## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----download, eval = FALSE--------------------------------------------------- # url <- "https://redatam.org/cdr/descargas/censos/poblacion/CP2017CHL.zip" # zip <- "CP2017CHL.zip" # # if (!file.exists(zip)) { # download.file(url, zip, method = "wget") # } ## ----extract, eval = FALSE---------------------------------------------------- # # install.packages("archive") # dout <- basename(zip) # dout <- sub("\\.zip$", "", dout) # archive::archive_extract(zip, dir = dout) ## ----read_dic, eval = FALSE--------------------------------------------------- # library(redatam) # # fout <- "chile2017.rds" # # if (!file.exists(fout)) { # chile2017 <- read_redatam("CP2017CHL/BaseOrg16/CPV2017-16.dicx") # saveRDS(chile2017, fout) # } else { # chile2017 <- readRDS(fout) # } ## ----eval = FALSE------------------------------------------------------------- # library(dplyr) # # overcrowding <- chile2017$comuna %>% # select(ncomuna, comuna_ref_id) %>% # inner_join( # chile2017$distrito %>% # select(distrito_ref_id, comuna_ref_id) # ) %>% # inner_join( # chile2017$area %>% # select(area_ref_id, distrito_ref_id) # ) %>% # inner_join( # chile2017$zonaloc %>% # select(zonaloc_ref_id, area_ref_id) # ) %>% # inner_join( # chile2017$vivienda %>% # select(zonaloc_ref_id, vivienda_ref_id, cant_per, p04) %>% # mutate( # p04 = case_when( # p04 == 98 ~ NA_integer_, # p04 == 99 ~ NA_integer_, # TRUE ~ p04 # ) # ) %>% # filter(!is.na(p04)) # ) %>% # mutate( # overcrowding = case_when( # p04 >=1 ~ cant_per / p04, # p04 ==0 ~ cant_per / (p04 + 1) # ) # ) %>% # mutate( # overcrowding_discrete = case_when( # overcrowding < 2.5 ~ "No Overcrowding", # overcrowding >= 2.5 & overcrowding < 3.5 ~ "Mean", # overcrowding >= 3.5 & overcrowding < 5 ~ "High", # overcrowding >= 5 ~ "Critical" # ) # ) %>% # group_by(comuna = ncomuna, overcrowding_discrete) %>% # count() ## ----metropolitana, eval = FALSE---------------------------------------------- # overcrowding %>% # filter(comuna == "VITACURA") # # overcrowding %>% # filter(comuna == "LA PINTANA")