Package 'ActiveDriver'

January 20, 2025

License G	SPL (>= 2)		
Description			
A mi	nutation analysis tool that discovers cancer driver genes with frequent mutations in pro-		
tein s	signalling sites such as post-translational modifications (phosphorylation, ubiquitina-		
tion,	, etc). The Poisson generalised linear regression model identifies genes where cancer muta-		
tions	s in signalling sites are more frequent than expected from the sequence of the entire gene. In-		
tegra	ation of mutations with signalling information helps find new driver genes and propose candi-		

date mechanisms to known drivers. Reference: Systematic analysis of somatic mutations in phosphorylation signaling predicts novel cancer drivers. Juri Reimand and Gary D Bader. Molecu-

Title Finding Cancer Driver Proteins with Enriched Mutations in Post-Translational Modification Sites

lar Systems Biology (2013) 9:637 <doi:10.1038/msb.2012.68>.

Depends R (>= 3.0)

Version 1.0.0

Imports stats, parallel, MASS

Collate 'ActiveDriver.R' RoxygenNote 6.0.1.9000 NeedsCompilation no

Author Juri Reimand [aut, cre]

Maintainer Juri Reimand < juri.reimand@utoronto.ca>

Repository CRAN

Date/Publication 2017-08-23 20:55:51 UTC

Contents

ActiveDriver	2
kinase_domains	3
mutations	4
phosphosites	4
read_fasta	5
sequences	5
sequence disorder	6

2 ActiveDriver

ActiveDriver	Identification of active protein sites (post-translational modification sites, signalling domains, etc) with specific and significant mutations.

Description

Identification of active protein sites (post-translational modification sites, signalling domains, etc) with specific and significant mutations.

Usage

```
ActiveDriver(sequences, seq_disorder, mutations, active_sites, flank = 7,
  mid_flank = 2, mc.cores = 1, simplified = FALSE,
  return_records = FALSE, skip_mismatch = TRUE,
  regression_type = "poisson", enriched_only = TRUE)
```

Arguments

sequences	character vector of protein sequences, names are protein IDs.			
seq_disorder	character vector of disorder in protein sequences, names are protein IDs and values are strings 1/0 for disordered/ordered protein residues.			
mutations	data frame of mutations, with [gene, sample_id, position, wt_residue, mut_residue] as columns.			
active_sites	data frame of active sites, with [gene, position, residue, kinase] as columns. Kinase field may be blank and is shown for informative purposes.			
flank	numeric for selecting region size around active sites considered important for site activity. Default value is 7. Ignored in case of simplified analysis.			
mid_flank	numeric for splitting flanking region size into proximal (<=X) and distal (>X). Default value is 2. Ignored in case of simplified analysis.			
mc.cores	numeric for indicating number of computing cores dedicated to computation. Default value is 1.			
simplified	true/false for selecting simplified analysis. Default value is FALSE. If TRUE, no flanking regions are considered and only indicated sites are tested for mutations.			
return_records	true/false for returning a collection of gene records with more data regarding sites and mutations. Default value is FALSE.			
skip_mismatch	true/false for skipping mutations whose reference protein residue does not match expected residue from FASTA sequence file.			
regression_type				
	'nb' for negative binomial, 'poisson' for poisson GLM. The latter is default.			
enriched_only	true/false to indicate whether only sites with enriched active site mutations will be included in the final p-value estimation (TRUE is default). If FALSE, sites with less than expected mutations will be also included.			

kinase_domains 3

Value

list with the following components: @return all_active_mutations - table with mutations that hit or flank an active site. Additional columns of interest include Status (DI - direct active mutation; N1 - proximal flanking mutation; N2 - distal flanking mutation) and Active_region (region ID of active sites in that protein).

```
all_active_sites -
```

all_region_based_pval - p-values for regions of sites, statistics on observed mutations (obs) and expected mutations (exp, low, high based on mean and s.d. from Poisson sampling). The field Region identifies region in all_active_sites.

Author(s)

Juri Reimand < juri.reimand@utoronto.ca>

References

Systematic analysis of somatic mutations in phosphorylation signaling predicts novel cancer drivers (2013, Molecular Systems Biology) by Juri Reimand and Gary Bader.

Examples

```
data(ActiveDriver_data)

phos_results = ActiveDriver(sequences, sequence_disorder, mutations, phosphosites)
ovarian_mutations = mutations[grep("ovarian", mutations$sample_id),]
phos_results_ovarian = ActiveDriver(sequences, sequence_disorder, ovarian_mutations, phosphosites)
GBM_muts = mutations[grep("glioblastoma", mutations$sample_id),]
kin_rslt_GBM = ActiveDriver(sequences, sequence_disorder, GBM_muts, kinase_domains, simplified=TRUE)
kin_results = ActiveDriver(sequences, sequence_disorder, mutations, kinase_domains, simplified=TRUE)
```

kinase_domains

Example kinase domains for ActiveDriver

Description

A dataset describing kinase domains. The variables are as follows:

Usage

```
data(ActiveDriver_data)
```

Format

A data frame with 1 observation of 4 variables

phosphosites phosphosites

Details

- gene. the gene symbol of the gene where the kinase domain occurs
- position. the position in the protein sequence where the kinase domain begins
- phos. TRUE
- residue. the kinase domain residues

mutations

Example mutations for ActiveDriver

Description

A dataset describing mis-sense mutations (i.e., substitutions in proteins). The variables are as follows:

Usage

data(ActiveDriver_data)

Format

A data frame with 408 observations of 5 variables

Details

- gene. the mutated gene
- sample_id. the sample where the mutation originates
- position. the position in the protein sequence where the mutation occurs
- wt_residue. the wild-type residue
- mut_residue. the mutant residue

phosphosites

Example phosphosites for ActiveDriver

Description

A dataset describing protein phosphorylation sites. The variables are as follows:

Usage

data(ActiveDriver_data)

Format

A data frame with 131 observations of 4 variables

read_fasta 5

Details

- gene. the gene symbol the phosphosite occurs in
- position. the position in the protein sequence where the phosphosite occurs
- residue. the phosphosite residue
- kinase. the kinase that phosphorylates this site

read_fasta

Read FASTA file as character vector.

Description

Read FASTA file as character vector.

Usage

```
read_fasta(fname)
```

Arguments

fname

name of file to be read.

Value

character vector with names corresponding to annotations from FASTA.

sequences

Example protein sequences for ActiveDriver

Description

A dataset containing the sequences of four proteins.

Usage

```
data(ActiveDriver_data)
```

Format

A named character vector with 4 elements

6 sequence_disorder

sequence_disorder

 $\label{protein} \textit{Example protein disorder for Active Driver}$

Description

A dataset containing the disorder of four proteins.

Usage

data(ActiveDriver_data)

Format

A named character vector with 4 elements

Index

```
* datasets
    kinase_domains, 3
    mutations, 4
    phosphosites, 4
    sequence_disorder, 6
    sequences, 5

ActiveDriver, 2
kinase_domains, 3
mutations, 4
phosphosites, 4
read_fasta, 5
sequence_disorder, 6
sequences, 5
```