--- title: "rgl Demos" date: "`r Sys.Date()`" output: markdown::html_format: options: toc: true vignette: > %\VignetteIndexEntry{rgl Demos} %\VignetteEngine{knitr::knitr} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = FALSE, # Bug in knitr 1.42 requires FALSE here comment = "#>", snapshot = FALSE, screenshot.force = FALSE) library(rgl) setupKnitr(autoprint = TRUE) ``` ## Introduction This vignette holds code that was previously included as "demos" in `rgl`. Some of the demos require R to be running; those remain available via `demo(package = "rgl")`. ## hist3d: 3D histogram using basic building blocks ```{r} ########## ### 3D HIST EXAMPLE: ########## ################################################################################ ##### Required functions 'binplot' and 'hist3d': binplot.3d<-function(x,y,z,alpha=1,topcol="#ff0000",sidecol="#aaaaaa") { save <- par3d(skipRedraw=TRUE) on.exit(par3d(save)) x1<-c(rep(c(x[1],x[2],x[2],x[1]),3),rep(x[1],4),rep(x[2],4)) z1<-c(rep(0,4),rep(c(0,0,z,z),4)) y1<-c(y[1],y[1],y[2],y[2],rep(y[1],4),rep(y[2],4),rep(c(y[1],y[2],y[2],y[1]),2)) x2<-c(rep(c(x[1],x[1],x[2],x[2]),2),rep(c(x[1],x[2],rep(x[1],3),rep(x[2],3)),2)) z2<-c(rep(c(0,z),4),rep(0,8),rep(z,8) ) y2<-c(rep(y[1],4),rep(y[2],4),rep(c(rep(y[1],3),rep(y[2],3),y[1],y[2]),2) ) quads3d(x1,z1,y1,col=rep(sidecol,each=4),alpha=alpha) quads3d(c(x[1],x[2],x[2],x[1]),rep(z,4),c(y[1],y[1],y[2],y[2]), col=rep(topcol,each=4),alpha=1) segments3d(x2,z2,y2,col="#000000") } hist3d<-function(x,y=NULL,nclass="auto",alpha=1,col="#ff0000",scale=10) { save <- par3d(skipRedraw=TRUE) on.exit(par3d(save)) xy <- xy.coords(x,y) x <- xy$x y <- xy$y n<-length(x) if (nclass == "auto") nclass<-ceiling(sqrt(nclass.Sturges(x))) breaks.x <- seq(min(x),max(x),length=(nclass+1)) breaks.y <- seq(min(y),max(y),length=(nclass+1)) z<-matrix(0,(nclass),(nclass)) for (i in seq_len(nclass)) { for (j in seq_len(nclass)) { z[i, j] <- (1/n)*sum(x < breaks.x[i+1] & y < breaks.y[j+1] & x >= breaks.x[i] & y >= breaks.y[j]) binplot.3d(c(breaks.x[i],breaks.x[i+1]),c(breaks.y[j],breaks.y[j+1]), scale*z[i,j],alpha=alpha,topcol=col) } } } ################################################################################ open3d() bg3d(color="gray") light3d(0, 0) # Drawing a 'bin' for given coordinates: binplot.3d(c(-0.5,0.5),c(4.5,5.5),2,alpha=0.6) # Setting the viewpoint ('theta' and 'phi' have the same meaning as in persp): view3d(theta=40,phi=40) ##### QUADS FORMING BIN open3d() # Defining transparency and colors: alpha<-0.7; topcol<-"#ff0000"; sidecol<-"#aaaaaa" # Setting up coordinates for the quads and adding them to the scene: y<-x<-c(-1,1) ; z<-4; of<-0.3 x12<-c(x[1],x[2],x[2],x[1]); x11<-rep(x[1],4); x22<-rep(x[2],4) z00<-rep(0,4); z0z<-c(0,0,z,z); zzz<-rep(z,4); y11<-rep(y[1],4) y1122<-c(y[1],y[1],y[2],y[2]); y12<-c(y[1],y[2],y[2],y[1]); y22<-rep(y[2],4) quads3d(c(x12,x12,x11-of,x12,x22+of,x12), c(z00-of,rep(z0z,4),zzz+of), c(y1122,y11-of,y12,y22+of,y12,y1122), col=rep(c(rep(sidecol,5),topcol),each=4),alpha=c(rep(alpha,5),1)) # Setting up coordinates for the border-lines of the quads and drawing them: yl1<-c(y[1],y[2],y[1],y[2]); yl2<-c(y[1]-of,y[1]-of) xl<-c(rep(x[1],8),rep(x[1]-of,8),rep(c(x[1],x[2]),8),rep(x[2],8),rep(x[2]+of,8)) zl<-c(0,z,0,z,z+of,z+of,-of,-of,0,0,z,z,0,z,0,z,rep(0,4),rep(z,4),rep(-of,4), rep(z+of,4),z+of,z+of,-of,-of,rep(c(0,z),4),0,0,z,z) yl<-c(yl2,y[2]+of,y[2]+of,rep(c(y[1],y[2]),4),y[1],y[1],y[2],y[2],yl2, rep(y[2]+of,4),yl2,y[2],y[2],rep(y[1],4),y[2],y[2],yl1,yl2,y[2]+of, y[2]+of,y[1],y[1],y[2],y[2],yl1) lines3d(xl,zl,yl,col="#000000") view3d(theta=40,phi=40) ##### COMPLETE HISTOGRAM: open3d() # Setting the rng to a fixed value: set.seed(1000) # Drawing a 3d histogramm of 2500 normaly distributed observations: hist3d(rnorm(2500),rnorm(2500),alpha=0.4,nclass=7,scale=30) # Choosing a lightgrey background: bg3d(col="#cccccc") view3d(theta=40,phi=40) ``` ## bivar: Bivariate densities: kernel smoothing using surface3d and alpha-channel (requires MASS package) ```{r} # rgl demo: rgl-bivar.r # author: Daniel Adler rgl.demo.bivar <- function() { if (!requireNamespace("MASS", quietly = TRUE)) stop("This demo requires MASS") # parameters: n<-50; ngrid<-40 # generate samples: set.seed(31415) x<-rnorm(n); y<-rnorm(n) # estimate non-parameteric density surface via kernel smoothing denobj <- MASS::kde2d(x, y, n=ngrid) den.z <-denobj$z # generate parametric density surface of a bivariate normal distribution xgrid <- denobj$x ygrid <- denobj$y bi.z <- dnorm(xgrid)%*%t(dnorm(ygrid)) # visualize: zscale<-20 # New window open3d() # clear scene: clear3d("all") # setup env: bg3d(color="#887777") light3d() # Draws the simulated data as spheres on the baseline spheres3d(x,y,rep(0,n),radius=0.1,color="#CCCCFF") # Draws non-parametric density surface3d(xgrid,ygrid,den.z*zscale,color="#FF2222",alpha=0.5) # Draws parametric density surface3d(xgrid,ygrid,bi.z*zscale,color="#CCCCFF",front="lines") } rgl.demo.bivar() ``` ## Abundance: Animal abundance, visualization of multi-dimension data using multiple techniques ```{r} # RGL-Demo: animal abundance # Authors: Oleg Nenadic, Daniel Adler rgl.demo.abundance <- function() { open3d() clear3d("all") # remove all shapes, lights, bounding-box, and restore viewpoint # Setup environment: bg3d(col="#cccccc") # setup background light3d() # setup head-light # Importing animal data (created with wisp) terrain<-dget(system.file("demodata/region.dat",package="rgl")) pop<-dget(system.file("demodata/population.dat",package="rgl")) # Define colors for terrain zlim <- range(terrain) colorlut <- terrain.colors(82) col1 <- colorlut[9*sqrt(3.6*(terrain-zlim[1])+2)] # Set color to (water-)blue for regions with zero 'altitude' col1[terrain==0]<-"#0000FF" # Add terrain surface shape (i.e. population density): surface3d( 1:100,seq(1,60,length=100),terrain, col=col1,spec="#000000", ambient="#333333", back="lines" ) # Define colors for simulated populations (males:blue, females:red): col2<-pop[,4] col2[col2==0]<-"#3333ff" col2[col2==1]<-"#ff3333" # Add simulated populations as sphere-set shape spheres3d( pop[,1], pop[,2], terrain[cbind( ceiling(pop[,1]),ceiling(pop[,2]*10/6) )]+0.5, radius=0.2*pop[,3], col=col2, alpha=(1-(pop[,5])/10 ) ) } rgl.demo.abundance() ``` ## lsystem: Plant modelling using a turtle and L-system ```{r} # demo: lsystem.r # author: Daniel Adler # # geometry # deg2rad <- function( degree ) { return( degree*pi/180 ) } rotZ.m3x3 <- function( degree ) { kc <- cos(deg2rad(degree)) ks <- sin(deg2rad(degree)) return( matrix( c( kc, -ks, 0, ks, kc, 0, 0, 0, 1 ),ncol=3,byrow=TRUE ) ) } rotX.m3x3 <- function( degree ) { kc <- cos(deg2rad(degree)) ks <- sin(deg2rad(degree)) return( matrix( c( 1, 0, 0, 0, kc, -ks, 0, ks, kc ),ncol=3,byrow=TRUE ) ) } rotY.m3x3 <- function( degree ) { kc <- cos(deg2rad(degree)) ks <- sin(deg2rad(degree)) return( matrix( c( kc, 0, ks, 0, 1, 0, -ks, 0, kc ),ncol=3,byrow=TRUE ) ) } rotZ <- function( v, degree ) { return( rotZ.m3x3(degree) %*% v) } rotX <- function( v, degree ) { return( rotX.m3x3(degree) %*% v) } rotY <- function( v, degree ) { return( rotY.m3x3(degree) %*% v) } # # turtle graphics, rgl implementation: # turtle.init <- function(pos=c(0,0,0),head=0,pitch=90,roll=0,level=0) { clear3d("all") bg3d(color="gray") light3d() return( list(pos=pos,head=head,pitch=pitch,roll=roll,level=level) ) } turtle.move <- function(turtle, steps, color) { rm <- rotX.m3x3(turtle$pitch) %*% rotY.m3x3(turtle$head) %*% rotZ.m3x3(turtle$roll) from <- as.vector( turtle$pos ) dir <- rm %*% c(0,0,-1) to <- from + dir * steps x <- c( from[1], to[1] ) y <- c( from[2], to[2] ) z <- c( from[3], to[3] ) lines3d(x,y,z,col=color,size=1.5,alpha=0.5) turtle$pos <- to return(turtle) } turtle.pitch <- function(turtle, degree) { turtle$pitch <- turtle$pitch + degree return(turtle) } turtle.head <- function(turtle, degree) { turtle$head <- turtle$head + degree return(turtle) } turtle.roll <- function(turtle, degree) { turtle$roll <- turtle$roll + degree return(turtle) } # # l-system general # lsystem.code <- function( x ) substitute( x ) lsystem.gen <- function( x, grammar, levels=0 ) { code <- eval( substitute( substitute( REPLACE , grammar ), list(REPLACE=x) ) ) if (levels) return( lsystem.gen( code , grammar , levels-1 ) ) else return( code ) } # # l-system plot # lsystem.plot <- function( expr, level ) { turtle <- turtle.init(level=level) lsystem.eval( expr, turtle ) } lsystem.eval <- function( expr, turtle ) { if ( length(expr) == 3 ) { turtle <- lsystem.eval( expr[[2]], turtle ) turtle <- lsystem.eval( expr[[3]], turtle ) turtle <- lsystem.eval( expr[[1]], turtle ) } else if ( length(expr) == 2 ) { saved <- turtle turtle <- lsystem.eval( expr[[1]], turtle ) turtle <- lsystem.eval( expr[[2]], turtle ) turtle <- saved } else if ( length(expr) == 1 ) { if ( as.name(expr) == "stem" ) turtle <- turtle.move(turtle, 5, "brown") else if ( as.name(expr) == "short") turtle <- turtle.move(turtle, 5, "brown") else if ( as.name(expr) == "leaf" ) { spheres3d(turtle$pos[1],turtle$pos[2],turtle$pos[3],radius=0.1+turtle$level*0.3,color="green") sprites3d(turtle$pos[1],turtle$pos[2],turtle$pos[3],radius=0.5+turtle$level*0.3 ,color="green",texture=system.file("textures/particle.png",package="rgl"),textype="alpha",alpha=0.5) } else if ( as.name(expr) == "roll" ) turtle <- turtle.head(turtle, 60) else if ( as.name(expr) == "down" ) turtle <- turtle.pitch(turtle,10) else if ( as.name(expr) == "up" ) turtle <- turtle.pitch(turtle,-10) else if ( as.name(expr) == "left" ) turtle <- turtle.head(turtle, 1) else if ( as.name(expr) == "right") turtle <- turtle.head(turtle,-1.5) else if ( as.name(expr) == "turnleft") turtle <- turtle.head(turtle,20) else if ( as.name(expr) == "turnright") turtle <- turtle.head(turtle,-20) else if ( as.name(expr) == "turn") turtle <- turtle.roll(turtle,180) } return(turtle) } # # example # simple <- function(level=0) { grammar <- list( stem=lsystem.code( stem-(up-stem-leaf)-stem-(down-stem-leaf)-stem-leaf ) ) plant <- lsystem.gen(lsystem.code(stem), grammar, level ) lsystem.plot(plant,level) } rgl.demo.lsystem <- function(level=0) { gen <- list( stem=lsystem.code( stem-left-stem-branch( turnleft-down-short-turnleft-down-stem-leaf)-right-right-stem--branch( turnright-up-short-turnright-up-short-turnright-short-stem-leaf)-left-left-left-stem-branch( turnleft-down-short-turnright-down-stem-leaf )-branch( up-turnright-short-up-turnleft-up-stem-leaf ) ) ) plant <- lsystem.gen(lsystem.code(stem), gen, level ) lsystem.plot(plant,level) } open3d() rgl.demo.lsystem(level=1) rglwidget() ``` ## subdivision: Subdivision surfaces using generic meshes (preview of generic 3D interface) ```{r} # RGL-demo: subdivision surfaces # author: Daniel Adler rgl.demo.subdivision <- function() { # setup environment clear3d("all") view3d() bg3d(color="gray") light3d() # generate basic mesh obj <- oh3d() part <- function( level, tx, ... ) { shade3d( translate3d( obj, tx, 0, 0 ) , color="gray30", front="lines",alpha=0.5,back="lines", override=TRUE ) shade3d( translate3d( subdivision3d( obj, depth=level ), tx, 0, 0 ) , override=TRUE, ... ) } part(0, -5.50, color="blue" ) part(1, -1.75, color="yellow" ) part(2, 1.75, color="red" ) part(3, 5.50, color="green" ) } open3d() rgl.demo.subdivision() ``` ## envmap: Environment mapping ```{r} # RGL-Demo: environment mapping # Author: Daniel Adler rgl.demo.envmap <- function() { open3d() # Clear scene: clear3d("all") light3d() bg3d(sphere=TRUE, color="white", back="filled" , texture=system.file("textures/refmap.png",package="rgl") ) data(volcano) surface3d( 10*seq_len(nrow(volcano)),10*seq_len(ncol(volcano)),5*volcano , texture=system.file("textures/refmap.png",package="rgl") , texenvmap=TRUE , texmode="modulate" , color = "white" ) } rgl.demo.envmap() ``` ## shapes3d: 3D shape primitives (cones, ellipsoids, cubes), some taken from qmesh3d ```{r} cone3d <- function(base=c(0,0,0),tip=c(0,0,1),rad=1,n=30,draw.base=TRUE,qmesh=FALSE, trans = par3d("userMatrix"), ...) { ax <- tip-base if (missing(trans) && !cur3d()) trans <- diag(4) ### is there a better way? if (ax[1]!=0) { p1 <- c(-ax[2]/ax[1],1,0) p1 <- p1/sqrt(sum(p1^2)) if (p1[1]!=0) { p2 <- c(-p1[2]/p1[1],1,0) p2[3] <- -sum(p2*ax) p2 <- p2/sqrt(sum(p2^2)) } else { p2 <- c(0,0,1) } } else if (ax[2]!=0) { p1 <- c(0,-ax[3]/ax[2],1) p1 <- p1/sqrt(sum(p1^2)) if (p1[1]!=0) { p2 <- c(0,-p1[3]/p1[2],1) p2[3] <- -sum(p2*ax) p2 <- p2/sqrt(sum(p2^2)) } else { p2 <- c(1,0,0) } } else { p1 <- c(0,1,0); p2 <- c(1,0,0) } degvec <- seq(0,2*pi,length=n+1)[-1] ecoord2 <- function(theta) { base+rad*(cos(theta)*p1+sin(theta)*p2) } i <- rbind(1:n,c(2:n,1),rep(n+1,n)) v <- cbind(sapply(degvec,ecoord2),tip) if (qmesh) ## minor kluge for quads -- draw tip twice i <- rbind(i,rep(n+1,n)) if (draw.base) { v <- cbind(v,base) i.x <- rbind(c(2:n,1),1:n,rep(n+2,n)) if (qmesh) ## add base twice i.x <- rbind(i.x,rep(n+2,n)) i <- cbind(i,i.x) } if (qmesh) v <- rbind(v,rep(1,ncol(v))) ## homogeneous if (!qmesh) triangles3d(v[1,i],v[2,i],v[3,i],...) else return(rotate3d(qmesh3d(v,i,material=list(...)), matrix=trans)) } ellipsoid3d <- function(rx=1,ry=1,rz=1,n=30,ctr=c(0,0,0), qmesh=FALSE, trans = par3d("userMatrix"),...) { if (missing(trans) && !cur3d()) trans <- diag(4) degvec <- seq(0,pi,length=n) ecoord2 <- function(p) c(rx*cos(p[1])*sin(p[2]),ry*sin(p[1])*sin(p[2]),rz*cos(p[2])) v <- apply(expand.grid(2*degvec,degvec),1,ecoord2) if (qmesh) v <- rbind(v,rep(1,ncol(v))) ## homogeneous e <- expand.grid(1:(n-1),1:n) i1 <- apply(e,1,function(z)z[1]+n*(z[2]-1)) i2 <- i1+1 i3 <- (i1+n-1) %% n^2 + 1 i4 <- (i2+n-1) %% n^2 + 1 i <- rbind(i1,i2,i4,i3) if (!qmesh) quads3d(v[1,i],v[2,i],v[3,i],...) else return(rotate3d(qmesh3d(v,i,material=list(...)),matrix=trans)) } ############ open3d() ellipsoid3d(ctr=c(2,2,2),rx=3,ry=2,col="red",alpha=0.4) cone3d(base=c(-2,-2,-2),rad=0.5,tip=c(-3,0,-4),col="blue",front="lines",back="lines") shade3d(translate3d(cube3d(),3,-2,3,col="purple")) ### now with qmesh() open3d() q1 <- cone3d(qmesh=TRUE,trans=diag(4)) ## the "unit cone"; ## height=1,radius=1, base at (0,0,0) shade3d(q1) ## various transformations and rotations wire3d(translate3d(q1,3,0,0),col="green") wire3d(translate3d(scale3d(q1,1,1,2),6,0,0),col="green") dot3d(translate3d(q1,0,3,0),col="green") dot3d(translate3d(scale3d(q1,2,1,1),0,6,0),col="green") shade3d(translate3d(q1,0,0,3),col="red") shade3d(translate3d(rotate3d(scale3d(q1,1,1,2),pi/4,0,1,0),0,0,6),col="red") axes3d() open3d() s1 <- ellipsoid3d(qmesh=TRUE,trans=diag(4)) ## the "unit sphere"; ## radius=1, ctr at (0,0,0) shade3d(s1) ## various transformations and rotations wire3d(translate3d(s1,3,0,0),col="green") wire3d(translate3d(scale3d(s1,1,1,2),6,0,0),col="green") dot3d(translate3d(s1,0,3,0),col="green") dot3d(translate3d(scale3d(s1,2,1,1),0,6,0),col="green") shade3d(translate3d(s1,0,0,3),col="red") shade3d(translate3d(rotate3d(scale3d(s1,1,1,2),pi/4,0,1,0),0,0,6),col="red") axes3d() ``` ## lollipop3d: "Lollipop" plots (3D scatterplot with lines between points and a surface) ```{r} cone3d <- function(base,tip,rad,n=30,...) { degvec <- seq(0,2*pi,length=n) ax <- tip-base ## what do if ax[1]==0? if (ax[1]!=0) { p1 <- c(-ax[2]/ax[1],1,0) p1 <- p1/sqrt(sum(p1^2)) if (p1[1]!=0) { p2 <- c(-p1[2]/p1[1],1,0) p2[3] <- -sum(p2*ax) p2 <- p2/sqrt(sum(p2^2)) } else { p2 <- c(0,0,1) } } else if (ax[2]!=0) { p1 <- c(0,-ax[3]/ax[2],1) p1 <- p1/sqrt(sum(p1^2)) if (p1[1]!=0) { p2 <- c(0,-p1[3]/p1[2],1) p2[3] <- -sum(p2*ax) p2 <- p2/sqrt(sum(p2^2)) } else { p2 <- c(1,0,0) } } else { p1 <- c(0,1,0); p2 <- c(1,0,0) } ecoord2 <- function(theta) { base+rad*(cos(theta)*p1+sin(theta)*p2) } for (i in seq_len(n-1)) { li <- ecoord2(degvec[i]) lj <- ecoord2(degvec[i+1]) triangles3d(c(li[1],lj[1],tip[1]),c(li[2],lj[2],tip[2]),c(li[3],lj[3],tip[3]),...) } } lollipop3d <- function(data.x,data.y,data.z,surf.fun,surf.n=50, xlim=range(data.x), ylim=range(data.y), zlim=range(data.z), asp=c(y=1,z=1), xlab=deparse(substitute(x)), ylab=deparse(substitute(y)), zlab=deparse(substitute(z)), alpha.surf=0.4, col.surf=fg,col.stem=c(fg,fg), col.pt="gray",type.surf="line",ptsize, lwd.stem=2,lit=TRUE,bg="white",fg="black", col.axes=fg,col.axlabs=fg, axis.arrow=TRUE,axis.labels=TRUE, box.col=bg, axes=c("lines","box")) { axes <- match.arg(axes) col.stem <- rep(col.stem,length=2) x.ticks <- pretty(xlim) x.ticks <- x.ticks[x.ticks>=min(xlim) & x.ticks<=max(xlim)] x.ticklabs <- if (axis.labels) as.character(x.ticks) else NULL y.ticks <- pretty(ylim) y.ticks <- y.ticks[y.ticks>=min(ylim) & y.ticks<=max(ylim)] y.ticklabs <- if (axis.labels) as.character(y.ticks) else NULL z.ticks <- pretty(zlim) z.ticks <- z.ticks[z.ticks>=min(zlim) & z.ticks<=max(zlim)] z.ticklabs <- if (axis.labels) as.character(z.ticks) else NULL if (!missing(surf.fun)) { surf.x <- seq(xlim[1],xlim[2],length=surf.n) surf.y <- seq(ylim[1],ylim[2],length=surf.n) surf.z <- outer(surf.x,surf.y,surf.fun) ## requires surf.fun be vectorized z.interc <- surf.fun(data.x,data.y) zdiff <- diff(range(c(surf.z,data.z))) } else { z.interc <- rep(min(data.z),length(data.x)) zdiff <- diff(range(data.z)) } xdiff <- diff(xlim) ydiff <- diff(ylim) y.adj <- if (asp[1]<=0) 1 else asp[1]*xdiff/ydiff data.y <- y.adj*data.y y.ticks <- y.adj*y.ticks ylim <- ylim*y.adj ydiff <- diff(ylim) z.adj <- if (asp[2]<=0) 1 else asp[2]*xdiff/zdiff data.z <- z.adj*data.z if (!missing(surf.fun)) { surf.y <- y.adj*surf.y surf.z <- z.adj*surf.z } z.interc <- z.adj*z.interc z.ticks <- z.adj*z.ticks zlim <- z.adj*zlim open3d() clear3d("all") light3d() bg3d(color=c(bg,fg)) if (!missing(surf.fun)) surface3d(surf.x,surf.y,surf.z,alpha=alpha.surf, front=type.surf,back=type.surf, col=col.surf,lit=lit) if (missing(ptsize)) ptsize <- 0.02*xdiff ## draw points spheres3d(data.x,data.y,data.z,r=ptsize,lit=lit,color=col.pt) ## draw lollipops apply(cbind(data.x,data.y,data.z,z.interc),1, function(X) { lines3d(x=rep(X[1],2), y=rep(X[2],2), z=c(X[3],X[4]), col=ifelse(X[3]>X[4],col.stem[1], col.stem[2]),lwd=lwd.stem) }) if (axes=="box") { bbox3d(xat=x.ticks,xlab=x.ticklabs, yat=y.ticks,ylab=y.ticklabs, zat=z.ticks,zlab=z.ticklabs,lit=lit) } else if (axes=="lines") { ## set up axis lines axis3d(edge="x",at=x.ticks,labels=x.ticklabs, col=col.axes,arrow=axis.arrow) axis3d(edge="y",at=y.ticks,labels=y.ticklabs, col=col.axes,arrow=axis.arrow) axis3d(edge="z",at=z.ticks,labels=z.ticklabs, col=col.axes,arrow=axis.arrow) box3d(col=col.axes) } decorate3d(xlab=xlab, ylab=ylab, zlab=zlab, box=FALSE, axes=FALSE, col=col.axlabs) } x <- 1:5 y <- x*10 z <- (x+y)/20 open3d() spheres3d(x,y,z) axes3d() set.seed(1001) x <- runif(30) y <- runif(30,max=2) dfun <- function(x,y) 2*x+3*y+2*x*y+3*y^2 z <- dfun(x,y)+rnorm(30,sd=0.5) ## lollipops only lollipop3d(x,y,z) ## lollipops plus theoretical surface open3d() lollipop3d(x,y,z,dfun,col.pt="red",col.stem=c("red","blue")) ## lollipops plus regression fit linmodel <- lm(z~x+y) dfun <- function(x,y) predict(linmodel,newdata=data.frame(x=x,y=y)) open3d() lollipop3d(x,y,z,dfun,col.pt="red",col.stem=c("red","blue")) #### ```