% \iffalse meta-comment % % Copyright (C) 1999 Frank Mittelbach, Chris Rowley, David Carlisle % Copyright (C) 2004-2010 Frank Mittelbach, The LaTeX Project % Copyright (C) 2011-2024 % The LaTeX Project and any individual authors listed elsewhere % in this file. % % This file is part of the LaTeX base system. % ------------------------------------------- % % It may be distributed and/or modified under the % conditions of the LaTeX Project Public License, either version 1.3c % of this license or (at your option) any later version. % The latest version of this license is in % https://www.latex-project.org/lppl.txt % and version 1.3c or later is part of all distributions of LaTeX % version 2008 or later. % % This file has the LPPL maintenance status "maintained". % % The list of all files belonging to the LaTeX base distribution is % given in the file `manifest.txt'. See also `legal.txt' for additional % information. % % The list of derived (unpacked) files belonging to the distribution % and covered by LPPL is defined by the unpacking scripts (with % extension .ins) which are part of the distribution. % % \fi % % \iffalse % %%% From File: lttemplates.dtx % %<*driver> % \fi \ProvidesFile{lttemplates.dtx} [2024-11-17 v1.0d LaTeX Kernel (Prototype document functions)] % \iffalse \documentclass{l3doc} \GetFileInfo{lttemplates.dtx} \begin{document} \DocInput{lttemplates.dtx} \end{document} % % \fi % % \title{The \texttt{lttemplates.dtx} code\thanks{This file has version % \fileversion\ dated \filedate, \copyright\ \LaTeX\ % Project.}} % \author{^^A % Frank Mittelbach, Chris Rowley, David Carlisle, \LaTeX{} Project\thanks % {^^A % E-mail: % \href{mailto:latex-team@latex-project.org} % {latex-team@latex-project.org}^^A % }^^A % } % % \maketitle % % \section{Introduction} % % There are three broad \enquote{layers} between putting down ideas into % a source file and ending up with a typeset document. These layers of % document writing are % \begin{enumerate} % \item authoring of the text with mark-up; % \item document layout design; % \item implementation (with \TeX{} programming) of the design. % \end{enumerate} % We write the text as an author, and we see the visual output of the design % after the document is generated; the \TeX{} implementation in the middle is % the glue between the two. % % \LaTeX{}'s greatest success has been to standardise a system of mark-up that % balances the trade-off between ease of reading and ease of writing to suit % almost all forms of technical writing. It's % other original strength was a good background in typographical design; while % the standard \LaTeXe{} classes look somewhat dated now in terms of their % visual design, their typography is generally sound (barring the occasional % minor faults). % % However, \LaTeXe{} has always lacked a standard approach to customising % the visual design of a document. Changing the looks of the standard classes % involved either: % \begin{itemize} % \item Creating a new version of the implementation code of the class and % editing it. % \item Loading one of the many packages to customise certain elements of % the standard classes. % \item Loading a completely different document class, such as % \textsf{KOMA-Script} or \textsf{memoir}, that allows easy customisation. % \end{itemize} % All three of these approaches have their drawbacks and learning curves. % % The idea behind \pkg{lttemplates} is to cleanly separate the three layers % introduced at the beginning of this section, so that document authors who % are not programmers can easily change the design of their documents. % \pkg{lttemplates} also makes it easier for \LaTeX{} programmers to provide % their own customisations on top of a pre-existing class. % % \section{What is a document?} % % Besides the textual content of the words themselves, the source file % of a document contains mark-up elements that add structure to the % document. These elements include sectional divisions, figure/table % captions, lists of various sorts, theorems/proofs, and so on. % The list will be different for every document that can be written. % % Each element can be represented logically without worrying about the % formatting, with mark-up such as \cs{section}, \cs{caption}, % |\begin{enumerate}| and so on. The output of each one of these % document elements will be a typeset representation of the information % marked up, and the visual arrangement and design of these elements % can vary widely in producing a variety of desired outcomes. % % For each type of document element, there may be design variations that % contain the same sort of information but present it in slightly % different ways. For example, the difference between a numbered and an % unnumbered section, \cs{section} and |\section*|, or the difference % between an itemised list or an enumerated list. % % There are three distinct layers in the definition of % \enquote{a document} at this level % \begin{enumerate} % \item semantic elements such as the ideas of sections and lists; % \item a set of design solutions for representing these elements % visually; % \item specific variations for these designs that represent the % elements in the document. % \end{enumerate} % In the parlance of the template system, these are called types, % templates, and instances, and they are discussed below in sections % \ref{sec:types}, \ref{sec:templates}, and~\ref{sec:instances}, % respectively. % % \section {Types, templates, and instances} % % By formally declaring documents to be composed of mark-up elements % grouped into types, which are interpreted and typeset with a set of % templates, each of which has one or more instances with which to % compose each and every semantic unit of the text, we can cleanly % separate the components of document construction. % % All of the structures provided by the template system are global, % and do not respect \TeX{} grouping. % % \section{Template types} % \label{sec:types} % % An \emph{template type} (sometimes just \enquote{type}) is an % abstract idea of a document element that takes a fixed number of % arguments corresponding to the information from the document author % that it is representing. A sectioning type, for example, might take % three inputs: \enquote{title}, \enquote{short title}, and % \enquote{label}. % % Any given document class will define which types are to be % used in the document, and any template of a given type can be % used to generate an instance for the type. (Of course, different % templates will produce different typeset representations, but the % underlying content will be the same.) % % \begin{function}{\NewTemplateType} % \begin{syntax} % \cs{NewTemplateType} \Arg{template type} \Arg{no. of args} % \end{syntax} % This function defines an \meta{template type} taking % \meta{number of arguments}, where the \meta{type} is an % abstraction as discussed above. For example, % \begin{verbatim} % \NewTemplateType{sectioning}{3} % \end{verbatim} % creates a type \enquote{sectioning}, where each use of that % type will need three arguments. % \end{function} % % \section{Templates} % \label{sec:templates} % % A \emph{template} is a generalised design solution for representing % the information of a specified type. Templates that do the same % thing, but in different ways, are grouped together by their type % and given separate names. There are two important parts to a template: % \begin{itemize} % \item the parameters it takes to vary the design it is producing; % \item the implementation of the design. % \end{itemize} % As a document author or designer does not care about the % implementation but rather only the interface to the template, these two % aspects of the template definition are split into two independent % declarations, \cs{DeclareTemplateInterface} and % \cs{DeclareTemplateCode}. % % \begin{function}{\DeclareTemplateInterface} % \begin{syntax} % \cs{DeclareTemplateInterface} % ~~\Arg{type} \Arg{template} \Arg{no.~of args} % ~~\Arg{key list} % \end{syntax} % A \meta{template} interface is declared for a particular % \meta{type}, where the \meta{number of arguments} must % agree with the type declaration. The interface itself is % defined by the \meta{key list}, which is itself a key--value list % taking a specialized format: % \begin{quotation} % \obeylines % \noindent % \meta{key1}~":"~\meta{key type1}~"," % \meta{key2}~":"~\meta{key type2}~"," % \meta{key3}~":"~\meta{key type3}~"="~\meta{default3}~"," % \meta{key4}~":"~\meta{key type4}~"="~\meta{default4}~"," % \ldots % \end{quotation} % Each \meta{key} name should consist of \textsc{ascii} characters, % with the exception of |,|, |=| and \verb*| |. The recommended form % for key names is to use lower case letters, with dashes to separate % out different parts. Spaces are ignored in key names, so they can be % included or missed out at will. Each \meta{key} must have a % \meta{key type}, which defined the type of input that the \meta{key} % requires. A full list of key types is given in % Table~\ref{tab:key-types}. Each key may have a \meta{default} % value, which will be used in by the template if the \meta{key} is % not set explicitly. The \meta{default} should be of the correct % form to be accepted by the \meta{key type} of the \meta{key}: this % is not checked by the code. Expressions for numerical values are % evaluated when the template is used, thus for example values given % in terms of |em| or |ex| will be set respecting the prevailing font. % \end{function} % % \begin{table} % \centering % \begin{tabular}{>{\ttfamily}ll} % \toprule % \multicolumn{1}{l}{Key-type} & Description of input \\ % \midrule % boolean & \texttt{true} or \texttt{false} \\ % choice\Arg{choices} % & A list of pre-defined \meta{choices} \\ % commalist & A comma-separated list \\ % function\Arg{$N$} % & A function definition with $N$ arguments % ($N$ from $0$ to $9$) \\ % instance\Arg{name} % & An instance of type \meta{name} \\ % integer & An integer or integer expression \\ % length & A fixed length \\ % muskip & A math length with shrink and stretch components \\ % real & A real (floating point) value \\ % skip & A length with shrink and stretch components \\ % tokenlist & A token list: any text or commands \\ % \bottomrule % \end{tabular} % \caption{Key-types for defining template interfaces with % \cs{DeclareTemplateInterface}.} % \label{tab:key-types} % \end{table} % % \begin{function}{\KeyValue} % \begin{syntax} % \cs{KeyValue} \Arg{key name} % \end{syntax} % There are occasions where the default (or value) for one key % should be taken from another. The \cs{KeyValue} function can be % used to transfer this information without needing to know the % internal implementation of the key: % \begin{verbatim} % \DeclareTemplateInterface { type } { template } { no. of args } % { % key-name-1 : key-type = value , % key-name-2 : key-type = \KeyValue { key-name-1 }, % ... % } % \end{verbatim} % \end{function} % % \begin{function}{\DeclareTemplateCode} % \begin{syntax} % \cs{DeclareTemplateCode} % ~~\Arg{type} \Arg{template} \Arg{no.~of args} % ~~\Arg{key bindings} \Arg{code} % \end{syntax} % The relationship between a templates keys and the internal % implementation is created using the \cs{DeclareTemplateCode} % function. As with \cs{DeclareTemplateInterface}, the % \meta{template} name is given along with the \meta{type} % and \meta{number of arguments} required. The \meta{key bindings} % argument is a key--value list which specifies the relationship % between each \meta{key} of the template interface with an % underlying \meta{variable}. % % \begin{quotation} % \obeylines % \noindent % \meta{key1}~"="~\meta{variable1}, % \meta{key2}~"="~\meta{variable2}, % \meta{key3}~"="~global~\meta{variable3}, % \meta{key4}~"="~global~\meta{variable4}, % \ldots % \end{quotation} % With the exception of the choice, code and function key types, % the \meta{variable} here should be the name of an existing % \LaTeX3 register. As illustrated, the key word \enquote{global} % may be included in the listing to indicate that the \meta{variable} % should be assigned globally. A full list of variable bindings is % given in Table~\ref{tab:key-vars}. % % The \meta{code} argument of \cs{DeclareTemplateCode} is used % as the replacement text for the template when it is used, either % directly or as an instance. This may therefore accept arguments % |#1|, |#2|, \emph{etc}.~as detailed by the \meta{number of arguments} % taken by the type. % \end{function} % % \begin{table} % \centering % \begin{tabular}{>{\ttfamily}ll} % \toprule % \multicolumn{1}{l}{Key-type} & Description of binding \\ % \midrule % \ & Boolean variable, \emph{e.g}.~\cs{l_tmpa_bool} \\ % choice % & List of choice implementations % (see Section~\ref{sec:choices-key}) \\ % commalist & Comma list, \emph{e.g}.~\cs{l_tmpa_clist} \\ % function % & Function taking $N$ arguments, \emph{e.g}.~\cs{use_i:nn} \\ % instance \\ % integer & Integer variable, \emph{e.g}.~\cs{l_tmpa_int} \\ % length & Dimension variable, \emph{e.g}.~\cs{l_tmpa_dim} \\ % muskip & Muskip variable, \emph{e.g}.~\cs{l_tmpa_muskip} \\ % real & Floating-point variable, \emph{e.g}.~\cs{l_tmpa_fp} \\ % skip & Skip variable, \emph{e.g}.~\cs{l_tmpa_skip} \\ % tokenlist & Token list variable, \emph{e.g}.~\cs{l_tmpa_tl} \\ % \bottomrule % \end{tabular} % \caption{Bindings required for different key types when defining % template implementations with \cs{DeclareTemplateCode}. Apart % from \texttt{code}, \texttt{choice} and \texttt{function} % all of these accept the key word \texttt{global} to carry % out a global assignment.} % \label{tab:key-vars} % \end{table} % % \begin{function}{\AssignTemplateKeys} % \begin{syntax} % \cs{AssignTemplateKeys} % \end{syntax} % In the final argument of \cs{DeclareTemplateCode} the assignment of % keys defined by the template may be delayed by including the command % \cs{AssignTemplateKeys}. If this is \emph{not} present, keys are assigned % immediately before the template code. If \cs{AssignTemplateKeys} is % present, assignment is delayed until this point. Note that the % command must be \emph{directly} present in the code, not placed % within a nested command/macro. % \end{function} % % \begin{function}{\DeclareTemplateCopy} % \begin{syntax} % \cs{DeclareTemplateCopy} % ~~\Arg{type} \Arg{template2} \Arg{template1} % \end{syntax} % Copies \meta{template1} of \meta{type} to a new name \meta{template2}: % the copy can then be edited independent of the original. % \end{function} % % \section{Multiple choices} % \label{sec:choices-key} % % The \texttt{choice} key type implements multiple choice input. At the % interface level, only the list of valid choices is needed: % \begin{verbatim} % \DeclareTemplateInterface { foo } { bar } { 0 } % { key-name : choice { A, B, C } } % \end{verbatim} % where the choices are given as a comma-list (which must therefore % be wrapped in braces). A default value can also be given: % \begin{verbatim} % \DeclareTemplateInterface { foo } { bar } { 0 } % { key-name : choice { A, B, C } = A } % \end{verbatim} % % At the implementation level, each choice is associated with code, % using a nested key--value list. % \begin{verbatim} % \DeclareTemplateCode { foo } { bar } { 0 } % { % key-name = % { % A = Code-A , % B = Code-B , % C = Code-C % } % } % { ... } % \end{verbatim} % The two choice lists should match, but in the implementation a % special \texttt{unknown} choice is also available. This can be used % to ignore values and implement an \enquote{else} branch: % \begin{verbatim} % \DeclareTemplateCode { foo } { bar } { 0 } % { % key-name = % { % A = Code-A , % B = Code-B , % C = Code-C , % unknown = Else-code % } % } % { ... } % \end{verbatim} % The \texttt{unknown} entry must be the last one given, and should % \emph{not} be listed in the interface part of the template. % % For keys which accept the values \texttt{true} and \texttt{false} % both the boolean and choice key types can be used. As template % interfaces are intended to prompt clarity at the design level, the % boolean key type should be favoured, with the choice type reserved % for keys which take arbitrary values. % % \section{Instances} % \label{sec:instances} % % After a template is defined it still needs to be put to use. The % parameters that it expects need to be defined before it can be used in % a document. Every time a template has parameters given to it, an % \emph{instance} is created, and this is the code that ends up in the % document to perform the typesetting of whatever pieces of information % are input into it. % % For example, a template might say \enquote{here is a section with or % without a number that might be centred or left aligned and print its % contents in a certain font of a certain size, with a bit of a gap % before and after it} whereas an instance declares \enquote{this is a % section with a number, which is centred and set in $12\,\text{pt}$ % italic with a $10\,\text{pt}$ skip before and a % $12\,\text{pt}$ skip after it}. Therefore, an instance is just a % frozen version of a template with specific settings as chosen by the % designer. % % \begin{function}{\DeclareInstance} % \begin{syntax} % \cs{DeclareInstance} % ~~\Arg{type} \Arg{instance} \Arg{template} \Arg{parameters} % \end{syntax} % This function uses a \meta{template} for an \meta{type} % to create an \meta{instance}. The \meta{instance} will be set % up using the \meta{parameters}, which will set some of the % \meta{keys} in the \meta{template}. % % As a practical example, consider a type for document sections % (which might include chapters, parts, sections, \emph{etc}.), which % is called \texttt{sectioning}. One possible template for this % type might be called \texttt{basic}, and one instance of this % template would be a numbered section. The instance declaration might % read: % \begin{verbatim} % \DeclareInstance { sectioning } { section-num } { basic } % { % numbered = true , % justification = center , % font =\normalsize\itshape , % before-skip = 10pt , % after-skip = 12pt , % } % \end{verbatim} % Of course, the key names here are entirely imaginary, but illustrate % the general idea of fixing some settings. % \end{function} % % \begin{function}{\IfInstanceExistsT, \IfInstanceExistsF, \IfInstanceExistsTF} % \begin{syntax} % \cs{IfInstanceExistsTF} \Arg{type} \Arg{instance} \Arg{true code} \Arg{false code} % \end{syntax} % Tests if the named \meta{instance} of a \meta{type} exists, and % then inserts the appropriate code into the input stream. % \end{function} % % \begin{function}{\DeclareInstanceCopy} % \begin{syntax} % \cs{DeclareInstanceCopy} % ~~\Arg{type} \Arg{instance2} \Arg{instance1} % \end{syntax} % Copies the \meta{values} for \meta{instance1} for an % \meta{type} to \meta{instance2}. % \end{function} % % \section{Document interface} % % After the instances have been chosen, document commands must be % declared to use those instances in the document. \cs{UseInstance} % calls instances directly, and this command should be used internally % in document-level mark-up. % % \begin{function}{\UseInstance} % \begin{syntax} % \cs{UseInstance} % ~~\Arg{type} \Arg{instance} \meta{arguments} % \end{syntax} % Uses an \meta{instance} of the \meta{type}, which will require % \meta{arguments} as determined by the number specified for the % \meta{type}. The \meta{instance} must have been declared % before it can be used, otherwise an error is raised. % \end{function} % % \begin{function}{\UseTemplate} % \begin{syntax} % \cs{UseTemplate} \Arg{type} \Arg{template} % ~~\Arg{settings} \meta{arguments} % \end{syntax} % Uses the \meta{template} of the specified \meta{type}, % applying the \meta{settings} and absorbing \meta{arguments} as % detailed by the \meta{type} declaration. This in effect % is the same as creating an instance using \cs{DeclareInstance} % and immediately using it with \cs{UseInstance}, but without the % instance having any further existence. It is therefore useful where % a template needs to be used once. % % This function can also be used as the argument to \texttt{instance} % key types: % \begin{verbatim} % \DeclareInstance { type } { template } { instance } % { % instance-key = % \UseTemplate { type2 } { template2 } { } % } % \end{verbatim} % \end{function} % % \section{Changing existing definitions} % % Template parameters may be assigned specific defaults for instances % to use if the instance declaration doesn't explicit set those % parameters. In some cases, the document designer will wish to edit % these defaults to allow them to \enquote{cascade} to the instances. % The alternative would be to set each parameter identically for each % instance declaration, a tedious and error-prone process. % % \begin{function}{\EditTemplateDefaults} % \begin{syntax} % \cs{EditTemplateDefaults} % ~~\Arg{type} \Arg{template} \Arg{new defaults} % \end{syntax} % Edits the \meta{defaults} for a \meta{template} for an % \meta{type}. The \meta{new defaults}, given as a key--value % list, replace the existing defaults for the \meta{template}. This % means that the change will apply to instances declared after the % editing, but that instances which have already been created are % unaffected. % \end{function} % % \begin{function}{\EditInstance} % \begin{syntax} % \cs{EditInstance} % ~~\Arg{type} \Arg{instance} \Arg{new values} % \end{syntax} % Edits the \meta{values} for an \meta{instance} for an % \meta{type}. The \meta{new values}, given as a key--value % list, replace the existing values for the \meta{instance}. This % function is complementary to \cs{EditTemplateDefaults}: % \cs{EditInstance} changes a single instance while leaving the % template untouched. % \end{function} % % \section{\emph{Ad hoc} adjustment of templates} % % \begin{function}{\SetTemplateKeys} % \begin{syntax} % \cs{SetTemplateKeys} \Arg{type} \Arg{template} \Arg{keyvals} % \end{syntax} % At point of use it may be useful to apply changed to individual instances. % This is supported as each template key is made available for adjustment % using \cs{SetTemplateKeys}. % \end{function} % % For example, after % \begin{verbatim} % \NewTypeType{MyObj}{0} % \DeclareTemplateInterface{MyObj}{TemplateA}{0} % { % akey: tokenlist , % bkey: function{2} % } % \DeclareTemplateCode{MyObj}{TemplateA}{0} % { % akey = SomeTokens , % bkey = \func:nn , % } % \end{verbatim} % the template keys could be adjusted in an \emph{ad hoc} fashion using % \begin{verbatim} % \SetTemplateKeys{MyObj}{TemplateA} % { % akey = OtherTokens , % bkey = \AltFunc:nn % } % \end{verbatim} % % \section{Getting information about templates and instances} % % \begin{function}{\ShowInstanceValues} % \begin{syntax} % \cs{ShowInstanceValues} \Arg{type} \Arg{instance} % \end{syntax} % Shows the \meta{values} for an \meta{instance} of the given % \meta{type} at the terminal. % \end{function} % % \begin{function}{\ShowTemplateCode} % \begin{syntax} % \cs{ShowTemplateCode} \Arg{type} \Arg{template} % \end{syntax} % Shows the \meta{code} of a \meta{template} for an \meta{type} % in the terminal. % \end{function} % % \begin{function}{\ShowTemplateDefaults} % \begin{syntax} % \cs{ShowTemplateDefaults} \Arg{type} \Arg{template} % \end{syntax} % Shows the \meta{default} values of a \meta{template} for an % \meta{type} in the terminal. % \end{function} % % \begin{function}{\ShowTemplateInterface} % \begin{syntax} % \cs{ShowTemplateInterface} \Arg{type} \Arg{template} % \end{syntax} % Shows the \meta{keys} and associated \meta{key types} of a % \meta{template} for an \meta{type} in the terminal. % \end{function} % % \begin{function}{\ShowTemplateVariables} % \begin{syntax} % \cs{ShowTemplateVariables} \Arg{type} \Arg{template} % \end{syntax} % Shows the \meta{variables} and associated \meta{keys} of a % \meta{template} for an \meta{type} in the terminal. Note that % \texttt{code} and \texttt{choice} keys do not map directly to variables % but to arbitrary code. For \texttt{choice} keys, each valid choice % is shown as a separate entry in the list, with the key name and choice % separated by a space, for example % \begin{verbatim} % Template 'example' of type 'example' has variable mapping: % > demo unknown => \def \demo {?} % > demo c => \def \demo {c} % > demo b => \def \demo {b} % > demo a => \def \demo {a}. % \end{verbatim} % would be shown for a choice key \texttt{demo} with valid choices % \texttt{a}, \texttt{b} and \texttt{c}, plus code for an \texttt{unknown} % branch. % \end{function} % % \MaybeStop{\setlength\IndexMin{200pt}\PrintIndex} % % \section{The implementation} % % \begin{macrocode} %<@@=template> % \end{macrocode} % % \begin{macrocode} %<*2ekernel> \message{templates,} % % \end{macrocode} % % \begin{macrocode} %<*2ekernel|latexrelease> % \end{macrocode} % % \begin{macrocode} \ExplSyntaxOn % \end{macrocode} % % \begin{macrocode} %\NewModuleRelease{2024/06/01}{lttemplates} % {Prototype~document~commands}% % \end{macrocode} % % \subsection{Variables and constants} % % \begin{variable} % { % \c_@@_code_root_tl , % \c_@@_defaults_root_tl , % \c_@@_instances_root_tl , % \c_@@_keytypes_root_tl , % \c_@@_key_order_root_tl , % \c_@@_restrict_root_tl , % \c_@@_values_root_tl , % \c_@@_vars_root_tl % } % So that literal values are kept to a minimum. % \begin{macrocode} \tl_const:Nn \c_@@_code_root_tl { template~code~>~ } \tl_const:Nn \c_@@_defaults_root_tl { template~defaults~>~ } \tl_const:Nn \c_@@_instances_root_tl { template~instance~>~ } \tl_const:Nn \c_@@_keytypes_root_tl { template~key~types~>~ } \tl_const:Nn \c_@@_key_order_root_tl { template~key~order~>~ } \tl_const:Nn \c_@@_values_root_tl { template~values~>~ } \tl_const:Nn \c_@@_vars_root_tl { template~vars~>~ } % \end{macrocode} % \end{variable} % % \begin{variable}{\c_@@_keytypes_arg_seq} % A list of keytypes which also need additional data (an argument), % used to parse the keytype correctly. % \begin{macrocode} \seq_const_from_clist:Nn \c_@@_keytypes_arg_seq { choice , function , instance } % \end{macrocode} % \end{variable} % % \begin{variable}{\g_@@_type_prop} % For storing types and the associated number of arguments. % \begin{macrocode} \prop_new:N \g_@@_type_prop % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_assignments_tl} % When creating an instance, the assigned values are collected here. % \begin{macrocode} \tl_new:N \l_@@_assignments_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_default_tl} % The default value for a key is recovered here from the property list % in which it is stored. % \begin{macrocode} \tl_new:N \l_@@_default_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_error_bool} % A flag for errors to be carried forward. % \begin{macrocode} \bool_new:N \l_@@_error_bool % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_global_bool} % Used to indicate that assignments should be global. % \begin{macrocode} \bool_new:N \l_@@_global_bool % \end{macrocode} % \end{variable} % % \begin{variable} % { % \l_@@_key_name_tl , % \l_@@_keytype_tl , % \l_@@_keytype_arg_tl , % \l_@@_value_tl , % \l_@@_var_tl % } % When defining each key in a template, the name and type of the key % need to be separated and stored. Any argument needed by the % keytype is also stored separately. % \begin{macrocode} \tl_new:N \l_@@_key_name_tl \tl_new:N \l_@@_keytype_tl \tl_new:N \l_@@_keytype_arg_tl \tl_new:N \l_@@_value_tl \tl_new:N \l_@@_var_tl % \end{macrocode} % \end{variable} % % \begin{variable} % { % \l_@@_keytypes_prop , % \l_@@_key_order_seq , % \l_@@_values_prop , % \l_@@_vars_prop % } % To avoid needing too many difficult-to-follow csname assignments, % various scratch token registers are used to build up data, which is % then transferred % \begin{macrocode} \prop_new:N \l_@@_keytypes_prop \seq_new:N \l_@@_key_order_seq \prop_new:N \l_@@_values_prop \prop_new:N \l_@@_vars_prop % \end{macrocode} % \end{variable} % % \begin{variable} % { % \l_@@_tmp_clist , % \l_@@_tmp_dim , % \l_@@_tmp_int , % \l_@@_tmp_muskip , % \l_@@_tmp_skip , % \l_@@_tmp_tl % } % Scratch space. % \begin{macrocode} \clist_new:N \l_@@_tmp_clist \dim_new:N \l_@@_tmp_dim \int_new:N \l_@@_tmp_int \muskip_new:N \l_@@_tmp_muskip \skip_new:N \l_@@_tmp_skip \tl_new:N \l_@@_tmp_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\s_@@_mark, \s_@@_stop} % Internal scan marks. % \begin{macrocode} \scan_new:N \s_@@_mark \scan_new:N \s_@@_stop % \end{macrocode} % \end{variable} % % \begin{variable}{\q_@@_nil} % Internal quarks. % \begin{macrocode} \quark_new:N \q_@@_nil % \end{macrocode} % \end{variable} % % \begin{macro}[pTF]{\@@_quark_if_nil:n} % Branching quark conditional. % \begin{macrocode} \__kernel_quark_new_conditional:Nn \@@_quark_if_nil:N { F } % \end{macrocode} % \end{macro} % % \subsection{Testing existence and validity} % % There are a number of checks needed for either the existence of % a type, template or instance. There are also some for the % validity of a particular call. All of these are collected up here. % % \begin{macro}{\@@_execute_if_arg_agree:nnT} % A test agreement between the number of arguments for the template % type and that specified when creating a template. This is not done as a % separate conditional for efficiency and better error message % \begin{macrocode} \cs_new_protected:Npn \@@_execute_if_arg_agree:nnT #1#2#3 { \prop_get:NnN \g_@@_type_prop {#1} \l_@@_tmp_tl \int_compare:nNnTF {#2} = \l_@@_tmp_tl {#3} { \msg_error:nneee { template } { argument-number-mismatch } {#1} { \l_@@_tmp_tl } {#2} } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_execute_if_code_exist:nnT} % A template is only fully declared if the code has been set up, % which can be checked by looking for the template function itself. % \begin{macrocode} \cs_new_protected:Npn \@@_execute_if_code_exist:nnT #1#2#3 { \cs_if_exist:cTF { \c_@@_code_root_tl #1 / #2 } {#3} { \msg_error:nnnn { template } { no-template-code } {#1} {#2} } } % \end{macrocode} % \end{macro} % % \begin{macro} % {\@@_execute_if_keytype_exist:nT, \@@_execute_if_keytype_exist:VT} % The test for valid keytypes looks for a function to set up the key, % which is part of the \enquote{code} side of the template definition. % This avoids having different lists for the two parts of the process. % \begin{macrocode} \cs_new_protected:Npn \@@_execute_if_keytype_exist:nT #1#2 { \cs_if_exist:cTF { @@_store_value_ #1 :n } {#2} { \msg_error:nnn { template } { unknown-keytype } {#1} } } \cs_generate_variant:Nn \@@_execute_if_keytype_exist:nT { V } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_execute_if_type_exist:nT} % To check that a particular type is valid. % \begin{macrocode} \cs_new_protected:Npn \@@_execute_if_type_exist:nT #1#2 { \prop_if_in:NnTF \g_@@_type_prop {#1} {#2} { \msg_error:nnn { template } { unknown-type } {#1} } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_execute_if_keys_exist:nnT} % To check that the keys for a template have been set up before trying % to create any code, a simple check for the correctly-named keytype % property list. % \begin{macrocode} \cs_new_protected:Npn \@@_if_keys_exist:nnT #1#2#3 { \cs_if_exist:cTF { \c_@@_keytypes_root_tl #1 / #2 } {#3} { \msg_error:nnnn { template } { unknown-template } {#1} {#2} } } % \end{macrocode} % \end{macro} % % \begin{macro}[TF]{\@@_if_key_value:n, \@@_if_key_value:V} % Tests for the first token in a string being \cs{KeyValue}. % \begin{macrocode} \prg_new_conditional:Npnn \@@_if_key_value:n #1 { T , F , TF } { \str_if_eq:noTF { \KeyValue } { \tl_head:w #1 \q_nil \q_stop } \prg_return_true: \prg_return_false: } \prg_generate_conditional_variant:Nnn \@@_if_key_value:n { V } { T , F , TF } % \end{macrocode} % \end{macro} % % \begin{macro}[TF]{\@@_if_instance_exist:nn} % Testing for an instance % \begin{macrocode} \prg_new_conditional:Npnn \@@_if_instance_exist:nn #1#2 { T, F, TF } { \cs_if_exist:cTF { \c_@@_instances_root_tl #1 / #2 } \prg_return_true: \prg_return_false: } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_if_use_template:nTF} % Tests for the first token in a string being \cs{UseTemplate}. % \begin{macrocode} \prg_new_conditional:Npnn \@@_if_use_template:n #1 { TF } { \str_if_eq:noTF { \UseTemplate } { \tl_head:w #1 \q_nil \q_stop } \prg_return_true: \prg_return_false: } % \end{macrocode} % \end{macro} % % \subsection{Saving and recovering property lists} % % The various property lists for templates have to be shuffled in % and out of storage. % % \begin{macro} % { % \@@_store_defaults:nn , % \@@_store_keytypes:nn , % \@@_store_values:nn , % \@@_store_vars:nn % } % The defaults and keytypes are transferred from the scratch property % lists to the \enquote{proper} lists for the template being created. % \begin{macrocode} \cs_new_protected:Npn \@@_store_defaults:nn #1#2 { \debug_suspend: \prop_gclear_new:c { \c_@@_defaults_root_tl #1 / #2 } \prop_gset_eq:cN { \c_@@_defaults_root_tl #1 / #2 } \l_@@_values_prop \debug_resume: } \cs_new_protected:Npn \@@_store_keytypes:nn #1#2 { \debug_suspend: \prop_if_exist:cTF { \c_@@_keytypes_root_tl #1 / #2 } { \msg_info:nnnn { template } { declare-template-interface } {#1} {#2} \prop_gclear:c { \c_@@_keytypes_root_tl #1 / #2 } } { \prop_new:c { \c_@@_keytypes_root_tl #1 / #2 } } \prop_gset_eq:cN { \c_@@_keytypes_root_tl #1 / #2 } \l_@@_keytypes_prop \seq_gclear_new:c { \c_@@_key_order_root_tl #1 / #2 } \seq_gset_eq:cN { \c_@@_key_order_root_tl #1 / #2 } \l_@@_key_order_seq \debug_resume: } \cs_new_protected:Npn \@@_store_values:nn #1#2 { \debug_suspend: \prop_clear_new:c { \c_@@_values_root_tl #1 / #2 } \prop_set_eq:cN { \c_@@_values_root_tl #1 / #2 } \l_@@_values_prop \debug_resume: } \cs_new_protected:Npn \@@_store_vars:nn #1#2 { \debug_suspend: \prop_gclear_new:c { \c_@@_vars_root_tl #1 / #2 } \prop_gset_eq:cN { \c_@@_vars_root_tl #1 / #2 } \l_@@_vars_prop \debug_resume: } % \end{macrocode} % \end{macro} % % \begin{macro} % { % \@@_recover_defaults:nn , % \@@_recover_keytypes:nn , % \@@_recover_values:nn , % \@@_recover_vars:nn % } % Recovering the stored data for a template is rather less complex % than storing it. All that happens is the data is transferred from % the permanent to the scratch storage. However, we need to check the % scratch storage does exist. % \begin{macrocode} \cs_new_protected:Npn \@@_recover_defaults:nn #1#2 { \prop_if_exist:cTF { \c_@@_defaults_root_tl #1 / #2 } { \prop_set_eq:Nc \l_@@_values_prop { \c_@@_defaults_root_tl #1 / #2 } } { \prop_clear:N \l_@@_values_prop } } \cs_new_protected:Npn \@@_recover_keytypes:nn #1#2 { \prop_if_exist:cTF { \c_@@_keytypes_root_tl #1 / #2 } { \prop_set_eq:Nc \l_@@_keytypes_prop { \c_@@_keytypes_root_tl #1 / #2 } } { \prop_clear:N \l_@@_keytypes_prop } \seq_if_exist:cTF { \c_@@_key_order_root_tl #1 / #2 } { \seq_set_eq:Nc \l_@@_key_order_seq { \c_@@_key_order_root_tl #1 / #2 } } { \seq_clear:N \l_@@_key_order_seq } } \cs_new_protected:Npn \@@_recover_values:nn #1#2 { \prop_if_exist:cTF { \c_@@_values_root_tl #1 / #2 } { \prop_set_eq:Nc \l_@@_values_prop { \c_@@_values_root_tl #1 / #2 } } { \prop_clear:N \l_@@_values_prop } } \cs_new_protected:Npn \@@_recover_vars:nn #1#2 { \prop_if_exist:cTF { \c_@@_vars_root_tl #1 / #2 } { \prop_set_eq:Nc \l_@@_vars_prop { \c_@@_vars_root_tl #1 / #2 } } { \prop_clear:N \l_@@_vars_prop } } % \end{macrocode} % \end{macro} % % \subsection{Creating new template types} % % \begin{macro}{\@@_define_type:nn, \@@_declare_type:nn} % Although the type is the \enquote{top level} of the template % system, it is actually very easy to implement. All that happens is that % the number of arguments required is recorded, indexed by the name of the % type. % \begin{macrocode} \cs_new_protected:Npn \@@_define_type:nn #1#2 { \prop_if_in:NnTF \g_@@_type_prop {#1} { \msg_error:nnn { template } { type-already-defined } {#1} } { \@@_declare_type:nn {#1} {#2} } } \cs_new_protected:Npn \@@_declare_type:nn #1#2 { \int_set:Nn \l_@@_tmp_int {#2} \int_compare:nTF { 0 <= \l_@@_tmp_int <= 9 } { \msg_info:nnnV { template } { declare-type } {#1} \l_@@_tmp_int \prop_gput:NnV \g_@@_type_prop {#1} \l_@@_tmp_int } { \msg_error:nnnV { template } { bad-number-of-arguments } {#1} \l_@@_tmp_int } } % \end{macrocode} % \end{macro} % % \subsection{Design part of template declaration} % % The \enquote{design} part of a template declaration defines the general % behaviour of each key, and possibly a default value. However, it does % not include the implementation. This means that what happens here is % the two properties are saved to appropriate lists, which can then % be used later to recover the information when implementing the keys. % % \begin{macro}{\@@_declare_template_keys:nnnn} % The main function for the \enquote{design} part of creating a template % starts by checking that the type exists and that the number of % arguments required agree. If that is all fine, then the two storage % areas for defaults and keytypes are initialised. The mechanism is then % set up for the \pkg{l3keys} module to actually parse the keys. % Finally, the code hands of to the storage routine to save the parsed % information properly. % \begin{macrocode} \cs_new_protected:Npn \@@_declare_template_keys:nnnn #1#2#3#4 { \@@_execute_if_type_exist:nT {#1} { \@@_execute_if_arg_agree:nnT {#1} {#3} { \prop_clear:N \l_@@_values_prop \prop_clear:N \l_@@_keytypes_prop \seq_clear:N \l_@@_key_order_seq \keyval_parse:NNn \@@_parse_keys_elt:n \@@_parse_keys_elt:nn {#4} \@@_store_defaults:nn {#1} {#2} \@@_store_keytypes:nn {#1} {#2} } } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_parse_keys_elt:n} % \begin{macro}{\@@_parse_keys_elt_aux:n} % \begin{macro}{\@@_parse_keys_elt_aux:} % Processing the key part of the key--value pair is always carried out % using this function, even if a value was found. First, the key name % is separated from the keytype, and if necessary the keytype is % separated into two parts. This information is then used to check that % the keytype is valid, before storing the keytype (plus argument if % necessary) as a property of the key name. The key name is also stored % (in braces) in the token list to record the order the keys are defined % in. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_keys_elt:n #1 { \@@_split_keytype:n {#1} \bool_if:NF \l_@@_error_bool { \@@_execute_if_keytype_exist:VT \l_@@_keytype_tl { \seq_map_function:NN \c_@@_keytypes_arg_seq \@@_parse_keys_elt_aux:n \bool_if:NF \l_@@_error_bool { \seq_if_in:NoTF \l_@@_key_order_seq \l_@@_key_name_tl { \msg_error:nnV { template } { duplicate-key-interface } \l_@@_key_name_tl } { \@@_parse_keys_elt_aux: } } } } } \cs_new_protected:Npn \@@_parse_keys_elt_aux:n #1 { \str_if_eq:VnT \l_@@_keytype_tl {#1} { \tl_if_empty:NT \l_@@_keytype_arg_tl { \msg_error:nnn { template } { keytype-requires-argument } {#1} \bool_set_true:N \l_@@_error_bool \seq_map_break: } } } \cs_new_protected:Npn \@@_parse_keys_elt_aux: { \tl_set:Ne \l_@@_tmp_tl { \l_@@_keytype_tl \tl_if_empty:NF \l_@@_keytype_arg_tl { { \l_@@_keytype_arg_tl } } } \prop_put:NVV \l_@@_keytypes_prop \l_@@_key_name_tl \l_@@_tmp_tl \seq_put_right:NV \l_@@_key_order_seq \l_@@_key_name_tl \str_if_eq:VnT \l_@@_keytype_tl { choice } { \clist_if_in:NnT \l_@@_keytype_arg_tl { unknown } { \msg_error:nn { template } { choice-unknown-reserved } } } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_parse_keys_elt:nn} % For keys which have a default, the keytype and key name are first % separated out by the \cs{@@_parse_keys_elt:n} % routine, before storing the default value in the scratch property list. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_keys_elt:nn #1#2 { \@@_parse_keys_elt:n {#1} \use:c { @@_store_value_ \l_@@_keytype_tl :n } {#2} } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_split_keytype:n} % \begin{macro}{\@@_split_keytype_aux:w} % The keytype and key name should be separated by |:|. As the % definition might be given inside or outside of a code block, % the category code of colons is standardised. After % that, the standard delimited argument method is used to separate the % two parts. % \begin{macrocode} \cs_new_protected:Npe \@@_split_keytype:n #1 { \exp_not:N \bool_set_false:N \exp_not:N \l_@@_error_bool \tl_set:Nn \exp_not:N \l_@@_tmp_tl {#1} \tl_replace_all:Nnn \exp_not:N \l_@@_tmp_tl { : } { \token_to_str:N : } \tl_if_in:VnTF \exp_not:N \l_@@_tmp_tl { \token_to_str:N : } { \exp_not:n { \tl_clear:N \l_@@_key_name_tl \exp_after:wN \@@_split_keytype_aux:w \l_@@_tmp_tl \s_@@_stop } } { \exp_not:N \bool_set_true:N \exp_not:N \l_@@_error_bool \msg_error:nnn { template } { missing-keytype } {#1} } } \use:e { \cs_new_protected:Npn \exp_not:N \@@_split_keytype_aux:w #1 \token_to_str:N : #2 \s_@@_stop { \tl_put_right:Ne \exp_not:N \l_@@_key_name_tl { \exp_not:N \tl_trim_spaces:e { \exp_not:N \tl_to_str:n {#1} } } \tl_if_in:nnTF {#2} { \token_to_str:N : } { \tl_put_right:Nn \exp_not:N \l_@@_key_name_tl { \token_to_str:N : } \exp_not:N \@@_split_keytype_aux:w #2 \s_@@_stop } { \exp_not:N \tl_if_empty:NTF \exp_not:N \l_@@_key_name_tl { \msg_error:nnn { template } { empty-key-name } { \token_to_str:N : #2 } } { \exp_not:N \@@_split_keytype_arg:n {#2} } } } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_split_keytype_arg:n, \@@_split_keytype_arg:V} % \begin{macro}{\@@_split_keytype_arg_aux:n} % \begin{macro}{\@@_split_keytype_arg_aux:w} % The second stage of sorting out the keytype is to check for an % argument. As there is no convenient delimiting token to look for, % a check is made instead for each possible text value for the keytype. % To keep things faster, this only involves the keytypes that need an % argument. If a match is made, then a check is also needed to see that % it is at the start of the keytype information. All being well, the % split can then be applied. Any non-matching keytypes are assumed to % be \enquote{correct} as given, and are left alone (this is checked by % other code). % \begin{macrocode} \cs_new_protected:Npn \@@_split_keytype_arg:n #1 { \tl_set:Ne \l_@@_keytype_tl { \tl_trim_spaces:n {#1} } \tl_clear:N \l_@@_keytype_arg_tl \cs_set_protected:Npn \@@_split_keytype_arg_aux:n ##1 { \tl_if_in:nnT {#1} {##1} { \cs_set:Npn \@@_split_keytype_arg_aux:w ####1 ##1 ####2 \s_@@_stop { \tl_if_blank:nT {####1} { \tl_set:Ne \l_@@_keytype_tl { \tl_trim_spaces:n {##1} } \tl_if_blank:nF {####2} { \tl_set:Ne \l_@@_keytype_arg_tl { \use:n ####2 } } \seq_map_break: } } \@@_split_keytype_arg_aux:w #1 \s_@@_stop } } \seq_map_function:NN \c_@@_keytypes_arg_seq \@@_split_keytype_arg_aux:n } \cs_generate_variant:Nn \@@_split_keytype_arg:n { V } \cs_new:Npn \@@_split_keytype_arg_aux:n #1 { } \cs_new:Npn \@@_split_keytype_arg_aux:w #1 \s_@@_stop { } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \subsubsection{Storing values} % % As \pkg{lttemplates} pre-processes key values for efficiency reasons, % there is a need to convert the values given as defaults into % \enquote{ready to use} data. The same general idea is true when an instance % is declared. However, assignments are not made until an instance is % used, and so there has to be some intermediate storage. Furthermore, % the ability to delay evaluation of results is needed. To achieve these % aims, a series of \enquote{process and store} functions are defined here. % % All of the information about the key (the key name and the keytype) % is already stored as variables. The same property list is always used % to store the data, meaning that the only argument required is the % value to be processed and potentially stored. % % \begin{macro}{\@@_store_value_boolean:n} % \begin{macrocode} \cs_new_protected:Npn \@@_store_value_boolean:n #1 { \prop_put:Non \l_@@_values_prop \l_@@_key_name_tl {#1} } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_store_value:n, \@@_store_value_choice:n, % \@@_store_value_function:n, \@@_store_value_instance:n} % With no need to worry about delayed evaluation, these keytypes all % just store the input directly. % \begin{macrocode} \cs_new_protected:Npn \@@_store_value:n #1 { \prop_put:Non \l_@@_values_prop \l_@@_key_name_tl {#1} } \cs_new_eq:NN \@@_store_value_choice:n \@@_store_value:n \cs_new_eq:NN \@@_store_value_function:n \@@_store_value:n \cs_new_eq:NN \@@_store_value_instance:n \@@_store_value:n % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_store_value_aux:Nn, \@@_store_value_integer:n, % \@@_store_value_length:n, \@@_store_value_muskip:n, % \@@_store_value_real:n, \@@_store_value_skip:n, % \@@_store_value_tokenlist:n, \@@_store_value_commalist:n} % Storing values in \cs{l_@@_values_prop} is in most cases the same. % \begin{macrocode} \cs_new_protected:Npn \@@_store_value_aux:Nn #1#2 { \prop_put:Non \l_@@_values_prop \l_@@_key_name_tl {#2} } \cs_new_protected:Npn \@@_store_value_integer:n { \@@_store_value_aux:Nn \int_eval:n } \cs_new_protected:Npn \@@_store_value_length:n { \@@_store_value_aux:Nn \dim_eval:n } \cs_new_protected:Npn \@@_store_value_muskip:n { \@@_store_value_aux:Nn \muskip_eval:n } \cs_new_protected:Npn \@@_store_value_real:n { \@@_store_value_aux:Nn \fp_eval:n } \cs_new_protected:Npn \@@_store_value_skip:n { \@@_store_value_aux:Nn \skip_eval:n } \cs_new_protected:Npn \@@_store_value_tokenlist:n { \@@_store_value_aux:Nn \use:n } \cs_new_eq:NN \@@_store_value_commalist:n \@@_store_value_tokenlist:n % \end{macrocode} % \end{macro} % % \subsection{Implementation part of template declaration} % % \begin{macro}{\@@_declare_template_code:nnnnn} % \begin{macro}{\@@_declare_template_code:nnnn} % The main function for implementing a template starts with a couple of % simple checks to make sure that there are no obvious mistakes: the % number of arguments must agree and the template keys must have been % declared. % \begin{macrocode} \cs_new_protected:Npn \@@_declare_template_code:nnnnn #1#2#3#4#5 { \@@_execute_if_type_exist:nT {#1} { \@@_execute_if_arg_agree:nnT {#1} {#3} { \@@_if_keys_exist:nnT {#1} {#2} { \@@_store_key_implementation:nnn {#1} {#2} {#4} \regex_match:nnTF { \c { AssignTemplateKeys } } {#5} { \@@_declare_template_code:nnnn {#1} {#2} {#3} {#5} } { \@@_declare_template_code:nnnn {#1} {#2} {#3} { \AssignTemplateKeys #5 } } } } } } \cs_new_protected:Npn \@@_declare_template_code:nnnn #1#2#3#4 { \cs_if_exist:cT { \c_@@_code_root_tl #1 / #2 } { \msg_info:nnnn { template } { declare-template-code } {#1} {#2} } \cs_generate_from_arg_count:cNnn { \c_@@_code_root_tl #1 / #2 } \cs_gset_protected:Npn {#3} {#4} } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_store_key_implementation:nnn} % Actually storing the implementation part of a template is quite easy % as it only requires the list of keys given to be turned into a % property list. There is also some error-checking to do, hence the need % to have the list of defined keytypes available. In certain cases % (when choices are involved) parsing the key results in changes to the % default values. That is why they are loaded and then saved again. % \begin{macrocode} \cs_new_protected:Npn \@@_store_key_implementation:nnn #1#2#3 { \@@_recover_defaults:nn {#1} {#2} \@@_recover_keytypes:nn {#1} {#2} \prop_clear:N \l_@@_vars_prop \keyval_parse:nnn { \@@_parse_vars_elt:n } { \@@_parse_vars_elt:nnn { #1 / #2 } } {#3} \@@_store_vars:nn {#1} {#2} \prop_map_inline:Nn \l_@@_keytypes_prop { \msg_error:nnnnn { template } { key-not-implemented } {##1} {#2} {#1} } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_parse_vars_elt:n} % At the implementation stage, every key must have a value given. So % this is an error function. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_vars_elt:n #1 { \msg_error:nnn { template } { key-no-variable } {#1} } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_parse_vars_elt:nnn} % \begin{macro}{\@@_parse_vars_elt_aux:nn} % \begin{macro}{\@@_parse_vars_elt_aux:nw} % \begin{macro}{\@@_parse_vars_elt_aux:nnn, \@@_parse_vars_elt_aux:nne} % \begin{macro}{\@@_parse_vars_elt_key:nn} % The actual storage part here is very simple: the storage bin name % is placed into the property list. At the same time, a comparison is % made with the keytypes defined earlier: if there is a mismatch then % an error is raised. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_vars_elt:nnn #1#2#3 { \tl_set:Ne \l_@@_key_name_tl { \tl_trim_spaces:e { \tl_to_str:n {#2} } } \prop_get:NVNTF \l_@@_keytypes_prop \l_@@_key_name_tl \l_@@_keytype_tl { \@@_split_keytype_arg:V \l_@@_keytype_tl \@@_parse_vars_elt_aux:nn {#1} {#3} \prop_remove:NV \l_@@_keytypes_prop \l_@@_key_name_tl } { \msg_error:nnn { template } { unknown-key } {#2} } } % \end{macrocode} % Split off any leading \texttt{global} and they look for the way to % implement. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_vars_elt_aux:nn #1#2 { \@@_parse_vars_elt_aux:nw {#1} #2 global global \s_@@_stop } \cs_new_protected:Npn \@@_parse_vars_elt_aux:nw #1#2 global #3 global #4 \s_@@_stop { \tl_if_blank:nTF {#4} { \@@_parse_vars_elt_aux:nnn {#1} { } {#2} } { \tl_if_blank:nTF {#2} { \@@_parse_vars_elt_aux:nne {#1} { global } { \tl_trim_spaces:n {#3} } } { \msg_error:nnn { template } { bad-variable } { #2 global #3 } } } } \cs_new_protected:Npn \@@_parse_vars_elt_aux:nnn #1#2#3 { \str_case:VnF \l_@@_keytype_tl { { choice } { \@@_implement_choices:nn {#1} {#3} } { function } { \cs_if_exist:NF #3 { \cs_new:Npn #3 { } } \@@_parse_vars_elt_key:nn {#1} { .code:n = { \cs_generate_from_arg_count:NNnn \exp_not:N #3 \exp_not:c { cs_ \str_if_eq:nnT {#1} { global } { g } set:Npn } { \exp_not:V \l_@@_keytype_arg_tl } {##1} } } \prop_put:NVn \l_@@_vars_prop \l_@@_key_name_tl {#2#3} } { instance } { \@@_parse_vars_elt_key:nn {#1} { .code:n = { \exp_not:c { cs_ \str_if_eq:nnT {#1} { global } { g } set:Npn } \exp_not:N #3 { \UseInstance {##1} } } } \prop_put:NVn \l_@@_vars_prop \l_@@_key_name_tl {#2#3} } } { \tl_if_single:nTF {#3} { \cs_if_exist:NF #3 { \use:c { \@@_map_var_type: _new:N } #3 } \@@_parse_vars_elt_key:nn {#1} { . \@@_map_var_type: _ \str_if_eq:nnT {#1} { global } { g } set:N = \exp_not:N #3 } \prop_put:NVn \l_@@_vars_prop \l_@@_key_name_tl {#2#3} } { \msg_error:nnn { template } { bad-variable } {#2#3} } } } \cs_generate_variant:Nn \@@_parse_vars_elt_aux:nnn { nne } \cs_new_protected:Npn \@@_parse_vars_elt_key:nn #1#2 { \keys_define:ne { template / #1 } { \l_@@_key_name_tl #2 } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}[EXP]{\@@_map_var_type:} % Turn a \enquote{friendly} variable type into an \texttt{expl3} one. % \begin{macrocode} \cs_new:Npn \@@_map_var_type: { \str_case:Vn \l_@@_keytype_tl { { boolean } { bool } { commalist } { clist } { integer } { int } { length } { dim } { muskip } { muskip } { real } { fp } { skip } { skip } { tokenlist } { tl } } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_implement_choices:nn} % \begin{macro}{\@@_implement_choices_default:} % Implementing choices requires a second key--value loop. So after a % little set-up, the standard parser is called. % \begin{macrocode} \cs_new_protected:Npn \@@_implement_choices:nn #1#2 { \clist_set:NV \l_@@_tmp_clist \l_@@_keytype_arg_tl \prop_put:NVn \l_@@_vars_prop \l_@@_key_name_tl { } \keys_define:ne { template / #1 } { \l_@@_key_name_tl .choice: } \keyval_parse:nnn { \@@_implement_choice_elt:n } { \@@_implement_choice_elt:nnn {#1} } {#2} \prop_get:NVNT \l_@@_values_prop \l_@@_key_name_tl \l_@@_tmp_tl { \@@_implement_choices_default: } \clist_if_empty:NF \l_@@_tmp_clist { \clist_map_inline:Nn \l_@@_tmp_clist { \msg_error:nnn { template } { choice-not-implemented } {##1} } } } % \end{macrocode} % A sanity check for the default value, so that an error is raised % now and not when converting to assignments. % \begin{macrocode} \cs_new_protected:Npn \@@_implement_choices_default: { \tl_set:Ne \l_@@_tmp_tl { \l_@@_key_name_tl \c_space_tl \l_@@_tmp_tl } \prop_if_in:NVF \l_@@_vars_prop \l_@@_tmp_tl { \tl_set:Ne \l_@@_tmp_tl { \l_@@_key_name_tl \c_space_tl \l_@@_tmp_tl } \prop_if_in:NVF \l_@@_vars_prop \l_@@_tmp_tl { \prop_get:NVN \l_@@_keytypes_prop \l_@@_key_name_tl \l_@@_tmp_tl \@@_split_keytype_arg:V \l_@@_tmp_tl \prop_get:NVN \l_@@_values_prop \l_@@_key_name_tl \l_@@_tmp_tl \msg_error:nnVV { template } { unknown-default-choice } \l_@@_key_name_tl \l_@@_key_name_tl } } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_implement_choice_elt:nnn, \@@_implement_choice_elt_aux:nnn} % \begin{macro}{\@@_implement_choice_elt_aux:n} % \begin{macro}{\@@_implement_choice_elt:n} % The actual storage of the implementation of a choice is mainly about % error checking. The code here ensures that all choices have to have % been declared, apart from the special \texttt{unknown} choice, which % must come last. The code for each choice is stored along with the % key name in the variables property list. % \begin{macrocode} \cs_new_protected:Npn \@@_implement_choice_elt:nnn #1#2#3 { \clist_if_empty:NTF \l_@@_tmp_clist { \str_if_eq:nnTF {#2} { unknown } { \@@_implement_choice_elt_aux:nnn {#1} {#2} {#3} } { \@@_implement_choice_elt_aux:n {#2} } } { \clist_if_in:NnTF \l_@@_tmp_clist {#2} { \clist_remove_all:Nn \l_@@_tmp_clist {#2} \@@_implement_choice_elt_aux:nnn {#1} {#2} {#3} } { \@@_implement_choice_elt_aux:n {#2} } } } \cs_new_protected:Npn \@@_implement_choice_elt_aux:n #1 { \prop_get:NVN \l_@@_keytypes_prop \l_@@_key_name_tl \l_@@_tmp_tl \@@_split_keytype_arg:V \l_@@_tmp_tl \msg_error:nnVn { template } { unknown-choice } \l_@@_key_name_tl {#1} } \cs_new_protected:Npn \@@_implement_choice_elt_aux:nnn #1#2#3 { \keys_define:ne { template / #1 } { \l_@@_key_name_tl / #2 .code:n = { \exp_not:n {#3} } } \tl_set:Ne \l_@@_tmp_tl { \l_@@_key_name_tl \c_space_tl #2 } \prop_put:NVn \l_@@_vars_prop \l_@@_tmp_tl {#3} } \cs_new_protected:Npn \@@_implement_choice_elt:n #1 { \msg_error:nnVn { template } { choice-requires-code } \l_@@_key_name_tl {#1} } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \subsection{Editing template defaults} % % \begin{macro}{\@@_edit_defaults:nnn} % Editing the template defaults means getting the values back out % of the store, then parsing the list of new values before putting % the updated list back into storage. % \begin{macrocode} \cs_new_protected:Npn \@@_edit_defaults:nnn #1#2#3 { \@@_if_keys_exist:nnT {#1} {#2} { \@@_recover_defaults:nn {#1} {#2} \@@_parse_values:nnn {#1} {#2} {#3} \@@_store_defaults:nn {#1} {#2} } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_parse_values:nnn} % The routine to parse values is the same for both editing a % template and setting up an instance. So the code here does only the % minimum necessary for reading the values. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_values:nnn #1#2#3 { \@@_recover_keytypes:nn {#1} {#2} \keyval_parse:NNn \@@_parse_values_elt:n \@@_parse_values_elt:nn {#3} } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_parse_values_elt:n} % Every key needs a value, so this is just an error routine. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_values_elt:n #1 { \bool_set_true:N \l_@@_error_bool \msg_error:nnn { template } { key-no-value } {#1} } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_parse_values_elt:nn} % \begin{macro}{\@@_parse_values_elt_aux:n} % To store the value, find the keytype then call the saving function. % These need the current key name saved as \cs{l_@@_key_name_tl}. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_values_elt:nn #1#2 { \tl_set:Ne \l_@@_key_name_tl { \tl_trim_spaces:e { \tl_to_str:n {#1} } } \prop_get:NVNTF \l_@@_keytypes_prop \l_@@_key_name_tl \l_@@_tmp_tl { \@@_parse_values_elt_aux:n {#2} } { \msg_error:nnV { template } { unknown-key } \l_@@_key_name_tl } } \cs_new_protected:Npn \@@_parse_values_elt_aux:n #1 { \@@_split_keytype_arg:V \l_@@_tmp_tl \use:c { @@_store_value_ \l_@@_keytype_tl :n } {#1} } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_template_set_eq:nnn} % To copy a template, each of the lists plus the code has to be copied % across. To keep this independent of the list storage system, it is % all done with two-part shuffles. % \begin{macrocode} \cs_new_protected:Npn \@@_template_set_eq:nnn #1#2#3 { \@@_recover_defaults:nn {#1} {#3} \@@_store_defaults:nn {#1} {#2} \@@_recover_keytypes:nn {#1} {#3} \@@_store_keytypes:nn {#1} {#2} \@@_recover_vars:nn {#1} {#3} \@@_store_vars:nn {#1} {#2} \cs_if_exist:cT { \c_@@_code_root_tl #1 / #2 } { \msg_info:nnnn { template } { declare-template-code } {#1} {#2} } \cs_gset_eq:cc { \c_@@_code_root_tl #1 / #2 } { \c_@@_code_root_tl #1 / #3 } } % \end{macrocode} % \end{macro} % % \subsection{Creating instances of templates} % % \begin{macro} % { % \@@_declare_instance:nnnn, % \@@_declare_instance_aux:nnnn % } % Making an instance has two distinct parts. First, the keys given are % parsed to transfer the values into the structured data format used % internally. This allows the default and given values to be combined % with no repetition. In the second step, the structured data is % converted to pre-defined variable assignments, and these are stored % in the function for the instance. % \begin{macrocode} \cs_new_protected:Npn \@@_declare_instance:nnnn #1#2#3#4 { \@@_execute_if_code_exist:nnT {#1} {#2} { \@@_recover_defaults:nn {#1} {#2} \@@_recover_vars:nn {#1} {#2} \@@_declare_instance_aux:nnnn {#1} {#2} {#3} {#4} } } \cs_new_protected:Npn \@@_declare_instance_aux:nnnn #1#2#3#4 { \bool_set_false:N \l_@@_error_bool \@@_parse_values:nnn {#1} {#2} {#4} \bool_if:NF \l_@@_error_bool { \prop_put:Nnn \l_@@_values_prop { from~template } {#2} \@@_store_values:nn {#1} {#3} \@@_convert_to_assignments: \cs_if_exist:cT { \c_@@_instances_root_tl #1 / #3 } { \msg_info:nnnn { template } { declare-instance } {#3} {#1} } \cs_set_protected:cpe { \c_@@_instances_root_tl #1 / #3 } { \exp_not:N \@@_assignments_push:n { \exp_not:V \l_@@_assignments_tl } \exp_not:c { \c_@@_code_root_tl #1 / #2 } } } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_instance_set_eq:nnn} % Copy--paste an instance. % \begin{macrocode} \cs_new_protected:Npn \@@_instance_set_eq:nnn #1#2#3 { \@@_if_instance_exist:nnTF {#1} {#3} { \@@_recover_values:nn {#1} {#3} \@@_store_values:nn {#1} {#2} \cs_if_exist:cT { \c_@@_instances_root_tl #1 / #2 } { \msg_info:nnnn { template } { declare-instance } {#2} {#1} } \cs_set_eq:cc { \c_@@_instances_root_tl #1 / #2 } { \c_@@_instances_root_tl #1 / #3 } } { \msg_error:nnnn { template } { unknown-instance } {#1} {#3} } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_edit_instance:nnn} % \begin{macro} % {\@@_edit_instance_aux:nnnnn, \@@_edit_instance_aux:nVnnn} % Editing an instance is almost identical to declaring one. The only % variation is the source of the values to use. When editing, they are % recovered from the previous instance run. % \begin{macrocode} \cs_new_protected:Npn \@@_edit_instance:nnn #1#2#3 { \@@_if_instance_exist:nnTF {#1} {#2} { \@@_recover_values:nn {#1} {#2} \prop_get:NnN \l_@@_values_prop { from~template } \l_@@_tmp_tl \@@_edit_instance_aux:nVnn {#1} \l_@@_tmp_tl {#2} {#3} } { \msg_error:nnnn { template } { unknown-instance } {#1} {#2} } } \cs_new_protected:Npn \@@_edit_instance_aux:nnnn #1#2#3#4 { \@@_recover_vars:nn {#1} {#2} \@@_declare_instance_aux:nnnn {#1} {#2} {#3} {#4} } \cs_generate_variant:Nn \@@_edit_instance_aux:nnnn { nV } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_convert_to_assignments:} % \begin{macro}{\@@_convert_to_assignments_aux:n} % \begin{macro} % {\@@_convert_to_assignments_aux:nn, \@@_convert_to_assignments_aux:nV} % The idea on converting to a set of assignments is to loop over each % key, so that the loop order follows the declaration order of the keys. % This is done using a sequence as property lists are not % \enquote{ordered}. % \begin{macrocode} \cs_new_protected:Npn \@@_convert_to_assignments: { \tl_clear:N \l_@@_assignments_tl \seq_map_function:NN \l_@@_key_order_seq \@@_convert_to_assignments_aux:n } \cs_new_protected:Npn \@@_convert_to_assignments_aux:n #1 { \prop_get:NnN \l_@@_keytypes_prop {#1} \l_@@_tmp_tl \@@_convert_to_assignments_aux:nV {#1} \l_@@_tmp_tl } % \end{macrocode} % The second auxiliary function actually does the work. The % arguments here are the key name (|#1|) and the keytype (|#2|). % From those, the value to assign and the name of the appropriate % variable are recovered. A bit of work is then needed to sort out % keytypes with arguments (for example instances), and to look for % global assignments. Once that is done, a hand-off can be made to the % handler for the relevant keytype. % \begin{macrocode} \cs_new_protected:Npn \@@_convert_to_assignments_aux:nn #1#2 { \prop_get:NnNT \l_@@_values_prop {#1} \l_@@_value_tl { \prop_get:NnNTF \l_@@_vars_prop {#1} \l_@@_var_tl { \@@_split_keytype_arg:n {#2} \str_if_eq:VnF \l_@@_keytype_tl { choice } { \str_if_eq:VnF \l_@@_keytype_tl { code } { \@@_find_global: } } \tl_set:Nn \l_@@_key_name_tl {#1} \cs_if_exist_use:cF { @@_assign_ \l_@@_keytype_tl : } { \@@_assign_variable: } } { \msg_error:nnn { template } { unknown-attribute } {#1} } } } \cs_generate_variant:Nn \@@_convert_to_assignments_aux:nn { nV } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_find_global:} % \begin{macro}{\@@_find_global_aux:w} % Global assignments should have the phrase |global| at the front. % This is pretty easy to find: no other error checking, though. % \begin{macrocode} \cs_new_protected:Npn \@@_find_global: { \bool_set_false:N \l_@@_global_bool \tl_if_in:onT \l_@@_var_tl { global } { \exp_after:wN \@@_find_global_aux:w \l_@@_var_tl \s_@@_stop } } \cs_new_protected:Npn \@@_find_global_aux:w #1 global #2 \s_@@_stop { \tl_set:Nn \l_@@_var_tl {#2} \bool_set_true:N \l_@@_global_bool } % \end{macrocode} % \end{macro} % \end{macro} % % \subsection{Using templates directly} % % \begin{macro}{\@@_use_template:nnn} % Directly use a template with a particular parameter setting. % This is also picked up if used in a nested fashion inside a parameter % list. The idea is essentially the same as creating an instance, % just with no saving of the result. % \begin{macrocode} \cs_new_protected:Npn \@@_use_template:nnn #1#2#3 { \@@_execute_if_code_exist:nnT {#1} {#2} { \@@_recover_defaults:nn {#1} {#2} \@@_recover_vars:nn {#1} {#2} \@@_parse_values:nnn {#1} {#2} {#3} \@@_convert_to_assignments: \use:c { \c_@@_code_root_tl #1 / #2 } } } % \end{macrocode} % \end{macro} % % \subsection{Assigning values to variables} % % \begin{macro}{\@@_assign_boolean:} % \begin{macro}{\@@_assign_boolean_aux:n} % Setting a Boolean value is slightly different to everything else % as the value can be used to work out which \texttt{set} function to % call. As long as there is no need to recover things from another % variable, everything is pretty easy. If there is, then we need to allow % for the fact that the recovered value here will \emph{not} be expandable, % so needs to be converted to something that is. % \begin{macrocode} \cs_new_protected:Npn \@@_assign_boolean: { \bool_if:NTF \l_@@_global_bool { \@@_assign_boolean_aux:n { bool_gset } } { \@@_assign_boolean_aux:n { bool_set } } } \cs_new_protected:Npn \@@_assign_boolean_aux:n #1 { \@@_if_key_value:VTF \l_@@_value_tl { \@@_key_to_value: \tl_put_right:Ne \l_@@_assignments_tl { \exp_not:c { #1 _eq:NN } \exp_not:V \l_@@_var_tl \exp_not:V \l_@@_value_tl } } { \tl_put_right:Ne \l_@@_assignments_tl { \exp_not:c { #1 _ \l_@@_value_tl :N } \exp_not:V \l_@@_var_tl } } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_assign_choice:} % \begin{macro} % {\@@_assign_choice_aux:nF, \@@_assign_choice_aux:eF} % The idea here is to find either the choice as-given or else the % special |unknown| choice, and to copy the appropriate code across. % \begin{macrocode} \cs_new_protected:Npn \@@_assign_choice: { \@@_assign_choice_aux:eF { \l_@@_key_name_tl \c_space_tl \l_@@_value_tl } { \@@_assign_choice_aux:eF { \l_@@_key_name_tl \c_space_tl unknown } { \prop_get:NVN \l_@@_keytypes_prop \l_@@_key_name_tl \l_@@_tmp_tl \@@_split_keytype_arg:V \l_@@_tmp_tl \msg_error:nnVV { template } { unknown-choice } \l_@@_key_name_tl \l_@@_value_tl } } } \cs_new_protected:Npn \@@_assign_choice_aux:nF #1 { \prop_get:NnNTF \l_@@_vars_prop {#1} \l_@@_tmp_tl { \tl_put_right:NV \l_@@_assignments_tl \l_@@_tmp_tl } } \cs_generate_variant:Nn \@@_assign_choice_aux:nF { e } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_assign_function:} % \begin{macro}{\@@_assign_function_aux:N} % This looks a bit messy but is only actually one function. % \begin{macrocode} \cs_new_protected:Npn \@@_assign_function: { \bool_if:NTF \l_@@_global_bool { \@@_assign_function_aux:N \cs_gset:Npn } { \@@_assign_function_aux:N \cs_set:Npn } } \cs_new_protected:Npn \@@_assign_function_aux:N #1 { \tl_put_right:Ne \l_@@_assignments_tl { \cs_generate_from_arg_count:NNnn \exp_not:V \l_@@_var_tl \exp_not:N #1 { \exp_not:V \l_@@_keytype_arg_tl } { \exp_not:V \l_@@_value_tl } } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_assign_instance:} % \begin{macro}{\@@_assign_instance_aux:N} % Using an instance means adding the appropriate function creation to % the tl. No checks are made at this stage, so if the instance is % not valid then errors will arise later. % \begin{macrocode} \cs_new_protected:Npn \@@_assign_instance: { \bool_if:NTF \l_@@_global_bool { \@@_assign_instance_aux:N \cs_gset_protected:Npn } { \@@_assign_instance_aux:N \cs_set_protected:Npn } } \cs_new_protected:Npn \@@_assign_instance_aux:N #1 { \tl_put_right:Ne \l_@@_assignments_tl { \exp_not:N #1 \exp_not:V \l_@@_var_tl { \@@_use_instance:nn { \exp_not:V \l_@@_keytype_arg_tl } { \exp_not:V \l_@@_value_tl } } } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_assign_variable:} % \changes{2024-10-07}{v1.0d}{Correct passing of \cs{KeyValue} contents} % \begin{macro}{\@@_assign_variable:n} % A general-purpose function for all of the other assignments. % As long as the value is not coming from another variable, the stored % value is simply transferred for output. We use \texttt{V}-type expansion % for the \cs{KeyValue} case: for token lists this is essential, whilst % for register-based variables, it does no harm and avoids needing a % low-level test. % \begin{macrocode} \cs_new_protected:Npn \@@_assign_variable: { \exp_args:Ne \@@_assign_variable:n { \@@_map_var_type: _ \bool_if:NT \l_@@_global_bool { g } set:N } } % \end{macrocode} % Notice we need a \texttt{V}-type variant for each \texttt{(g)set} % operation here: these need to be provided by \pkg{expl3}. % \begin{macrocode} \cs_new_protected:Npn \@@_assign_variable:n #1 { \@@_if_key_value:VTF \l_@@_value_tl { \@@_key_to_value: \tl_put_right:Ne \l_@@_assignments_tl { \exp_not:c { #1 V } \exp_not:V \l_@@_var_tl \exp_not:V \l_@@_value_tl } } { \tl_put_right:Ne \l_@@_assignments_tl { \exp_not:c { #1 n } \exp_not:V \l_@@_var_tl { \exp_not:V \l_@@_value_tl } } } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_key_to_value:} % \begin{macro}{\@@_key_to_value_auxi:w} % \begin{macro}{\@@_key_to_value_auxii:w} % The idea here is to recover the attribute value of another key. To % do that, the marker is removed and a look up takes place. If this % is successful, then the name of the variable of the attribute is % returned. This assumes that the value will be used in context where % it will be converted to a value, for example when setting a number. % There is also a need to check in case the copied value happens to be % \texttt{global}. % \begin{macrocode} \cs_new_protected:Npn \@@_key_to_value: { \exp_after:wN \@@_key_to_value_auxi:w \l_@@_value_tl } \cs_new_protected:Npn \@@_key_to_value_auxi:w \KeyValue #1 { \tl_set:Ne \l_@@_tmp_tl { \tl_trim_spaces:e { \tl_to_str:n {#1} } } \prop_get:NVNTF \l_@@_vars_prop \l_@@_tmp_tl \l_@@_value_tl { \exp_after:wN \@@_key_to_value_auxii:w \l_@@_value_tl \s_@@_mark global \q_@@_nil \s_@@_stop } { \msg_error:nnV { template } { unknown-attribute } \l_@@_tmp_tl } } \cs_new_protected:Npn \@@_key_to_value_auxii:w #1 global #2#3 \s_@@_stop { \@@_quark_if_nil:NF #2 { \tl_set:Nn \l_@@_value_tl {#2} } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \subsection{Using instances} % % \begin{macro}{\@@_use_instance:nn} % \begin{macro}{\@@_use_instance_aux:nNnnn} % \begin{macro}{\@@_use_instance_aux:nn} % Using an instance is just a question of finding the appropriate function. % If nothing is found, an error is raised. One complication is that % if the first token of argument |#2| is \cs{UseTemplate} then that % is also valid. There is an error-test to make sure that the % types agree, and if so the template is used directly. % \begin{macrocode} \cs_new_protected:Npn \@@_use_instance:nn #1#2 { \@@_if_use_template:nTF {#2} { \@@_use_instance_aux:nNnnn {#1} #2 } { \@@_use_instance_aux:nn {#1} {#2} } } \cs_new_protected:Npn \@@_use_instance_aux:nNnnn #1#2#3#4#5 { \str_if_eq:nnTF {#1} {#3} { \@@_use_template:nnn {#3} {#4} {#5} } { \msg_error:nnnn { template } { type-mismatch } {#1} {#3} } } \cs_new_protected:Npn \@@_use_instance_aux:nn #1#2 { \@@_if_instance_exist:nnTF {#1} {#2} { \use:c { \c_@@_instances_root_tl #1 / #2 } } { \msg_error:nnnn { template } { unknown-instance } {#1} {#2} } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % %\subsection{Assignment manipulation} % % A few functions to transfer assignments about, as this is needed by % \cs{AssignTemplateKeys}. % % \begin{macro}{\@@_assignments_pop:} % To actually use the assignments. % \begin{macrocode} \cs_new:Npn \@@_assignments_pop: { \l_@@_assignments_tl } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_assignments_push:n} % Here, the assignments are stored for later use. % \begin{macrocode} \cs_new_protected:Npn \@@_assignments_push:n #1 { \tl_set:Nn \l_@@_assignments_tl {#1} } % \end{macrocode} % \end{macro} % % \subsection{Showing templates and instances} % % \begin{macro}{\@@_show_code:nn} % Showing the code for a template is just a translation of % \cs{cs_show:c}. % \begin{macrocode} \cs_new_protected:Npn \@@_show_code:nn #1#2 { \cs_show:c { \c_@@_code_root_tl #1 / #2 } } % \end{macrocode} % \end{macro} % % \begin{macro} % { % \@@_show_defaults:nn, % \@@_show_keytypes:nn, % \@@_show_vars:nn % } % \begin{macro}{\@@_show:Nnnn} % A modified version of the property-list printing code, such that % the output refers to templates and instances rather than to the % underlying structures. % \begin{macrocode} \cs_new_protected:Npn \@@_show_defaults:nn #1#2 { \@@_if_keys_exist:nnT {#1} {#2} { \@@_recover_defaults:nn {#1} {#2} \@@_show:Nnnn \l_@@_values_prop {#1} {#2} { default~values } } } \cs_new_protected:Npn \@@_show_keytypes:nn #1#2 { \@@_if_keys_exist:nnT {#1} {#2} { \@@_recover_keytypes:nn {#1} {#2} \@@_show:Nnnn \l_@@_keytypes_prop {#1} {#2} { interface } } } \cs_new_protected:Npn \@@_show_vars:nn #1#2 { \@@_execute_if_code_exist:nnT {#1} {#2} { \@@_recover_vars:nn {#1} {#2} \@@_show:Nnnn \l_@@_vars_prop {#1} {#2} { variable~mapping } } } \cs_new_protected:Npn \@@_show:Nnnn #1#2#3#4 { \msg_show:nneeee { template } { show-attribute } { \tl_to_str:n {#2} } { \tl_to_str:n {#3} } { \tl_to_str:n {#4} } { \prop_map_function:NN #1 \msg_show_item_unbraced:nn } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_show_values:nn} % Instance values are a little more complex, as is the template to consider. % \begin{macrocode} \cs_new_protected:Npn \@@_show_values:nn #1#2 { \@@_if_instance_exist:nnT {#1} {#2} { \@@_recover_values:nn {#1} {#2} \msg_show:nneee { template } { show-values } { \tl_to_str:n {#1} } { \tl_to_str:n {#2} } { \prop_map_function:NN \l_@@_values_prop \msg_show_item_unbraced:nn } } } % \end{macrocode} % \end{macro} % % \subsection{Messages} % % The text for error messages: short and long text for all of them. % \begin{macrocode} \msg_new:nnnn { template } { argument-number-mismatch } { Template~type~'#1'~takes~#2~argument(s). } { Templates~of~type~'#1'~require~#2~argument(s).\\ You~have~tried~to~make~a~template~for~'#1'~ with~#3~argument(s),~which~is~not~possible:~ the~number~of~arguments~must~agree. } \msg_new:nnnn { template } { bad-number-of-arguments } { Bad~number~of~arguments~for~template~type~'#1'. } { A~template~may~accept~between~0~and~9~arguments.\\ You~asked~to~use~#2~arguments:~this~is~not~supported. } \msg_new:nnnn { template } { bad-variable } { Incorrect~variable~description~'#1'. } { The~argument~'#1'~is~not~of~the~form \\ ~~''\\ ~or~\\ ~~'global~'.\\ It~must~be~given~in~one~of~these~formats~to~be~used~in~a~template. } \msg_new:nnnn { template } { choice-not-implemented } { The~choice~'#1'~has~no~implementation. } { Each~choice~listed~in~the~interface~for~a~template~must~ have~an~implementation. } \msg_new:nnnn { template } { choice-no-code } { The~choice~'#1'~requires~implementation~details. } { When~creating~template~code~using~\DeclareTemplateCode,~ each~choice~name~must~have~an~associated~implementation.\\ This~should~be~given~after~a~'='~sign:~LaTeX~did~not~find~one. } \msg_new:nnnn { template } { choice-requires-code } { The~choice~'#2'~for~key~'#1'~requires~an~implementation. } { You~should~have~put:\\ \ \ #1~:~choice~{~#2 = ~} \\ but~LaTeX~did~not~find~any~. } \msg_new:nnnn { template } { duplicate-key-interface } { Key~'#1'~appears~twice~in~interface~definition~\msg_line_context:. } { Each~key~can~only~have~one~interface~declared~in~a~template.\\ LaTeX~found~two~interfaces~for~'#1'. } \msg_new:nnnn { template } { keytype-requires-argument } { The~key~type~'#1'~requires~an~argument~\msg_line_context:. } { You~should~have~put:\\ \ \ ~:~#1~{~~} \\ but~LaTeX~did~not~find~an~. } \msg_new:nnnn { template } { invalid-keytype } { The~key~'#1'~is~missing~a~key-type~\msg_line_context:. } { Each~key~in~a~template~requires~a~key-type,~given~in~the~form:\\ \ \ ~:~\\ LaTeX~could~not~find~a~~in~your~input. } \msg_new:nnnn { template } { key-no-value } { The~key~'#1'~has~no~value~\msg_line_context:. } { When~creating~an~instance~of~a~template~ every~key~listed~must~include~a~value:\\ \ \ ~=~ } \msg_new:nnnn { template } { key-no-variable } { The~key~'#1'~requires~implementation~details~\msg_line_context:. } { When~creating~template~code~using~\DeclareTemplateCode,~ each~key~name~must~have~an~associated~implementation.\\ This~should~be~given~after~a~'='~sign:~LaTeX~did~not~find~one. } \msg_new:nnnn { template } { key-not-implemented } { Key~'#1'~has~no~implementation~\msg_line_context:. } { The~definition~of~key~implementations~for~template~'#2'~ of~template~type~'#3'~does~not~include~any~details~for~key~'#1'.\\ The~key~was~declared~in~the~interface~definition,~ and~so~an~implementation~is~required. } \msg_new:nnnn { template } { missing-keytype } { The~key~'#1'~is~missing~a~key-type~\msg_line_context:. } { Key~interface~definitions~should~be~of~the~form\\ \ \ #1~:~\\ but~LaTeX~could~not~find~a~. } \msg_new:nnnn { template } { no-template-code } { The~template~'#2'~of~type~'#1'~is~unknown~ or~has~no~implementation. } { There~is~no~code~available~for~the~template~name~given.\\ This~should~be~given~using~\DeclareTemplateCode. } \msg_new:nnnn { template } { type-already-defined } { Template~type~'#1'~already~defined. } { You~have~used~\NewTemplateType~ with~a~template~type~that~has~already~been~defined. } \msg_new:nnnn { template } { type-mismatch } { Template~types~'#1'~and~'#2'~do~not~agree. } { You~are~trying~to~use~a~template~directly~with~\UseInstance (or~a~similar~function),~but~the~template~types~do~not~match. } \msg_new:nnnn { template } { unknown-attribute } { The~template~attribute~'#1'~is~unknown. } { There~is~a~definition~in~the~current~template~reading\\ \ \ \token_to_str:N \KeyValue {~#1~} \\ but~there~is~no~key~called~'#1'. } \msg_new:nnnn { template } { unknown-choice } { The~choice~'#2'~was~not~declared~for~key~'#1'. } { The~key~'#1'~takes~a~fixed~list~of~choices~ and~this~list~does~not~include~'#2'. } \msg_new:nnnn { template } { unknown-default-choice } { The~default~choice~'#2'~was~not~declared~for~key~'#1'. } { The~key~'#1'~takes~a~fixed~list~of~choices~ and~this~list~does~not~include~'#2'. } \msg_new:nnnn { template } { unknown-instance } { The~instance~'#2'~of~type~'#1'~is~unknown. } { You~have~asked~to~use~an~instance~'#2',~ but~this~has~not~been~created. } \msg_new:nnnn { template } { unknown-key } { Unknown~template~key~'#1'. } { The~key~'#1'~was~not~declared~in~the~interface~ for~the~current~template. } \msg_new:nnnn { template } { unknown-keytype } { The~key-type~'#1'~is~unknown. } { Valid~key-types~are:\\ -~boolean;\\ -~choice;\\ -~commalist;\\ -~function;\\ -~instance;\\ -~integer;\\ -~length;\\ -~muskip;\\ -~real;\\ -~skip;\\ -~tokenlist. } \msg_new:nnnn { template } { unknown-type } { The~template~type~'#1'~is~unknown. } { A~template~type~needs~to~be~defined~with~\NewTemplateType prior~to~using~it. } \msg_new:nnnn { template } { unknown-template } { The~template~'#2'~of~type~'#1'~is~unknown. } { No~interface~has~been~declared~for~a~template~ '#2'~of~template~type~'#1'. } % \end{macrocode} % % Information messages only have text: more text should not be needed. % \begin{macrocode} \msg_new:nnn { template } { declare-instance } { Declaring~instance~~'#1'~of~type~#2~\msg_line_context:. } \msg_new:nnn { template } { declare-template-code } { Declaring~code~for~template~'#2'~of~template~type~'#1'~\msg_line_context:. } \msg_new:nnn { template } { declare-template-interface } { Declaring~interface~for~template~'#2'~of~template~type~'#1'~ \msg_line_context:. } \msg_new:nnn { template } { declare-type } { Declaring~template~type~'#1'~taking~#2~argument(s)~\msg_line_context:. } \msg_new:nnn { template } { show-attribute } { The~template~'#2'~of~type~'#1'~has~ \tl_if_empty:nTF {#4} { no~#3. } { #3 : #4 } } \msg_new:nnn { template } { show-values } { The~instance~'#2'~of~type~'#1'~has~ \tl_if_empty:nTF {#3} { no~values. } { values: #3 } } % \end{macrocode} % % Also add \pkg{template} to the \pkg{LaTeX} messages. % \begin{macrocode} \prop_gput:Nnn \g_msg_module_type_prop { template } { LaTeX } % \end{macrocode} % % \subsection{User functions} % % \begin{macro}{\NewTemplateType} % \begin{macro}{\DeclareTemplateInterface} % \begin{macro}{\DeclareTemplateCode} % \begin{macro}{\DeclareTemplateCopy} % \begin{macro}{\EditTemplateDefaults} % \begin{macro}{\UseTemplate} % \begin{macro}{\DeclareInstance} % \begin{macro}{\DeclareInstanceCopy} % \begin{macro}{\EditInstance} % \begin{macro}{\UseInstance} % All simple translations. % \begin{macrocode} \cs_new_protected:Npn \NewTemplateType #1#2 { \@@_define_type:nn {#1} {#2} } \cs_new_protected:Npn \DeclareTemplateInterface #1#2#3#4 { \@@_declare_template_keys:nnnn {#1} {#2} {#3} {#4} } \cs_new_protected:Npn \DeclareTemplateCode #1#2#3#4#5 { \@@_declare_template_code:nnnnn {#1} {#2} {#3} {#4} {#5} } \cs_new_protected:Npn \DeclareTemplateCopy #1#2#3 { \@@_template_set_eq:nnn {#1} {#2} {#3} } \cs_new_protected:Npn \EditTemplateDefaults #1#2#3 { \@@_edit_defaults:nnn {#1} {#2} {#3} } \cs_new_protected:Npn \UseTemplate #1#2#3 { \@@_use_template:nnn {#1} {#2} {#3} } \cs_new_protected:Npn \DeclareInstance #1#2#3#4 { \@@_declare_instance:nnnn {#1} {#3} {#2} {#4} } \cs_new_protected:Npn \DeclareInstanceCopy #1#2#3 { \@@_instance_set_eq:nnn {#1} {#2} {#3} } \cs_new_protected:Npn \EditInstance #1#2#3 { \@@_edit_instance:nnn {#1} {#2} {#3} } \cs_new_protected:Npn \UseInstance #1#2 { \@@_use_instance:nn {#1} {#2} } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\ShowTemplateCode} % \begin{macro}{\ShowTemplateDefaults} % \begin{macro}{\ShowTemplateInterface} % \begin{macro}{\ShowTemplateVariables} % \begin{macro}{\ShowInstanceValues} % The show functions are again just translation. % \begin{macrocode} \cs_new_protected:Npn \ShowTemplateCode #1#2 { \@@_show_code:nn {#1} {#2} } \cs_new_protected:Npn \ShowTemplateDefaults #1#2 { \@@_show_defaults:nn {#1} {#2} } \cs_new_protected:Npn \ShowTemplateInterface #1#2 { \@@_show_keytypes:nn {#1} {#2} } \cs_new_protected:Npn \ShowTemplateVariables #1#2 { \@@_show_vars:nn {#1} {#2} } \cs_new_protected:Npn \ShowInstanceValues #1#2 { \@@_show_values:nn {#1} {#2} } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\IfInstanceExistsT, \IfInstanceExistsF, \IfInstanceExistsTF} % \changes{2024-02-15}{v1.0b}{New macros} % \changes{2024-04-17}{v1.0c}{Use plural names} % More direct translation. % \begin{macrocode} \cs_new:Npn \IfInstanceExistsTF #1#2 { \@@_if_instance_exist:nnTF {#1} {#2} } \cs_new:Npn \IfInstanceExistsT #1#2 { \@@_if_instance_exist:nnT {#1} {#2} } \cs_new:Npn \IfInstanceExistsF #1#2 { \@@_if_instance_exist:nnF {#1} {#2} } % \end{macrocode} % \end{macro} % % \begin{macro}{\KeyValue} % Simply dump the argument when executed: this should not happen. % \begin{macrocode} \cs_new_protected:Npn \KeyValue #1 {#1} % \end{macrocode} % \end{macro} % % \begin{macro}{\AssignTemplateKeys} % A short call to use a token register by proxy. % \begin{macrocode} \cs_new_protected:Npn \AssignTemplateKeys { \@@_assignments_pop: } % \end{macrocode} % \end{macro} % % \begin{macro}{\SetTemplateKeys} % A friendly wrapper % \begin{macrocode} \cs_new_protected:Npn \SetTemplateKeys #1#2#3 { \keys_set_known:nnN { template / #1 / #2 } {#3} \l_@@_tmp_clist } % \end{macrocode} % \end{macro} % % \begin{macrocode} %\IncludeInRelease{0000/00/00}{lttemplates}% % {Prototype~document~commands}% % %\EndModuleRelease % \end{macrocode} % % \begin{macrocode} \ExplSyntaxOff % \end{macrocode} % % \begin{macrocode} % % \end{macrocode} % % We need to stop DocStrip treating |@@| in a special way at this point. % \begin{macrocode} %<@@=> % \end{macrocode} % % \Finale