## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( cache = FALSE, collapse = TRUE, message = FALSE, comment = "#>" ) ## ----pkgs--------------------------------------------------------------------- library(tradestatistics) library(tibble) ## ----tables, eval = T--------------------------------------------------------- as_tibble(ots_tables) ## ----countries, eval = T------------------------------------------------------ as_tibble(ots_countries) ## ----commodities, eval = T---------------------------------------------------- as_tibble(ots_commodities) ## ----inflation, eval = T------------------------------------------------------ as_tibble(ots_gdp_deflator) ## ----country_code------------------------------------------------------------- # Single match with no replacement as_tibble(ots_country_code("Chile")) # Single match with replacement as_tibble(ots_country_code("America")) # Double match with no replacement as_tibble(ots_country_code("Germany")) ## ----commodity_code2---------------------------------------------------------- as_tibble(ots_commodity_code(commodity = " Horse ", section = " ANIMAL ")) ## ----yrpc1, eval = F---------------------------------------------------------- # yrpc <- ots_create_tidy_data( # years = 2019, # reporters = "chl", # partners = "arg", # table = "yrpc" # ) # # as_tibble(yrpc) ## ----yrpc3, eval = F---------------------------------------------------------- # # Note that here I'm passing Peru and not per which is the ISO code for Peru # # The same applies to Brazil # yrpc2 <- ots_create_tidy_data( # years = 2018:2019, # reporters = c("chl", "Peru", "bol"), # partners = c("arg", "Brazil"), # commodities = c("01", "food"), # table = "yrpc" # ) ## ----yrp3, eval = F----------------------------------------------------------- # yrp <- ots_create_tidy_data( # years = 2018:2019, # reporters = c("chl", "per"), # partners = "arg", # table = "yrp" # ) ## ----yrc2, eval = F----------------------------------------------------------- # yrc <- ots_create_tidy_data( # years = 2019, # reporters = "chl", # commodities = "010121", # table = "yrc" # ) ## ----yr2, eval = F------------------------------------------------------------ # yr <- ots_create_tidy_data( # years = 2018:2019, # reporters = c("chl", "arg", "per"), # table = "yr" # ) ## ----yc1, eval = F------------------------------------------------------------ # yc <- ots_create_tidy_data( # years = 2019, # table = "yc" # ) ## ----yc2, eval = F------------------------------------------------------------ # yc2 <- ots_create_tidy_data( # years = 2019, # commodities = "010121", # table = "yc" # ) ## ----inflation2, eval=FALSE--------------------------------------------------- # inflation <- ots_gdp_deflator_adjustment(yr, reference_year = 2000) # as_tibble(inflation)