
Package ‘modelbased’
February 5, 2025

Type Package

Title Estimation of Model-Based Predictions, Contrasts and Means

Version 0.9.0

Maintainer Dominique Makowski <dom.makowski@gmail.com>

Description Implements a general interface for model-based estimations
for a wide variety of models, used in the computation of
marginal means, contrast analysis and predictions. For a list of supported models,
see 'insight::supported_models()'.

License GPL-3

URL https://easystats.github.io/modelbased/

BugReports https://github.com/easystats/modelbased/issues

Depends R (>= 3.6)

Imports bayestestR (>= 0.15.1), datawizard (>= 1.0.0), insight (>=
1.0.1), parameters (>= 0.24.1), graphics, stats, tools, utils

Suggests BH, brms, coda, collapse, correlation, curl, easystats,
effectsize (>= 1.0.0), emmeans (>= 1.10.2), Formula, gamm4,
gganimate, ggplot2, glmmTMB, httr2, knitr, lme4, lmerTest,
logspline, MASS, marginaleffects (>= 0.25.0), mgcv,
nanoparquet, performance (>= 0.13.0), patchwork, pbkrtest,
poorman, RcppEigen, report, rmarkdown, rstanarm, rtdists, see
(>= 0.9.0), testthat (>= 3.2.1), vdiffr, withr

VignetteBuilder knitr

Encoding UTF-8

Language en-US

RoxygenNote 7.3.2

Config/testthat/edition 3

Config/testthat/parallel true

Config/Needs/check stan-dev/cmdstanr

Config/Needs/website easystats/easystatstemplate

LazyData true

1

https://easystats.github.io/modelbased/
https://github.com/easystats/modelbased/issues

2 coffee_data

NeedsCompilation no

Author Dominique Makowski [aut, cre] (<https://orcid.org/0000-0001-5375-9967>),
Daniel Lüdecke [aut] (<https://orcid.org/0000-0002-8895-3206>),
Mattan S. Ben-Shachar [aut] (<https://orcid.org/0000-0002-4287-4801>),
Indrajeet Patil [aut] (<https://orcid.org/0000-0003-1995-6531>)

Repository CRAN

Date/Publication 2025-02-05 11:50:23 UTC

Contents
coffee_data . 2
describe_nonlinear . 3
efc . 4
estimate_contrasts . 4
estimate_expectation . 9
estimate_grouplevel . 14
estimate_means . 16
estimate_slopes . 20
fish . 23
get_emcontrasts . 24
smoothing . 29
visualisation_matrix . 30
visualisation_recipe.estimate_predicted . 32
zero_crossings . 36

Index 38

coffee_data Sample dataset from a course about analysis of factorial designs

Description

A sample data set from a course about the analysis of factorial designs, by Mattan S. Ben-Shachar.
See following link for more information: https://github.com/mattansb/Analysis-of-Factorial-Designs-
foR-Psychologists

The data consists of five variables from 120 observations:

• ID: A unique identifier for each participant

• sex: The participant’s sex

• time: The time of day the participant was tested (morning, noon, or afternoon)

• coffee: Group indicator, whether participant drank coffee or not ("coffee" or "control").

• alertness: The participant’s alertness score.

https://orcid.org/0000-0001-5375-9967
https://orcid.org/0000-0002-8895-3206
https://orcid.org/0000-0002-4287-4801
https://orcid.org/0000-0003-1995-6531

describe_nonlinear 3

describe_nonlinear Describe the smooth term (for GAMs) or non-linear predictors

Description

This function summarises the smooth term trend in terms of linear segments. Using the approx-
imate derivative, it separates a non-linear vector into quasi-linear segments (in which the trend is
either positive or negative). Each of this segment its characterized by its beginning, end, size (in
proportion, relative to the total size) trend (the linear regression coefficient) and linearity (the R2 of
the linear regression).

Usage

describe_nonlinear(data, ...)

S3 method for class 'data.frame'
describe_nonlinear(data, x = NULL, y = NULL, ...)

estimate_smooth(data, ...)

Arguments

data The data containing the link, as for instance obtained by estimate_relation().

... Other arguments to be passed to or from.

x, y The name of the responses variable (y) predicting variable (x).

Value

A data frame of linear description of non-linear terms.

Examples

Create data
data <- data.frame(x = rnorm(200))
data$y <- data$x^2 + rnorm(200, 0, 0.5)

model <<- lm(y ~ poly(x, 2), data = data)
link_data <- estimate_relation(model, length = 100)

describe_nonlinear(link_data, x = "x")

4 estimate_contrasts

efc Sample dataset from the EFC Survey

Description

Selected variables from the EUROFAMCARE survey. Useful when testing on "real-life" data sets,
including random missing values. This data set also has value and variable label attributes.

estimate_contrasts Estimate Marginal Contrasts

Description

Run a contrast analysis by estimating the differences between each level of a factor. See also other
related functions such as estimate_means() and estimate_slopes().

Usage

estimate_contrasts(model, ...)

Default S3 method:
estimate_contrasts(
model,
contrast = NULL,
by = NULL,
predict = NULL,
ci = 0.95,
comparison = "pairwise",
estimate = "average",
p_adjust = "none",
transform = NULL,
backend = getOption("modelbased_backend", "marginaleffects"),
verbose = TRUE,
...

)

Arguments

model A statistical model.

... Other arguments passed, for instance, to insight::get_datagrid(), to func-
tions from the emmeans or marginaleffects package, or to process Bayesian
models via bayestestR::describe_posterior(). Examples:

• insight::get_datagrid(): Argument such as length or range can be
used to control the (number of) representative values.

estimate_contrasts 5

• marginaleffects: Internally used functions are avg_predictions() for
means and contrasts, and avg_slope() for slopes. Therefore, arguments
for instance like vcov, transform, equivalence, slope or even newdata
can be passed to those functions.

• emmeans: Internally used functions are emmeans() and emtrends(). Ad-
ditional arguments can be passed to these functions.

• Bayesian models: For Bayesian models, parameters are cleaned using describe_posterior(),
thus, arguments like, for example, centrality, rope_range, or test are
passed to that function.

contrast A character vector indicating the name of the variable(s) for which to compute
the contrasts.

by The (focal) predictor variable(s) at which to evaluate the desired effect / mean
/ contrasts. Other predictors of the model that are not included here will be
collapsed and "averaged" over (the effect will be estimated across them). The
by argument is used to create a "reference grid" or "data grid" with representative
values for the focal predictors. by can be a character (vector) naming the focal
predictors (and optionally, representative values or levels), or a list of named
elements. See details in insight::get_datagrid() to learn more about how
to create data grids for predictors of interest.

predict Is passed to the type argument in emmeans::emmeans() (when backend = "emmeans")
or in marginaleffects::avg_predictions() (when backend = "marginaleffects").
For emmeans, see also this vignette. Valid options for ‘predict“ are:

• backend = "emmeans": predict can be "response", "link", "mu", "unlink",
or "log". If predict = NULL (default), the most appropriate transformation
is selected (which usually is "response").

• backend = "marginaleffects": predict can be "response", "link" or
any valid type option supported by model’s class predict() method (e.g.,
for zero-inflation models from package glmmTMB, you can choose predict
= "zprob" or predict = "conditional" etc., see glmmTMB::predict.glmmTMB).
By default, when predict = NULL, the most appropriate transformation is
selected, which usually returns predictions or contrasts on the response-
scale.

"link" will leave the values on scale of the linear predictors. "response" (or
NULL) will transform them on scale of the response variable. Thus for a logis-
tic model, "link" will give estimations expressed in log-odds (probabilities on
logit scale) and "response" in terms of probabilities. To predict distributional
parameters (called "dpar" in other packages), for instance when using complex
formulae in brms models, the predict argument can take the value of the pa-
rameter you want to estimate, for instance "sigma", "kappa", etc.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

comparison Specify the type of contrasts or tests that should be carried out.

• When backend = "emmeans", can be one of "pairwise", "poly", "consec",
"eff", "del.eff", "mean_chg", "trt.vs.ctrl", "dunnett", "wtcon"
and some more. See also method argument in emmeans::contrast and the
?emmeans::emmc-functions.

https://CRAN.R-project.org/package=emmeans/vignettes/transformations.html

6 estimate_contrasts

• For backend = "marginaleffects", can be a numeric value, vector, or ma-
trix, a string equation specifying the hypothesis to test, a string naming the
comparison method, a formula, or a function. Strings, string equations and
formula are probably the most common options and described below. For
other options and detailed descriptions of those options, see also marginal-
effects::comparisons and this website.

– String: One of "pairwise", "reference", "sequential", "meandev"
"meanotherdev", "poly", "helmert", or "trt_vs_ctrl".

– String equation: To identify parameters from the output, either specify
the term name, or "b1", "b2" etc. to indicate rows, e.g.:"hp = drat",
"b1 = b2", or "b1 + b2 + b3 = 0".

– Formula: A formula like comparison ~ pairs | group, where the left-
hand side indicates the type of comparison (difference or ratio), the
right-hand side determines the pairs of estimates to compare (reference,
sequential, meandev, etc., see string-options). Optionally, compar-
isons can be carried out within subsets by indicating the grouping vari-
able after a vertical bar (|).

estimate Character string, indicating the type of target population predictions refer to.
This dictates how the predictions are "averaged" over the non-focal predictors,
i.e. those variables that are not specified in by or contrast.

• "average" (default): Takes the mean value for non-focal numeric predic-
tors and marginalizes over the factor levels of non-focal terms, which com-
putes a kind of "weighted average" for the values at which these terms are
hold constant. These predictions are a good representation of the sample,
because all possible values and levels of the non-focal predictors are consid-
ered. It answers the question, "What is the predicted value for an ’average’
observation in my data?". Cum grano salis, it refers to randomly picking a
subject of your sample and the result you get on average. This approach is
the one taken by default in the emmeans package.

• "population": Non-focal predictors are marginalized over the observa-
tions in the sample, where the sample is replicated multiple times to pro-
duce "counterfactuals" and then takes the average of these predicted values
(aggregated/grouped by the focal terms). It can be considered as extrap-
olation to a hypothetical target population. Counterfactual predictions are
useful, insofar as the results can also be transferred to other contexts (Dick-
erman and Hernan, 2020). It answers the question, "What is the predicted
response value for the ’average’ observation in the broader target popula-
tion?". It does not only refer to the actual data in your observed sample, but
also "what would be if" we had more data, or if we had data from a different
sample.

In other words, the distinction between estimate types resides in whether the
prediction are made for:

• A specific "individual" from the sample (i.e., a specific combination of pre-
dictor values): this is what is obtained when using estimate_relation()
and the other prediction functions.

• An average individual from the sample: obtained with estimate_means(...,
estimate = "average")

https://marginaleffects.com/bonus/hypothesis.html

estimate_contrasts 7

• The broader, hypothetical target population: obtained with estimate_means(...,
estimate = "population")

p_adjust The p-values adjustment method for frequentist multiple comparisons. Can be
one of "none" (default), "hochberg", "hommel", "bonferroni", "BH", "BY",
"fdr", "tukey" or "holm". See the p-value adjustment section in the emmeans::test
documentation or ?stats::p.adjust.

transform A function applied to predictions and confidence intervals to (back-) transform
results, which can be useful in case the regression model has a transformed
response variable (e.g., lm(log(y) ~ x)). For Bayesian models, this function
is applied to individual draws from the posterior distribution, before computing
summaries. Can also be TRUE, in which case insight::get_transformation()
is called to determine the appropriate transformation-function.

backend Whether to use "emmeans" or "marginaleffects" as a backend. Results are
usually very similar. The major difference will be found for mixed models,
where backend = "marginaleffects" will also average across random effects
levels, producing "marginal predictions" (instead of "conditional predictions",
see Heiss 2022).
You can set a default backend via options(), e.g. use options(modelbased_backend
= "emmeans") to use the emmeans package or options(modelbased_backend
= "marginaleffects") to set marginaleffects as default backend.

verbose Use FALSE to silence messages and warnings.

Details

The estimate_slopes(), estimate_means() and estimate_contrasts() functions are forming
a group, as they are all based on marginal estimations (estimations based on a model). All three are
built on the emmeans or marginaleffects package (depending on the backend argument), so read-
ing its documentation (for instance emmeans::emmeans(), emmeans::emtrends() or this website)
is recommended to understand the idea behind these types of procedures.

• Model-based predictions is the basis for all that follows. Indeed, the first thing to understand
is how models can be used to make predictions (see estimate_link()). This corresponds to
the predicted response (or "outcome variable") given specific predictor values of the predictors
(i.e., given a specific data configuration). This is why the concept of reference grid() is so
important for direct predictions.

• Marginal "means", obtained via estimate_means(), are an extension of such predictions,
allowing to "average" (collapse) some of the predictors, to obtain the average response value
at a specific predictors configuration. This is typically used when some of the predictors of
interest are factors. Indeed, the parameters of the model will usually give you the intercept
value and then the "effect" of each factor level (how different it is from the intercept). Marginal
means can be used to directly give you the mean value of the response variable at all the levels
of a factor. Moreover, it can also be used to control, or average over predictors, which is useful
in the case of multiple predictors with or without interactions.

• Marginal contrasts, obtained via estimate_contrasts(), are themselves at extension of
marginal means, in that they allow to investigate the difference (i.e., the contrast) between the
marginal means. This is, again, often used to get all pairwise differences between all levels of
a factor. It works also for continuous predictors, for instance one could also be interested in
whether the difference at two extremes of a continuous predictor is significant.

https://marginaleffects.com/

8 estimate_contrasts

• Finally, marginal effects, obtained via estimate_slopes(), are different in that their focus
is not values on the response variable, but the model’s parameters. The idea is to assess the
effect of a predictor at a specific configuration of the other predictors. This is relevant in the
case of interactions or non-linear relationships, when the effect of a predictor variable changes
depending on the other predictors. Moreover, these effects can also be "averaged" over other
predictors, to get for instance the "general trend" of a predictor over different factor levels.

Example: Let’s imagine the following model lm(y ~ condition * x) where condition is a factor
with 3 levels A, B and C and x a continuous variable (like age for example). One idea is to see how
this model performs, and compare the actual response y to the one predicted by the model (using
estimate_expectation()). Another idea is evaluate the average mean at each of the condition’s
levels (using estimate_means()), which can be useful to visualize them. Another possibility is to
evaluate the difference between these levels (using estimate_contrasts()). Finally, one could
also estimate the effect of x averaged over all conditions, or instead within each condition (using
[estimate_slopes]).

Value

A data frame of estimated contrasts.

Examples

Not run:
Basic usage
model <- lm(Sepal.Width ~ Species, data = iris)
estimate_contrasts(model)

Dealing with interactions
model <- lm(Sepal.Width ~ Species * Petal.Width, data = iris)

By default: selects first factor
estimate_contrasts(model)

Can also run contrasts between points of numeric, stratified by "Species"
estimate_contrasts(model, contrast = "Petal.Width", by = "Species")

Or both
estimate_contrasts(model, contrast = c("Species", "Petal.Width"), length = 2)

Or with custom specifications
estimate_contrasts(model, contrast = c("Species", "Petal.Width=c(1, 2)"))

Or modulate it
estimate_contrasts(model, by = "Petal.Width", length = 4)

Standardized differences
estimated <- estimate_contrasts(lm(Sepal.Width ~ Species, data = iris))
standardize(estimated)

Other models (mixed, Bayesian, ...)
data <- iris
data$Petal.Length_factor <- ifelse(data$Petal.Length < 4.2, "A", "B")

estimate_expectation 9

model <- lme4::lmer(Sepal.Width ~ Species + (1 | Petal.Length_factor), data = data)
estimate_contrasts(model)

data <- mtcars
data$cyl <- as.factor(data$cyl)
data$am <- as.factor(data$am)

model <- rstanarm::stan_glm(mpg ~ cyl * wt, data = data, refresh = 0)
estimate_contrasts(model)
estimate_contrasts(model, by = "wt", length = 4)

model <- rstanarm::stan_glm(
Sepal.Width ~ Species + Petal.Width + Petal.Length,
data = iris,
refresh = 0

)
estimate_contrasts(model, by = "Petal.Length = [sd]", test = "bf")

End(Not run)

estimate_expectation Model-based predictions

Description

After fitting a model, it is useful generate model-based estimates of the response variables for
different combinations of predictor values. Such estimates can be used to make inferences about
relationships between variables, to make predictions about individual cases, or to compare the
predicted values against the observed data.

The modelbased package includes 4 "related" functions, that mostly differ in their default argu-
ments (in particular, data and predict):

• estimate_prediction(data = NULL, predict = "prediction", ...)

• estimate_expectation(data = NULL, predict = "expectation", ...)

• estimate_relation(data = "grid", predict = "expectation", ...)

• estimate_link(data = "grid", predict = "link", ...)

While they are all based on model-based predictions (using insight::get_predicted()), they
differ in terms of the type of predictions they make by default. For instance, estimate_prediction()
and estimate_expectation() return predictions for the original data used to fit the model, while
estimate_relation() and estimate_link() return predictions on a insight::get_datagrid().
Similarly, estimate_link returns predictions on the link scale, while the others return predictions
on the response scale. Note that the relevance of these differences depends on the model family (for
instance, for linear models, estimate_relation is equivalent to estimate_link(), since there is
no difference between the link-scale and the response scale).

10 estimate_expectation

Note that you can run plot() on the output of these functions to get some visual insights (see the
plotting examples).

See the details section below for details about the different possibilities.

Usage

estimate_expectation(
model,
data = NULL,
by = NULL,
predict = "expectation",
ci = 0.95,
transform = NULL,
keep_iterations = FALSE,
...

)

estimate_link(
model,
data = "grid",
by = NULL,
predict = "link",
ci = 0.95,
transform = NULL,
keep_iterations = FALSE,
...

)

estimate_prediction(
model,
data = NULL,
by = NULL,
predict = "prediction",
ci = 0.95,
transform = NULL,
keep_iterations = FALSE,
...

)

estimate_relation(
model,
data = "grid",
by = NULL,
predict = "expectation",
ci = 0.95,
transform = NULL,
keep_iterations = FALSE,
...

estimate_expectation 11

)

Arguments

model A statistical model.

data A data frame with model’s predictors to estimate the response. If NULL, the
model’s data is used. If "grid", the model matrix is obtained (through insight::get_datagrid()).

by The predictor variable(s) at which to estimate the response. Other predictors of
the model that are not included here will be set to their mean value (for numeric
predictors), reference level (for factors) or mode (other types). The by argument
will be used to create a data grid via insight::get_datagrid(), which will
then be used as data argument. Thus, you cannot specify both data and by but
only of these two arguments.

predict This parameter controls what is predicted (and gets internally passed to insight::get_predicted()).
In most cases, you don’t need to care about it: it is changed automatically ac-
cording to the different predicting functions (i.e., estimate_expectation(),
estimate_prediction(), estimate_link() or estimate_relation()). The
only time you might be interested in manually changing it is to estimate other
distributional parameters (called "dpar" in other packages) - for instance when
using complex formulae in brms models. The predict argument can then be set
to the parameter you want to estimate, for instance "sigma", "kappa", etc. Note
that the distinction between "expectation", "link" and "prediction" does
not then apply (as you are directly predicting the value of some distributional
parameter), and the corresponding functions will then only differ in the default
value of their data argument.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

transform A function applied to predictions and confidence intervals to (back-) transform
results, which can be useful in case the regression model has a transformed
response variable (e.g., lm(log(y) ~ x)). Can also be TRUE, in which case
insight::get_transformation() is called to determine the appropriate transformation-
function. Note: Standard errors are not (back-) transformed!

keep_iterations

If TRUE, will keep all iterations (draws) of bootstrapped or Bayesian models.
They will be added as additional columns named iter_1, iter_2, You
can reshape them to a long format by running reshape_iterations().

... You can add all the additional control arguments from insight::get_datagrid()
(used when data = "grid") and insight::get_predicted().

Value

A data frame of predicted values and uncertainty intervals, with class "estimate_predicted".
Methods for visualisation_recipe() and plot() are available.

Expected (average) values

The most important way that various types of response estimates differ is in terms of what quantity
is being estimated and the meaning of the uncertainty intervals. The major choices are expected

12 estimate_expectation

values for uncertainty in the regression line and predicted values for uncertainty in the individual
case predictions.

Expected values refer to the fitted regression line - the estimated average response value (i.e., the
"expectation") for individuals with specific predictor values. For example, in a linear model y = 2 +
3x + 4z + e, the estimated average y for individuals with x = 1 and z = 2 is 11.

For expected values, uncertainty intervals refer to uncertainty in the estimated conditional average
(where might the true regression line actually fall)? Uncertainty intervals for expected values are
also called "confidence intervals".

Expected values and their uncertainty intervals are useful for describing the relationship between
variables and for describing how precisely a model has been estimated.

For generalized linear models, expected values are reported on one of two scales:

• The link scale refers to scale of the fitted regression line, after transformation by the link
function. For example, for a logistic regression (logit binomial) model, the link scale gives
expected log-odds. For a log-link Poisson model, the link scale gives the expected log-count.

• The response scale refers to the original scale of the response variable (i.e., without any
link function transformation). Expected values on the link scale are back-transformed to the
original response variable metric (e.g., expected probabilities for binomial models, expected
counts for Poisson models).

Individual case predictions

In contrast to expected values, predicted values refer to predictions for individual cases. Predicted
values are also called "posterior predictions" or "posterior predictive draws".

For predicted values, uncertainty intervals refer to uncertainty in the individual response values
for each case (where might any single case actually fall)? Uncertainty intervals for predicted values
are also called "prediction intervals" or "posterior predictive intervals".

Predicted values and their uncertainty intervals are useful for forecasting the range of values that
might be observed in new data, for making decisions about individual cases, and for checking if
model predictions are reasonable ("posterior predictive checks").

Predicted values and intervals are always on the scale of the original response variable (not the link
scale).

Functions for estimating predicted values and uncertainty

modelbased provides 4 functions for generating model-based response estimates and their uncer-
tainty:

• estimate_expectation():

– Generates expected values (conditional average) on the response scale.
– The uncertainty interval is a confidence interval.
– By default, values are computed using the data used to fit the model.

• estimate_link():

– Generates expected values (conditional average) on the link scale.
– The uncertainty interval is a confidence interval.

estimate_expectation 13

– By default, values are computed using a reference grid spanning the observed range of
predictor values (see insight::get_datagrid()).

• estimate_prediction():

– Generates predicted values (for individual cases) on the response scale.
– The uncertainty interval is a prediction interval.
– By default, values are computed using the data used to fit the model.

• estimate_relation():

– Like estimate_expectation().
– Useful for visualizing a model.
– Generates expected values (conditional average) on the response scale.
– The uncertainty interval is a confidence interval.
– By default, values are computed using a reference grid spanning the observed range of

predictor values (see insight::get_datagrid()).

Data for predictions

If the data = NULL, values are estimated using the data used to fit the model. If data = "grid",
values are computed using a reference grid spanning the observed range of predictor values with
insight::get_datagrid(). This can be useful for model visualization. The number of predictor
values used for each variable can be controlled with the length argument. data can also be a data
frame containing columns with names matching the model frame (see insight::get_data()).
This can be used to generate model predictions for specific combinations of predictor values.

Note

These functions are built on top of insight::get_predicted() and correspond to different spec-
ifications of its parameters. It may be useful to read its documentation, in particular the description
of the predict argument for additional details on the difference between expected vs. predicted
values and link vs. response scales.

Additional control parameters can be used to control results from insight::get_datagrid()
(when data = "grid") and from insight::get_predicted() (the function used internally to com-
pute predictions).

For plotting, check the examples in visualisation_recipe(). Also check out the Vignettes and
README examples for various examples, tutorials and usecases.

Examples

library(modelbased)

Linear Models
model <- lm(mpg ~ wt, data = mtcars)

Get predicted and prediction interval (see insight::get_predicted)
estimate_expectation(model)

Get expected values with confidence interval
pred <- estimate_relation(model)

https://easystats.github.io/insight/reference/get_predicted.html
https://easystats.github.io/modelbased/articles/
https://easystats.github.io/modelbased/index.html#features

14 estimate_grouplevel

pred

Visualisation (see visualisation_recipe())
plot(pred)

Standardize predictions
pred <- estimate_relation(lm(mpg ~ wt + am, data = mtcars))
z <- standardize(pred, include_response = FALSE)
z
unstandardize(z, include_response = FALSE)

Logistic Models
model <- glm(vs ~ wt, data = mtcars, family = "binomial")
estimate_expectation(model)
estimate_relation(model)

Mixed models
model <- lme4::lmer(mpg ~ wt + (1 | gear), data = mtcars)
estimate_expectation(model)
estimate_relation(model)

Bayesian models

model <- suppressWarnings(rstanarm::stan_glm(
mpg ~ wt,
data = mtcars, refresh = 0, iter = 200

))
estimate_expectation(model)
estimate_relation(model)

estimate_grouplevel Group-specific parameters of mixed models random effects

Description

Extract random parameters of each individual group in the context of mixed models. Can be re-
shaped to be of the same dimensions as the original data, which can be useful to add the random
effects to the original data.

Usage

estimate_grouplevel(model, type = "random", ...)

reshape_grouplevel(x, indices = "all", group = "all", ...)

estimate_grouplevel 15

Arguments

model A mixed model with random effects.

type If "random" (default), the coefficients are the ones estimated natively by the
model (as they are returned by, for instance, lme4::ranef()). They correspond
to the deviation of each individual group from their fixed effect. As such, a coef-
ficient close to 0 means that the participants’ effect is the same as the population-
level effect (in other words, it is "in the norm"). If "total", it will return the sum
of the random effect and its corresponding fixed effects. These are known as
BLUPs (Best Linear Unbiased Predictions). This argument can be used to re-
produce the results given by lme4::ranef() and coef() (see ?coef.merMod).
Note that BLUPs currently don’t have uncertainty indices (such as SE and CI),
as these are not computable.

... Other arguments passed to or from other methods.

x The output of estimate_grouplevel().

indices A list containing the indices to extract (e.g., "Coefficient").

group A list containing the random factors to select.

Examples

lme4 model
data(mtcars)
model <- lme4::lmer(mpg ~ hp + (1 | carb), data = mtcars)
random <- estimate_grouplevel(model)
random

Visualize random effects
plot(random)

Show group-specific effects
estimate_grouplevel(model, deviation = FALSE)

Reshape to wide data so that it matches the original dataframe...
reshaped <- reshape_grouplevel(random, indices = c("Coefficient", "SE"))

... and can be easily combined
alldata <- cbind(mtcars, reshaped)

Use summary() to remove duplicated rows
summary(reshaped)

Compute BLUPs
estimate_grouplevel(model, type = "total")

16 estimate_means

estimate_means Estimate Marginal Means (Model-based average at each factor level)

Description

Estimate average value of response variable at each factor level or representative value, respec-
tively at values defined in a "data grid" or "reference grid". For plotting, check the examples in
visualisation_recipe(). See also other related functions such as estimate_contrasts() and
estimate_slopes().

Usage

estimate_means(
model,
by = "auto",
predict = NULL,
ci = 0.95,
estimate = "average",
transform = NULL,
backend = getOption("modelbased_backend", "marginaleffects"),
verbose = TRUE,
...

)

Arguments

model A statistical model.

by The (focal) predictor variable(s) at which to evaluate the desired effect / mean
/ contrasts. Other predictors of the model that are not included here will be
collapsed and "averaged" over (the effect will be estimated across them). The
by argument is used to create a "reference grid" or "data grid" with representative
values for the focal predictors. by can be a character (vector) naming the focal
predictors (and optionally, representative values or levels), or a list of named
elements. See details in insight::get_datagrid() to learn more about how
to create data grids for predictors of interest.

predict Is passed to the type argument in emmeans::emmeans() (when backend = "emmeans")
or in marginaleffects::avg_predictions() (when backend = "marginaleffects").
For emmeans, see also this vignette. Valid options for ‘predict“ are:

• backend = "emmeans": predict can be "response", "link", "mu", "unlink",
or "log". If predict = NULL (default), the most appropriate transformation
is selected (which usually is "response").

• backend = "marginaleffects": predict can be "response", "link" or
any valid type option supported by model’s class predict() method (e.g.,
for zero-inflation models from package glmmTMB, you can choose predict
= "zprob" or predict = "conditional" etc., see glmmTMB::predict.glmmTMB).
By default, when predict = NULL, the most appropriate transformation is

https://CRAN.R-project.org/package=emmeans/vignettes/transformations.html

estimate_means 17

selected, which usually returns predictions or contrasts on the response-
scale.

"link" will leave the values on scale of the linear predictors. "response" (or
NULL) will transform them on scale of the response variable. Thus for a logis-
tic model, "link" will give estimations expressed in log-odds (probabilities on
logit scale) and "response" in terms of probabilities. To predict distributional
parameters (called "dpar" in other packages), for instance when using complex
formulae in brms models, the predict argument can take the value of the pa-
rameter you want to estimate, for instance "sigma", "kappa", etc.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

estimate Character string, indicating the type of target population predictions refer to.
This dictates how the predictions are "averaged" over the non-focal predictors,
i.e. those variables that are not specified in by or contrast.

• "average" (default): Takes the mean value for non-focal numeric predic-
tors and marginalizes over the factor levels of non-focal terms, which com-
putes a kind of "weighted average" for the values at which these terms are
hold constant. These predictions are a good representation of the sample,
because all possible values and levels of the non-focal predictors are consid-
ered. It answers the question, "What is the predicted value for an ’average’
observation in my data?". Cum grano salis, it refers to randomly picking a
subject of your sample and the result you get on average. This approach is
the one taken by default in the emmeans package.

• "population": Non-focal predictors are marginalized over the observa-
tions in the sample, where the sample is replicated multiple times to pro-
duce "counterfactuals" and then takes the average of these predicted values
(aggregated/grouped by the focal terms). It can be considered as extrap-
olation to a hypothetical target population. Counterfactual predictions are
useful, insofar as the results can also be transferred to other contexts (Dick-
erman and Hernan, 2020). It answers the question, "What is the predicted
response value for the ’average’ observation in the broader target popula-
tion?". It does not only refer to the actual data in your observed sample, but
also "what would be if" we had more data, or if we had data from a different
sample.

In other words, the distinction between estimate types resides in whether the
prediction are made for:

• A specific "individual" from the sample (i.e., a specific combination of pre-
dictor values): this is what is obtained when using estimate_relation()
and the other prediction functions.

• An average individual from the sample: obtained with estimate_means(...,
estimate = "average")

• The broader, hypothetical target population: obtained with estimate_means(...,
estimate = "population")

transform A function applied to predictions and confidence intervals to (back-) transform
results, which can be useful in case the regression model has a transformed
response variable (e.g., lm(log(y) ~ x)). For Bayesian models, this function
is applied to individual draws from the posterior distribution, before computing

18 estimate_means

summaries. Can also be TRUE, in which case insight::get_transformation()
is called to determine the appropriate transformation-function.

backend Whether to use "emmeans" or "marginaleffects" as a backend. Results are
usually very similar. The major difference will be found for mixed models,
where backend = "marginaleffects" will also average across random effects
levels, producing "marginal predictions" (instead of "conditional predictions",
see Heiss 2022).
You can set a default backend via options(), e.g. use options(modelbased_backend
= "emmeans") to use the emmeans package or options(modelbased_backend
= "marginaleffects") to set marginaleffects as default backend.

verbose Use FALSE to silence messages and warnings.

... Other arguments passed, for instance, to insight::get_datagrid(), to func-
tions from the emmeans or marginaleffects package, or to process Bayesian
models via bayestestR::describe_posterior(). Examples:

• insight::get_datagrid(): Argument such as length or range can be
used to control the (number of) representative values.

• marginaleffects: Internally used functions are avg_predictions() for
means and contrasts, and avg_slope() for slopes. Therefore, arguments
for instance like vcov, transform, equivalence, slope or even newdata
can be passed to those functions.

• emmeans: Internally used functions are emmeans() and emtrends(). Ad-
ditional arguments can be passed to these functions.

• Bayesian models: For Bayesian models, parameters are cleaned using describe_posterior(),
thus, arguments like, for example, centrality, rope_range, or test are
passed to that function.

Details

The estimate_slopes(), estimate_means() and estimate_contrasts() functions are forming
a group, as they are all based on marginal estimations (estimations based on a model). All three are
built on the emmeans or marginaleffects package (depending on the backend argument), so read-
ing its documentation (for instance emmeans::emmeans(), emmeans::emtrends() or this website)
is recommended to understand the idea behind these types of procedures.

• Model-based predictions is the basis for all that follows. Indeed, the first thing to understand
is how models can be used to make predictions (see estimate_link()). This corresponds to
the predicted response (or "outcome variable") given specific predictor values of the predictors
(i.e., given a specific data configuration). This is why the concept of reference grid() is so
important for direct predictions.

• Marginal "means", obtained via estimate_means(), are an extension of such predictions,
allowing to "average" (collapse) some of the predictors, to obtain the average response value
at a specific predictors configuration. This is typically used when some of the predictors of
interest are factors. Indeed, the parameters of the model will usually give you the intercept
value and then the "effect" of each factor level (how different it is from the intercept). Marginal
means can be used to directly give you the mean value of the response variable at all the levels
of a factor. Moreover, it can also be used to control, or average over predictors, which is useful
in the case of multiple predictors with or without interactions.

https://marginaleffects.com/

estimate_means 19

• Marginal contrasts, obtained via estimate_contrasts(), are themselves at extension of
marginal means, in that they allow to investigate the difference (i.e., the contrast) between the
marginal means. This is, again, often used to get all pairwise differences between all levels of
a factor. It works also for continuous predictors, for instance one could also be interested in
whether the difference at two extremes of a continuous predictor is significant.

• Finally, marginal effects, obtained via estimate_slopes(), are different in that their focus
is not values on the response variable, but the model’s parameters. The idea is to assess the
effect of a predictor at a specific configuration of the other predictors. This is relevant in the
case of interactions or non-linear relationships, when the effect of a predictor variable changes
depending on the other predictors. Moreover, these effects can also be "averaged" over other
predictors, to get for instance the "general trend" of a predictor over different factor levels.

Example: Let’s imagine the following model lm(y ~ condition * x) where condition is a factor
with 3 levels A, B and C and x a continuous variable (like age for example). One idea is to see how
this model performs, and compare the actual response y to the one predicted by the model (using
estimate_expectation()). Another idea is evaluate the average mean at each of the condition’s
levels (using estimate_means()), which can be useful to visualize them. Another possibility is to
evaluate the difference between these levels (using estimate_contrasts()). Finally, one could
also estimate the effect of x averaged over all conditions, or instead within each condition (using
[estimate_slopes]).

Value

A data frame of estimated marginal means.

References

Dickerman, Barbra A., and Miguel A. Hernán. 2020. Counterfactual Prediction Is Not Only for
Causal Inference. European Journal of Epidemiology 35 (7): 615–17. doi:10.1007/s10654020-
006598

Heiss, A. (2022). Marginal and conditional effects for GLMMs with marginaleffects. Andrew
Heiss. doi:10.59350/xwnfmx1827

Examples

library(modelbased)

Frequentist models

model <- lm(Petal.Length ~ Sepal.Width * Species, data = iris)

estimate_means(model)

the `length` argument is passed to `insight::get_datagrid()` and modulates
the number of representative values to return for numeric predictors
estimate_means(model, by = c("Species", "Sepal.Width"), length = 2)

an alternative way to setup your data grid is specify the values directly
estimate_means(model, by = c("Species", "Sepal.Width = c(2, 4)"))

https://doi.org/10.1007/s10654-020-00659-8
https://doi.org/10.1007/s10654-020-00659-8
https://doi.org/10.59350/xwnfm-x1827

20 estimate_slopes

or use one of the many predefined "tokens" that help you creating a useful
data grid - to learn more about creating data grids, see help in
`?insight::get_datagrid`.
estimate_means(model, by = c("Species", "Sepal.Width = [fivenum]"))

Not run:
same for factors: filter by specific levels
estimate_means(model, by = "Species=c('versicolor', 'setosa')")
estimate_means(model, by = c("Species", "Sepal.Width=0"))

estimate marginal average of response at values for numeric predictor
estimate_means(model, by = "Sepal.Width", length = 5)
estimate_means(model, by = "Sepal.Width=c(2, 4)")

or provide the definition of the data grid as list
estimate_means(

model,
by = list(Sepal.Width = c(2, 4), Species = c("versicolor", "setosa"))

)

Methods that can be applied to it:
means <- estimate_means(model, by = c("Species", "Sepal.Width=0"))

plot(means) # which runs visualisation_recipe()
standardize(means)

data <- iris
data$Petal.Length_factor <- ifelse(data$Petal.Length < 4.2, "A", "B")

model <- lme4::lmer(
Petal.Length ~ Sepal.Width + Species + (1 | Petal.Length_factor),
data = data

)
estimate_means(model)
estimate_means(model, by = "Sepal.Width", length = 3)

End(Not run)

estimate_slopes Estimate Marginal Effects

Description

Estimate the slopes (i.e., the coefficient) of a predictor over or within different factor levels, or
alongside a numeric variable. In other words, to assess the effect of a predictor at specific configu-
rations data. It corresponds to the derivative and can be useful to understand where a predictor has
a significant role when interactions or non-linear relationships are present.

Other related functions based on marginal estimations includes estimate_contrasts() and estimate_means().

estimate_slopes 21

See the Details section below, and don’t forget to also check out the Vignettes and README
examples for various examples, tutorials and use cases.

Usage

estimate_slopes(
model,
trend = NULL,
by = NULL,
ci = 0.95,
backend = getOption("modelbased_backend", "marginaleffects"),
verbose = TRUE,
...

)

Arguments

model A statistical model.

trend A character indicating the name of the variable for which to compute the slopes.

by The (focal) predictor variable(s) at which to evaluate the desired effect / mean
/ contrasts. Other predictors of the model that are not included here will be
collapsed and "averaged" over (the effect will be estimated across them). The
by argument is used to create a "reference grid" or "data grid" with representative
values for the focal predictors. by can be a character (vector) naming the focal
predictors (and optionally, representative values or levels), or a list of named
elements. See details in insight::get_datagrid() to learn more about how
to create data grids for predictors of interest.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

backend Whether to use "emmeans" or "marginaleffects" as a backend. Results are
usually very similar. The major difference will be found for mixed models,
where backend = "marginaleffects" will also average across random effects
levels, producing "marginal predictions" (instead of "conditional predictions",
see Heiss 2022).
You can set a default backend via options(), e.g. use options(modelbased_backend
= "emmeans") to use the emmeans package or options(modelbased_backend
= "marginaleffects") to set marginaleffects as default backend.

verbose Use FALSE to silence messages and warnings.

... Other arguments passed, for instance, to insight::get_datagrid(), to func-
tions from the emmeans or marginaleffects package, or to process Bayesian
models via bayestestR::describe_posterior(). Examples:

• insight::get_datagrid(): Argument such as length or range can be
used to control the (number of) representative values.

• marginaleffects: Internally used functions are avg_predictions() for
means and contrasts, and avg_slope() for slopes. Therefore, arguments
for instance like vcov, transform, equivalence, slope or even newdata
can be passed to those functions.

https://easystats.github.io/modelbased/articles/estimate_slopes.html
https://easystats.github.io/modelbased/index.html#features
https://easystats.github.io/modelbased/index.html#features

22 estimate_slopes

• emmeans: Internally used functions are emmeans() and emtrends(). Ad-
ditional arguments can be passed to these functions.

• Bayesian models: For Bayesian models, parameters are cleaned using describe_posterior(),
thus, arguments like, for example, centrality, rope_range, or test are
passed to that function.

Details

The estimate_slopes(), estimate_means() and estimate_contrasts() functions are forming
a group, as they are all based on marginal estimations (estimations based on a model). All three are
built on the emmeans or marginaleffects package (depending on the backend argument), so read-
ing its documentation (for instance emmeans::emmeans(), emmeans::emtrends() or this website)
is recommended to understand the idea behind these types of procedures.

• Model-based predictions is the basis for all that follows. Indeed, the first thing to understand
is how models can be used to make predictions (see estimate_link()). This corresponds to
the predicted response (or "outcome variable") given specific predictor values of the predictors
(i.e., given a specific data configuration). This is why the concept of reference grid() is so
important for direct predictions.

• Marginal "means", obtained via estimate_means(), are an extension of such predictions,
allowing to "average" (collapse) some of the predictors, to obtain the average response value
at a specific predictors configuration. This is typically used when some of the predictors of
interest are factors. Indeed, the parameters of the model will usually give you the intercept
value and then the "effect" of each factor level (how different it is from the intercept). Marginal
means can be used to directly give you the mean value of the response variable at all the levels
of a factor. Moreover, it can also be used to control, or average over predictors, which is useful
in the case of multiple predictors with or without interactions.

• Marginal contrasts, obtained via estimate_contrasts(), are themselves at extension of
marginal means, in that they allow to investigate the difference (i.e., the contrast) between the
marginal means. This is, again, often used to get all pairwise differences between all levels of
a factor. It works also for continuous predictors, for instance one could also be interested in
whether the difference at two extremes of a continuous predictor is significant.

• Finally, marginal effects, obtained via estimate_slopes(), are different in that their focus
is not values on the response variable, but the model’s parameters. The idea is to assess the
effect of a predictor at a specific configuration of the other predictors. This is relevant in the
case of interactions or non-linear relationships, when the effect of a predictor variable changes
depending on the other predictors. Moreover, these effects can also be "averaged" over other
predictors, to get for instance the "general trend" of a predictor over different factor levels.

Example: Let’s imagine the following model lm(y ~ condition * x) where condition is a factor
with 3 levels A, B and C and x a continuous variable (like age for example). One idea is to see how
this model performs, and compare the actual response y to the one predicted by the model (using
estimate_expectation()). Another idea is evaluate the average mean at each of the condition’s
levels (using estimate_means()), which can be useful to visualize them. Another possibility is to
evaluate the difference between these levels (using estimate_contrasts()). Finally, one could
also estimate the effect of x averaged over all conditions, or instead within each condition (using
[estimate_slopes]).

https://marginaleffects.com/

fish 23

Value

A data.frame of class estimate_slopes.

Examples

library(ggplot2)
Get an idea of the data
ggplot(iris, aes(x = Petal.Length, y = Sepal.Width)) +

geom_point(aes(color = Species)) +
geom_smooth(color = "black", se = FALSE) +
geom_smooth(aes(color = Species), linetype = "dotted", se = FALSE) +
geom_smooth(aes(color = Species), method = "lm", se = FALSE)

Model it
model <- lm(Sepal.Width ~ Species * Petal.Length, data = iris)
Compute the marginal effect of Petal.Length at each level of Species
slopes <- estimate_slopes(model, trend = "Petal.Length", by = "Species")
slopes

Not run:
Plot it
plot(slopes)
standardize(slopes)

model <- mgcv::gam(Sepal.Width ~ s(Petal.Length), data = iris)
slopes <- estimate_slopes(model, by = "Petal.Length", length = 50)
summary(slopes)
plot(slopes)

model <- mgcv::gam(Sepal.Width ~ s(Petal.Length, by = Species), data = iris)
slopes <- estimate_slopes(model,

trend = "Petal.Length",
by = c("Petal.Length", "Species"), length = 20

)
summary(slopes)
plot(slopes)

End(Not run)

fish Sample data set

Description

A sample data set, used in tests and some examples. Useful for demonstrating count models (with
or without zero-inflation component). It consists of nine variables from 250 observations.

24 get_emcontrasts

get_emcontrasts Consistent API for ’emmeans’ and ’marginaleffects’

Description

These functions are convenient wrappers around the emmeans and the marginaleffects packages.
They are mostly available for developers who want to leverage a unified API for getting model-
based estimates, and regular users should use the estimate_* set of functions.

The get_emmeans(), get_emcontrasts() and get_emtrends() functions are wrappers around
emmeans::emmeans() and emmeans::emtrends().

Usage

get_emcontrasts(
model,
contrast = NULL,
by = NULL,
predict = NULL,
comparison = "pairwise",
transform = NULL,
verbose = TRUE,
...

)

get_emmeans(
model,
by = "auto",
predict = NULL,
transform = NULL,
verbose = TRUE,
...

)

get_emtrends(model, trend = NULL, by = NULL, verbose = TRUE, ...)

get_marginalcontrasts(
model,
contrast = NULL,
by = NULL,
predict = NULL,
ci = 0.95,
comparison = "pairwise",
estimate = "average",
p_adjust = "none",
transform = NULL,
verbose = TRUE,

get_emcontrasts 25

...
)

get_marginalmeans(
model,
by = "auto",
predict = NULL,
ci = 0.95,
estimate = "average",
transform = NULL,
verbose = TRUE,
...

)

get_marginaltrends(model, trend = NULL, by = NULL, verbose = TRUE, ...)

Arguments

model A statistical model.

contrast A character vector indicating the name of the variable(s) for which to compute
the contrasts.

by The (focal) predictor variable(s) at which to evaluate the desired effect / mean
/ contrasts. Other predictors of the model that are not included here will be
collapsed and "averaged" over (the effect will be estimated across them). The
by argument is used to create a "reference grid" or "data grid" with representative
values for the focal predictors. by can be a character (vector) naming the focal
predictors (and optionally, representative values or levels), or a list of named
elements. See details in insight::get_datagrid() to learn more about how
to create data grids for predictors of interest.

predict Is passed to the type argument in emmeans::emmeans() (when backend = "emmeans")
or in marginaleffects::avg_predictions() (when backend = "marginaleffects").
For emmeans, see also this vignette. Valid options for ‘predict“ are:

• backend = "emmeans": predict can be "response", "link", "mu", "unlink",
or "log". If predict = NULL (default), the most appropriate transformation
is selected (which usually is "response").

• backend = "marginaleffects": predict can be "response", "link" or
any valid type option supported by model’s class predict() method (e.g.,
for zero-inflation models from package glmmTMB, you can choose predict
= "zprob" or predict = "conditional" etc., see glmmTMB::predict.glmmTMB).
By default, when predict = NULL, the most appropriate transformation is
selected, which usually returns predictions or contrasts on the response-
scale.

"link" will leave the values on scale of the linear predictors. "response" (or
NULL) will transform them on scale of the response variable. Thus for a logis-
tic model, "link" will give estimations expressed in log-odds (probabilities on
logit scale) and "response" in terms of probabilities. To predict distributional
parameters (called "dpar" in other packages), for instance when using complex

https://CRAN.R-project.org/package=emmeans/vignettes/transformations.html

26 get_emcontrasts

formulae in brms models, the predict argument can take the value of the pa-
rameter you want to estimate, for instance "sigma", "kappa", etc.

comparison Specify the type of contrasts or tests that should be carried out.

• When backend = "emmeans", can be one of "pairwise", "poly", "consec",
"eff", "del.eff", "mean_chg", "trt.vs.ctrl", "dunnett", "wtcon"
and some more. See also method argument in emmeans::contrast and the
?emmeans::emmc-functions.

• For backend = "marginaleffects", can be a numeric value, vector, or ma-
trix, a string equation specifying the hypothesis to test, a string naming the
comparison method, a formula, or a function. Strings, string equations and
formula are probably the most common options and described below. For
other options and detailed descriptions of those options, see also marginal-
effects::comparisons and this website.

– String: One of "pairwise", "reference", "sequential", "meandev"
"meanotherdev", "poly", "helmert", or "trt_vs_ctrl".

– String equation: To identify parameters from the output, either specify
the term name, or "b1", "b2" etc. to indicate rows, e.g.:"hp = drat",
"b1 = b2", or "b1 + b2 + b3 = 0".

– Formula: A formula like comparison ~ pairs | group, where the left-
hand side indicates the type of comparison (difference or ratio), the
right-hand side determines the pairs of estimates to compare (reference,
sequential, meandev, etc., see string-options). Optionally, compar-
isons can be carried out within subsets by indicating the grouping vari-
able after a vertical bar (|).

transform A function applied to predictions and confidence intervals to (back-) transform
results, which can be useful in case the regression model has a transformed
response variable (e.g., lm(log(y) ~ x)). For Bayesian models, this function
is applied to individual draws from the posterior distribution, before computing
summaries. Can also be TRUE, in which case insight::get_transformation()
is called to determine the appropriate transformation-function.

verbose Use FALSE to silence messages and warnings.

... Other arguments passed, for instance, to insight::get_datagrid(), to func-
tions from the emmeans or marginaleffects package, or to process Bayesian
models via bayestestR::describe_posterior(). Examples:

• insight::get_datagrid(): Argument such as length or range can be
used to control the (number of) representative values.

• marginaleffects: Internally used functions are avg_predictions() for
means and contrasts, and avg_slope() for slopes. Therefore, arguments
for instance like vcov, transform, equivalence, slope or even newdata
can be passed to those functions.

• emmeans: Internally used functions are emmeans() and emtrends(). Ad-
ditional arguments can be passed to these functions.

• Bayesian models: For Bayesian models, parameters are cleaned using describe_posterior(),
thus, arguments like, for example, centrality, rope_range, or test are
passed to that function.

trend A character indicating the name of the variable for which to compute the slopes.

https://marginaleffects.com/bonus/hypothesis.html

get_emcontrasts 27

ci Confidence Interval (CI) level. Default to 0.95 (95%).

estimate Character string, indicating the type of target population predictions refer to.
This dictates how the predictions are "averaged" over the non-focal predictors,
i.e. those variables that are not specified in by or contrast.

• "average" (default): Takes the mean value for non-focal numeric predic-
tors and marginalizes over the factor levels of non-focal terms, which com-
putes a kind of "weighted average" for the values at which these terms are
hold constant. These predictions are a good representation of the sample,
because all possible values and levels of the non-focal predictors are consid-
ered. It answers the question, "What is the predicted value for an ’average’
observation in my data?". Cum grano salis, it refers to randomly picking a
subject of your sample and the result you get on average. This approach is
the one taken by default in the emmeans package.

• "population": Non-focal predictors are marginalized over the observa-
tions in the sample, where the sample is replicated multiple times to pro-
duce "counterfactuals" and then takes the average of these predicted values
(aggregated/grouped by the focal terms). It can be considered as extrap-
olation to a hypothetical target population. Counterfactual predictions are
useful, insofar as the results can also be transferred to other contexts (Dick-
erman and Hernan, 2020). It answers the question, "What is the predicted
response value for the ’average’ observation in the broader target popula-
tion?". It does not only refer to the actual data in your observed sample, but
also "what would be if" we had more data, or if we had data from a different
sample.

In other words, the distinction between estimate types resides in whether the
prediction are made for:

• A specific "individual" from the sample (i.e., a specific combination of pre-
dictor values): this is what is obtained when using estimate_relation()
and the other prediction functions.

• An average individual from the sample: obtained with estimate_means(...,
estimate = "average")

• The broader, hypothetical target population: obtained with estimate_means(...,
estimate = "population")

p_adjust The p-values adjustment method for frequentist multiple comparisons. Can be
one of "none" (default), "hochberg", "hommel", "bonferroni", "BH", "BY",
"fdr", "tukey" or "holm". See the p-value adjustment section in the emmeans::test
documentation or ?stats::p.adjust.

Examples

Basic usage
model <- lm(Sepal.Width ~ Species, data = iris)
get_emcontrasts(model)

Not run:
Dealing with interactions
model <- lm(Sepal.Width ~ Species * Petal.Width, data = iris)

28 get_emcontrasts

By default: selects first factor
get_emcontrasts(model)
Can also run contrasts between points of numeric
get_emcontrasts(model, contrast = "Petal.Width", length = 3)
Or both
get_emcontrasts(model, contrast = c("Species", "Petal.Width"), length = 2)
Or with custom specifications
estimate_contrasts(model, contrast = c("Species", "Petal.Width=c(1, 2)"))
Or modulate it
get_emcontrasts(model, by = "Petal.Width", length = 4)

End(Not run)

model <- lm(Sepal.Length ~ Species + Petal.Width, data = iris)

By default, 'by' is set to "Species"
get_emmeans(model)

Not run:
Overall mean (close to 'mean(iris$Sepal.Length)')
get_emmeans(model, by = NULL)

One can estimate marginal means at several values of a 'modulate' variable
get_emmeans(model, by = "Petal.Width", length = 3)

Interactions
model <- lm(Sepal.Width ~ Species * Petal.Length, data = iris)

get_emmeans(model)
get_emmeans(model, by = c("Species", "Petal.Length"), length = 2)
get_emmeans(model, by = c("Species", "Petal.Length = c(1, 3, 5)"), length = 2)

End(Not run)

Not run:
model <- lm(Sepal.Width ~ Species * Petal.Length, data = iris)

get_emtrends(model)
get_emtrends(model, by = "Species")
get_emtrends(model, by = "Petal.Length")
get_emtrends(model, by = c("Species", "Petal.Length"))

End(Not run)

model <- lm(Petal.Length ~ poly(Sepal.Width, 4), data = iris)
get_emtrends(model)
get_emtrends(model, by = "Sepal.Width")

model <- lm(Sepal.Length ~ Species + Petal.Width, data = iris)

smoothing 29

By default, 'by' is set to "Species"
get_marginalmeans(model)

Overall mean (close to 'mean(iris$Sepal.Length)')
get_marginalmeans(model, by = NULL)

Not run:
One can estimate marginal means at several values of a 'modulate' variable
get_marginalmeans(model, by = "Petal.Width", length = 3)

Interactions
model <- lm(Sepal.Width ~ Species * Petal.Length, data = iris)

get_marginalmeans(model)
get_marginalmeans(model, by = c("Species", "Petal.Length"), length = 2)
get_marginalmeans(model, by = c("Species", "Petal.Length = c(1, 3, 5)"), length = 2)

End(Not run)

model <- lm(Sepal.Width ~ Species * Petal.Length, data = iris)

get_marginaltrends(model, trend = "Petal.Length", by = "Species")
get_marginaltrends(model, trend = "Petal.Length", by = "Petal.Length")
get_marginaltrends(model, trend = "Petal.Length", by = c("Species", "Petal.Length"))

smoothing Smoothing a vector or a time series

Description

Smoothing a vector or a time series. For data.frames, the function will smooth all numeric variables
stratified by factor levels (i.e., will smooth within each factor level combination).

Usage

smoothing(x, method = "loess", strength = 0.25, ...)

Arguments

x A numeric vector.

method Can be "loess" (default) or "smooth". A loess smoothing can be slow.

strength This argument only applies when method = "loess". Degree of smoothing
passed to span (see loess()).

... Arguments passed to or from other methods.

30 visualisation_matrix

Value

A smoothed vector or data frame.

Examples

x <- sin(seq(0, 4 * pi, length.out = 100)) + rnorm(100, 0, 0.2)
plot(x, type = "l")
lines(smoothing(x, method = "smooth"), type = "l", col = "blue")
lines(smoothing(x, method = "loess"), type = "l", col = "red")

x <- sin(seq(0, 4 * pi, length.out = 10000)) + rnorm(10000, 0, 0.2)
plot(x, type = "l")
lines(smoothing(x, method = "smooth"), type = "l", col = "blue")
lines(smoothing(x, method = "loess"), type = "l", col = "red")

visualisation_matrix Create a reference grid

Description

This function is an alias (another name) for the insight::get_datagrid() function. Same argu-
ments apply.

Usage

visualisation_matrix(x, ...)

S3 method for class 'data.frame'
visualisation_matrix(
x,
by = "all",
factors = "reference",
numerics = "mean",
preserve_range = FALSE,
reference = x,
...

)

S3 method for class 'numeric'
visualisation_matrix(x, ...)

S3 method for class 'factor'
visualisation_matrix(x, ...)

visualisation_matrix 31

Arguments

x An object from which to construct the reference grid.

... Arguments passed to or from other methods (for instance, length or range to
control the spread of numeric variables.).

by Indicates the focal predictors (variables) for the reference grid and at which
values focal predictors should be represented. If not specified otherwise, repre-
sentative values for numeric variables or predictors are evenly distributed from
the minimum to the maximum, with a total number of length values covering
that range (see ’Examples’). Possible options for by are:

• "all", which will include all variables or predictors.
• a character vector of one or more variable or predictor names, like c("Species",
"Sepal.Width"), which will create a grid of all combinations of unique
values. For factors, will use all levels, for numeric variables, will use a
range of length length (evenly spread from minimum to maximum) and
for character vectors, will use all unique values.

• a list of named elements, indicating focal predictors and their representative
values, e.g. by = list(Sepal.Length = c(2, 4), Species = "setosa").

• a string with assignments, e.g. by = "Sepal.Length = 2" or by = c("Sepal.Length
= 2", "Species = 'setosa'") - note the usage of single and double quotes
to assign strings within strings.

There is a special handling of assignments with brackets, i.e. values defined
inside [and].For numeric variables, the value(s) inside the brackets should
either be

• two values, indicating minimum and maximum (e.g. by = "Sepal.Length
= [0, 5]"), for which a range of length length (evenly spread from given
minimum to maximum) is created.

• more than two numeric values by = "Sepal.Length = [2,3,4,5]", in which
case these values are used as representative values.

• a "token" that creates pre-defined representative values:
– for mean and -/+ 1 SD around the mean: "x = [sd]"

– for median and -/+ 1 MAD around the median: "x = [mad]"

– for Tukey’s five number summary (minimum, lower-hinge, median,
upper-hinge, maximum): "x = [fivenum]"

– for terciles, including minimum and maximum: "x = [terciles]"

– for terciles, excluding minimum and maximum: "x = [terciles2]"

– for quartiles, including minimum and maximum: "x = [quartiles]"
(same as "x = [fivenum]")

– for quartiles, excluding minimum and maximum: "x = [quartiles2]"

– for a pretty value range: "x = [pretty]"

– for minimum and maximum value: "x = [minmax]"

– for 0 and the maximum value: "x = [zeromax]"

For factor variables, the value(s) inside the brackets should indicate one or more
factor levels, like by = "Species = [setosa, versicolor]". Note: the length
argument will be ignored when using brackets-tokens.

32 visualisation_recipe.estimate_predicted

The remaining variables not specified in by will be fixed (see also arguments
factors and numerics).

factors Type of summary for factors. Can be "reference" (set at the reference level),
"mode" (set at the most common level) or "all" to keep all levels.

numerics Type of summary for numeric values. Can be "all" (will duplicate the grid
for all unique values), any function ("mean", "median", ...) or a value (e.g.,
numerics = 0).

preserve_range In the case of combinations between numeric variables and factors, setting preserve_range
= TRUE will drop the observations where the value of the numeric variable is
originally not present in the range of its factor level. This leads to an unbal-
anced grid. Also, if you want the minimum and the maximum to closely match
the actual ranges, you should increase the length argument.

reference The reference vector from which to compute the mean and SD. Used when stan-
dardizing or unstandardizing the grid using effectsize::standardize.

Value

Reference grid data frame.

Examples

See `?insight::get_datagrid`

visualisation_recipe.estimate_predicted

Automated plotting for ’modelbased’ objects

Description

Most ’modelbased’ objects can be visualized using the plot() function, which internally calls the
visualisation_recipe() function. See the examples below for more information and examples
on how to create and customize plots.

Usage

S3 method for class 'estimate_predicted'
visualisation_recipe(
x,
show_data = FALSE,
point = NULL,
line = NULL,
pointrange = NULL,
ribbon = NULL,
facet = NULL,
grid = NULL,
join_dots = getOption("modelbased_join_dots", TRUE),

visualisation_recipe.estimate_predicted 33

...
)

S3 method for class 'estimate_slopes'
visualisation_recipe(
x,
line = NULL,
pointrange = NULL,
ribbon = NULL,
facet = NULL,
grid = NULL,
...

)

S3 method for class 'estimate_grouplevel'
visualisation_recipe(
x,
line = NULL,
pointrange = NULL,
ribbon = NULL,
facet = NULL,
grid = NULL,
...

)

Arguments

x A modelbased object.

show_data Logical, if TRUE, display the "raw" data as a background to the model-based
estimation.

point, line, pointrange, ribbon, facet, grid
Additional aesthetics and parameters for the geoms (see customization exam-
ple).

join_dots Logical, if TRUE and for categorical focal terms in by, dots (estimates) are con-
nected by lines, i.e. plots will be a combination of dots with error bars and con-
necting lines. If FALSE, only dots and error bars are shown. It is possible to set a
global default value using options(), e.g. options("modelbased_join_dots"
= FALSE).

... Not used.

Details

The plotting works by mapping any predictors from the by argument to the x-axis, colors, alpha
(transparency) and facets. Thus, the appearance of the plot depends on the order of the variables that
you specify in the by argument. For instance, the plots corresponding to estimate_relation(model,
by=c("Species", "Sepal.Length")) and estimate_relation(model, by=c("Sepal.Length",
"Species")) will look different.

34 visualisation_recipe.estimate_predicted

The automated plotting is primarily meant for convenient visual checks, but for publication-ready
figures, we recommend re-creating the figures using the ggplot2 package directly.

There are two options to remove the confidence bands or errors bars from the plot. To remove
error bars, simply set the pointrange geom to point, e.g. plot(..., pointrange = list(geom =
"point")). To remove the confidence bands from line geoms, use ribbon = "none".

Examples

library(ggplot2)
library(see)
==
estimate_relation, estimate_expectation, ...
==
Simple Model ---------------
x <- estimate_relation(lm(mpg ~ wt, data = mtcars))
layers <- visualisation_recipe(x)
layers
plot(layers)

visualization_recipe() is called implicitly when you call plot()
plot(estimate_relation(lm(mpg ~ qsec, data = mtcars)))

Not run:
And can be used in a pipe workflow
lm(mpg ~ qsec, data = mtcars) |>

estimate_relation(ci = c(0.5, 0.8, 0.9)) |>
plot()

Customize aesthetics ----------

plot(x,
point = list(color = "red", alpha = 0.6, size = 3),
line = list(color = "blue", size = 3),
ribbon = list(fill = "green", alpha = 0.7)

) +
theme_minimal() +
labs(title = "Relationship between MPG and WT")

Customize raw data -------------

plot(x, point = list(geom = "density_2d_filled"), line = list(color = "white")) +
scale_x_continuous(expand = c(0, 0)) +
scale_y_continuous(expand = c(0, 0)) +
theme(legend.position = "none")

Single predictors examples -----------

plot(estimate_relation(lm(Sepal.Length ~ Species, data = iris)))

2-ways interaction ------------

Numeric * numeric

visualisation_recipe.estimate_predicted 35

x <- estimate_relation(lm(mpg ~ wt * qsec, data = mtcars))
plot(x)

Numeric * factor
x <- estimate_relation(lm(Sepal.Width ~ Sepal.Length * Species, data = iris))
plot(x)

==
estimate_means
==
Simple Model ---------------
x <- estimate_means(lm(Sepal.Width ~ Species, data = iris), by = "Species")
layers <- visualisation_recipe(x)
layers
plot(layers)

Customize aesthetics
layers <- visualisation_recipe(x,

point = list(width = 0.03, color = "red"),
pointrange = list(size = 2, linewidth = 2),
line = list(linetype = "dashed", color = "blue")

)
plot(layers)

Two levels ---------------
data <- mtcars
data$cyl <- as.factor(data$cyl)

model <- lm(mpg ~ cyl * wt, data = data)

x <- estimate_means(model, by = c("cyl", "wt"))
plot(x)

GLMs ---------------------
data <- data.frame(vs = mtcars$vs, cyl = as.factor(mtcars$cyl))
x <- estimate_means(glm(vs ~ cyl, data = data, family = "binomial"), by = c("cyl"))
plot(x)

End(Not run)

==
estimate_slopes
==
model <- lm(Sepal.Width ~ Species * Petal.Length, data = iris)
x <- estimate_slopes(model, trend = "Petal.Length", by = "Species")

layers <- visualisation_recipe(x)
layers
plot(layers)

Not run:

36 zero_crossings

Customize aesthetics and add horizontal line and theme
layers <- visualisation_recipe(x, pointrange = list(size = 2, linewidth = 2))
plot(layers) +

geom_hline(yintercept = 0, linetype = "dashed", color = "red") +
theme_minimal() +
labs(y = "Effect of Petal.Length", title = "Marginal Effects")

model <- lm(Petal.Length ~ poly(Sepal.Width, 4), data = iris)
x <- estimate_slopes(model, trend = "Sepal.Width", by = "Sepal.Width", length = 20)
plot(visualisation_recipe(x))

model <- lm(Petal.Length ~ Species * poly(Sepal.Width, 3), data = iris)
x <- estimate_slopes(model, trend = "Sepal.Width", by = c("Sepal.Width", "Species"))
plot(visualisation_recipe(x))

End(Not run)

==
estimate_grouplevel
==
Not run:
data <- lme4::sleepstudy
data <- rbind(data, data)
data$Newfactor <- rep(c("A", "B", "C", "D"))

1 random intercept
model <- lme4::lmer(Reaction ~ Days + (1 | Subject), data = data)
x <- estimate_grouplevel(model)
layers <- visualisation_recipe(x)
layers
plot(layers)

2 random intercepts
model <- lme4::lmer(Reaction ~ Days + (1 | Subject) + (1 | Newfactor), data = data)
x <- estimate_grouplevel(model)
plot(x) +

geom_hline(yintercept = 0, linetype = "dashed") +
theme_minimal()

Note: we need to use hline instead of vline because the axes is flipped

model <- lme4::lmer(Reaction ~ Days + (1 + Days | Subject) + (1 | Newfactor), data = data)
x <- estimate_grouplevel(model)
plot(x)

End(Not run)

zero_crossings Find zero-crossings and inversion points

zero_crossings 37

Description

Find zero crossings of a vector, i.e., indices when the numeric variable crosses 0. It is useful for
finding the points where a function changes by looking at the zero crossings of its derivative.

Usage

zero_crossings(x)

find_inversions(x)

Arguments

x A numeric vector.

Value

Vector of zero crossings or points of inversion.

See Also

Based on the uniroot.all function from the rootSolve package.

Examples

x <- sin(seq(0, 4 * pi, length.out = 100))
plot(x, type = "b")

zero_crossings(x)
find_inversions(x)

Index

∗ data
coffee_data, 2
efc, 4
fish, 23

bayestestR::describe_posterior(), 4, 18,
21, 26

coffee_data, 2

describe_nonlinear, 3

efc, 4
emmeans::contrast, 5, 26
emmeans::emmeans(), 7, 18, 22
emmeans::emtrends(), 7, 18, 22
estimate_contrasts, 4
estimate_contrasts(), 7, 8, 16, 18–20, 22
estimate_expectation, 9
estimate_expectation(), 8, 19, 22
estimate_grouplevel, 14
estimate_link (estimate_expectation), 9
estimate_link(), 7, 18, 22
estimate_means, 16
estimate_means(), 4, 7, 8, 18–20, 22
estimate_prediction

(estimate_expectation), 9
estimate_relation

(estimate_expectation), 9
estimate_relation(), 3, 6, 17, 27
estimate_slopes, 20
estimate_slopes(), 4, 7, 8, 16, 18, 19, 22
estimate_smooth (describe_nonlinear), 3

find_inversions (zero_crossings), 36
fish, 23

get_emcontrasts, 24
get_emmeans (get_emcontrasts), 24
get_emtrends (get_emcontrasts), 24

get_marginalcontrasts
(get_emcontrasts), 24

get_marginalmeans (get_emcontrasts), 24
get_marginaltrends (get_emcontrasts), 24
glmmTMB::predict.glmmTMB, 5, 16, 25

insight::get_data(), 13
insight::get_datagrid(), 4, 5, 9, 11, 13,

16, 18, 21, 25, 26, 30
insight::get_predicted(), 9, 11, 13

loess(), 29

marginaleffects::comparisons, 6, 26

plot(), 10, 11
plotting examples, 10

reshape_grouplevel
(estimate_grouplevel), 14

reshape_iterations(), 11

smoothing, 29

visualisation_matrix, 30
visualisation_recipe(), 11, 13, 16
visualisation_recipe.estimate_grouplevel

(visualisation_recipe.estimate_predicted),
32

visualisation_recipe.estimate_predicted,
32

visualisation_recipe.estimate_slopes
(visualisation_recipe.estimate_predicted),
32

zero_crossings, 36

38

	coffee_data
	describe_nonlinear
	efc
	estimate_contrasts
	estimate_expectation
	estimate_grouplevel
	estimate_means
	estimate_slopes
	fish
	get_emcontrasts
	smoothing
	visualisation_matrix
	visualisation_recipe.estimate_predicted
	zero_crossings
	Index

