this function’s run
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Examples

##Initializing Dataframe
x <- BTdataframe(NFL2010)

##The following code runs the main results
##Usually a single lambda's run will take 1-20 s
##The whole Adaptive Lasso run will take 5-20 min

##BTdecayLasso run with exponential decay rate 0.005 and
##lambda 0.1, use path = TRUE if you want to run whole LASSO path
y1 <- BTdecayLasso(x$dataframe, x$ability, lambda = 0.1, path = FALSE,

decay.rate = 0.005, fixed = x$worstTeam)
summary(y1)

##Defining equal weight
##Note that comparing to Adaptive weight, the user defined weight may not be
##efficient in groupiing. Therefore, to run the whole Lasso path
##(evolving of distinct ability scores), it may take a much longer time.
##We recommend the user to apply the default setting,
##where Adaptive Lasso will be run.

n <- nrow(x$ability) - 1
w2 <- matrix(1, nrow = n, ncol = n)
w2[lower.tri(w2, diag = TRUE)] <- 0

##BTdecayLasso run with exponential decay rate 0.005 and with a specific lambda 0.1
y2 <- BTdecayLasso(x$dataframe, x$ability, lambda = 0.1, weight = w2,

path = FALSE, decay.rate = 0.005, fixed = x$worstTeam)

summary(y2)

BTdecayLassoC Bradley-Terry Model with Exponential Decayed weighted likelihood
and weighted Lasso with AIC or BIC criteria

Description

Model selection via AIC or BIC criteria. For Lasso estimators, the degree of freedom is the number
of distinct groups of estimated abilities.

Usage

BTdecayLassoC(
dataframe,
ability,
weight = NULL,
criteria = "AIC",
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type = "HYBRID",
model = NULL,
decay.rate = 0,
fixed = 1,
thersh = 1e-05,
iter = 100,
max = 100

)

Arguments

dataframe Generated using BTdataframe given raw data.

ability A column vector of teams ability, the last row is the home parameter. The row
number is consistent with the team’s index shown in dataframe. It can be gener-
ated using BTdataframe given raw data.

weight Weight for Lasso penalty on different abilities

criteria "AIC" or "BIC"

type "HYBRID" or "LASSO"

model An Lasso path object with class wlasso or swlasso. If NULL, the whole lasso
path will be run.

decay.rate The exponential decay rate. Usually ranging from (0, 0.01), A larger decay rate
weights more importance to most recent matches and the estimated parameters
reflect more on recent behaviour.

fixed A teams index whose ability will be fixed as 0. The worstTeam’s index can be
generated using BTdataframe given raw data.

thersh Threshold for convergence

iter Number of iterations used in L-BFGS-B algorithm.

max Maximum weight for wij (weight used for Adaptive Lasso)

Details

This function is usually run after the run of whole Lasso path. "model" parameter is obtained by
whole Lasso pass’s run using BTdecayLasso. If no model is provided, this function will run Lasso
path first (time-consuming).

Users can select the information score added to HYBRID Lasso’s likelihood or original Lasso’s
likelihood. ("HYBRID" is recommended)

summary() function can be applied to view the outputs.

Value

Score Lowest AIC or BIC score

Optimal.degree The degree of freedom where lowest AIC or BIC score is achieved
Optimal.ability

The ability where lowest AIC or BIC score is achieved

ability Matrix contains all abilities computed in this algorithm
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Optimal.lambda The lambda where lowest score is attained

Optimal.penalty

The penalty (1- s/max(s)) where lowest score is attained

type Type of model selection method

decay.rate Decay rate of this model

References

Masarotto, G. and Varin, C.(2012) The Ranking Lasso and its Application to Sport Tournaments.
*The Annals of Applied Statistics* **6** 1949–1970.

Zou, H. (2006) The adaptive lasso and its oracle properties. *J.Amer.Statist.Assoc* **101** 1418–
1429.

See Also

BTdataframe for dataframe initialization, BTdecayLasso for obtaining a whole Lasso path

BTdecayLassoF Bradley-Terry Model with Exponential Decayed weighted likelihood
and Adaptive Lasso with a given penalty rate

Description

This function provides a method to computed the estimated abilities and lambda given an intuitive
fixed Lasso penalty rate. Since in Lasso method, the selection of lambda varies a lot with respect
to different datasets. We can keep the consistency of amount of Lasso penalty induced in differ-
ent datasets from different period by setting a fixed Lasso penalty rate "penalty". Please refer to
BTdecayLasso for the definition of "penalty" and its relationship with "lambda".

Usage

BTdecayLassoF(
dataframe,
ability,
penalty,
decay.rate = 0,
fixed = 1,
thersh = 1e-05,
max = 100,
iter = 100

)
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Arguments

dataframe Generated using BTdataframe given raw data.

ability A column vector of teams ability, the last row is the home parameter. It can
be generated using BTdataframe given raw data. The row number is con-
sistent with the team’s index shown in dataframe. It can be generated using
BTdataframe given raw data.

penalty The amount of Lasso penalty induced (1-s/max(s)) where is the sum of Lasso
penalty part.

decay.rate The exponential decay rate. Usually ranging from (0, 0.01), A larger decay rate
weights more importance to most recent matches and the estimated parameters
reflect more on recent behaviour.

fixed A teams index whose ability will be fixed as 0. The worstTeam’s index can be
generated using BTdataframe given raw data.

thersh Threshold for convergence

max Maximum weight for wij (weight used for Adaptive Lasso)

iter Number of iterations used in L-BFGS-B algorithm.

Details

The estimated ability given fixed penalty p = 1 − s/max(s) where s is the sum of Lasso penalty
part. When p = 0, this model is reduced to a standard Bradley-Terry Model. When p = 1, all ability
scores are shrinking to 0.

The parameter "penalty" should be ranging from 0.01 to 0.99 due to the iteration’s convergent error.

summary() function can be applied to view the outputs.

Value

The list with class "BTF" contains estimated abilities and other parameters.

ability Estimated ability scores

df Degree of freedom (number of distinct µ)

penalty Amount of Lasso Penalty

decay.rate Exponential decay rate

lambda Corresponding Lasso lambda given penalty rate

References

Masarotto, G. and Varin, C.(2012) The Ranking Lasso and its Application to Sport Tournaments.
*The Annals of Applied Statistics* **6** 1949–1970.

Zou, H. (2006) The adaptive lasso and its oracle properties. *J.Amer.Statist.Assoc* **101** 1418–
1429.

See Also

BTdataframe for dataframe initialization, BTdecayLasso for detailed description
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NFL2010 The 2010 NFL Regular Season

Description

A dataframe containing all match results with 5 columns

Usage

NFL2010

Format

A dataframe containing all match results with 5 columns

home.team Team who plays at home

away.team Team who plays away

home.win Take "1" if home team wins

away.win Take "1" if away team wins

date Number of days until now

plot.swlasso Plot the Lasso path

Description

Plot the whole lasso path run by BTdecayLasso() with given lambda and path = TRUE

Usage

##S3 method for class "swlasso"

Arguments

x Object with class "swlasso"

... Further arguments pass to or from other methods
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plot.wlasso Plot the Lasso path

Description

Plot the whole lasso path run by BTdecayLasso() with lambda = NULL and path = TRUE

Usage

##S3 method for class "wlasso"

Arguments

x Object with class "wlasso"

... Further arguments pass to or from other methods
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