## ----echo=FALSE, message=FALSE------------------------------------------------ library(olsrr) library(ggplot2) library(gridExtra) library(nortest) library(goftest) ## ----allsub------------------------------------------------------------------- model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars) ols_step_all_possible(model) ## ----bestsub, size='tiny'----------------------------------------------------- model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars) ols_step_best_subset(model) ## ----model-------------------------------------------------------------------- model <- lm(y ~ ., data = surgical) summary(model) ## ----stepf1------------------------------------------------------------------- # stepwise forward regression ols_step_forward_p(model) ## ----stepb-------------------------------------------------------------------- # stepwise backward regression ols_step_backward_p(model) ## ----include_name------------------------------------------------------------- ols_step_forward_p(model, include = c("age", "alc_mod")) ## ----include_index------------------------------------------------------------ ols_step_forward_p(model, include = c(5, 7)) ## ----output------------------------------------------------------------------- # adjusted r-square ols_step_forward_adj_r2(model) ## ----visualize---------------------------------------------------------------- # adjusted r-square k <- ols_step_forward_adj_r2(model) plot(k) ## ----details------------------------------------------------------------------ # adjusted r-square ols_step_forward_adj_r2(model, details = TRUE) ## ----progress----------------------------------------------------------------- # adjusted r-square ols_step_forward_adj_r2(model, progress = TRUE) ## ----hierarchical------------------------------------------------------------- # hierarchical selection m <- lm(y ~ bcs + alc_heavy + pindex + enzyme_test + liver_test + age + gender + alc_mod, data = surgical) ols_step_forward_p(m, 0.1, hierarchical = TRUE)