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Abstract

The mlt package implements maximum likelihood estimation in the class of condi-
tional transformation models. Based on a suitable explicit parameterisation of the uncon-
ditional or conditional transformation function using infrastructure from package basefun,
we show how one can define, estimate, and compare a cascade of increasingly complex
transformation models in the maximum likelihood framework. Models for the uncondi-
tional or conditional distribution function of any univariate response variable are set-up
and estimated in the same computational framework simply by choosing an appropriate
transformation function and parameterisation thereof. As it is computationally cheap to
evaluate the distribution function, models can be estimated by maximisation of the exact
likelihood, especially in the presence of random censoring or truncation. The relatively
dense high-level implementation in the R system for statistical computing allows general-
isation of many established implementations of linear transformation models, such as the
Cox model or other parametric models for the analysis of survival or ordered categorical
data, to the more complex situations illustrated in this paper.

Keywords: transformation model, transformation analysis, distribution regression, conditional
distribution function, conditional quantile function, censoring, truncation.

1. Introduction

The history of statistics can be told as a story of great conceptual ideas and contemporaneous
computable approximations thereof. As time went by, the computationally inaccessible con-
cept often vanished from the collective consciousness of our profession and the approximation
was taught and understood as the real thing. Least squares regression emerged from Gauß’
computational trick of changing Bošcović’ absolute to squared error and it took 200 years
for the original, and in many aspects advantageous, concept to surface again under the name
“quantile regression”. This most prominent example of an idea got lost illustrates the impact
computable approximations had and still have on our understanding of statistical methods
and procedures. In the early days of statistical computing, implementations of such approxi-
mations were a challenge. With today’s computing power and software infrastructure at our
fingertips, our duty shall be to go back to the original concepts and search for ways how to
reawake them for the benefit of a simpler understanding of statistical models and concepts.

The Leitmotiv of our discipline is to foster empirical research by providing tools for the
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2 The mlt Package

characterisation of deterministic and random aspects of natural phenomena through distri-
butions estimated from experimental or observational data. This paper describes an attempt
to understand and unify a large class of statistical models as models for unconditional or con-
ditional distributions. This sounds like an implicitness, but do we really practice (in courses
on applied statistics or while talking to our subject-matter collaborators) what we preach in
a theory course? Let’s perform a small experiment: Pick, at random, a statistics book from
your book shelf and look-up how the general linear model is introduced. Most probably you
will find something not unlike

Y = α + x̃¦β + ε, ε ∼ N(0, σ2)

where Y is an absolutely continuous response, x̃ a suitable representation of a vector of ex-
planatory variables x (e.g. contrasts etc.), β a vector of regression coefficients, α an intercept
term and ε a normal error term. Model interpretation relies on the conditional expectation
E(Y | X = x) = α + x̃¦β. Many textbooks, for example Fahrmeir et al. (2013), define a
regression model as a model for a conditional expectation E(Y | X = x) = f(x) with “regres-
sion function” f but, as we will see, understanding regression models as models for conditional
distributions makes it easier to see the connections between many classical and novel regres-
sion approaches. In the linear model, the intercept α and the regression parameters β are
estimated by minimisation of the squared error (Y − α − x̃¦β)2. With some touch-up in
notation, the model can be equivalently written as a model for a conditional distribution

P(Y f y | X = x) = Φ

(

y − α − x̃¦β

σ

)

or (Y | X = x) ∼ N(α + x̃¦β, σ2).

This formulation highlights that the model is, in fact, a model for a conditional distribution
and not just a model for a conditional mean. It also stresses the fact that the variance σ2 is
a model parameter in its own right. The usual treatment of σ2 as a nuisance parameter only
works when the likelihood is approximated by the density of the normal distribution. Because
in real life we always observe intervals (

¯
y, ȳ] and never real numbers y, the exact likelihood

is, as originally defined by Fisher (1934)

P(
¯
y < Y f ȳ | X = x) = Φ

(

ȳ − α − x̃¦β

σ

)

− Φ

(

¯
y − α − x̃¦β

σ

)

which requires simultaneous optimisation of all three model parameters α, β and σ but is
exact also under other forms of random censoring. This exact likelihood is another prominent
example of its approximation (via the log-density (y − α − x̃¦β)2) winning over the basic
concept, see Lindsey (1996, 1999). If we were going to reformulate the model a little further
to

P(Y f y | X = x) = Φ(α̃1 + α̃2y − x̃¦β̃)

with α̃1 = −α/σ, α̃2 = 1/σ and β̃ = β/σ we see that the model is of the form

P(Y f y | X = x) = FZ(hY (y) − x̃¦β̃)

with distribution function FZ = Φ and linear transformation hY (y) = α̃1 + α̃2y such that
E(hY (Y ) | X = x) = x̃¦β. If we now change FZ to the distribution function of the minimum
extreme value distribution and allow a non-linear monotone transformation hY we get

P(Y f y | X = x) = 1 − exp(− exp(hY (y) − x̃¦β̃))
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which is the continuous proportional hazards, or Cox, model (typically defined with a positive
shift term). From this point of view, the linear and the Cox model are two instances of so-
called linear transformation models (a misleading name, because the transformation hY of
the response Y is non-linear in the latter case and only the shift term x̃¦β̃ is linear in x̃). It
is now also obvious that the Cox model has nothing to do with censoring, let alone survival
times Y > 0. It is a model for the conditional distribution of a continuous response Y ∈ R

when it is appropriate to assume that the conditional hazard function is scaled by exp(x̃¦β̃).
For both the linear and the Cox model, application of the exact likelihood allows the models
to be fitted to imprecise, or “censored”, observations (

¯
y, ȳ] ∈ R. The generality of the class

of linear transformation models comes from the ability to change FZ and hY in this flexible
class of models.

The class of linear transformation models is a subclass of conditional transformation models
(Hothorn et al. 2014). In this latter class, the conditional distribution function is modelled
by

P(Y f y | X = x) = FZ(h(y | x)) (1)

where the transformation function h depends on both y and x. This function is unknown
and this document describes how one can estimate h. Because we are interested in analysing,
i.e. estimating and interpreting, the transformation function h, we slightly rephrase the title
“An Analysis of Transformations” of the first paper on this subject (Box and Cox 1964) and
refer to the methods presented in this paper as transformation analysis. Different choices
of FZ and different parameterisations of h in model (1) relate to specific transformation
models, including the normal linear model, proportional hazards (Cox) and proportional
odds models for continuous or ordinal responses, parametric models for survival regression,
such as the Weibull or log-normal model, distribution regression models or survival models
with time-varying effects and much more. We describe how members of the large class of
conditional transformation models can be specified, fitted by maximising the likelihood (using
the estimator developed by Hothorn et al. 2018), and analysed in R using the mlt add-on
package (Hothorn 2024b). In essence, the package is built around two important functions.
ctm() specifies transformation models based on basis functions implemented in the basefun

package (Hothorn 2024a) for variable descriptions from the variables package (Hothorn 2021).
These models are then fitted to data by mlt().

The general workflow of working with the mlt package and the organisation of this document
follow the general principles of model specification, model estimation, model diagnostics and
interpretation and, finally, model inference. The flowchart in Figure 1 links these conceptual
steps to packages, functions and methods discussed in this document. We take an example-
based approach for introducing models and corresponding software infrastructure in the main
document. The underlying theory for model formulation, parameter estimation, and model
inference is presented along the way, and we refer the reader to Hothorn et al. (2018) for the
theoretical foundations. Technical issues about the three packages variables, basefun, and
mlt involved are explained in Appendices A, B, and C.

Before we start looking at more complex models and associated conceptual and technical
details, we illustrate the workflow by means of an example from unconditional density esti-
mation.
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Figure 1: Workflow for transformation modelling using the mlt package and organisation of
this document.

Density Estimation: Old Faithful Geyser Data The duration of eruptions and the
waiting time between eruptions of the Old Faithful geyser in the Yellowstone national park
became a standard benchmark for non-parametric density estimation (the original data were
given by Azzalini and Bowman 1990). An unconditional density estimate for the duration of
the eruptions needs to deal with censoring because exact duration times are only available
for the day time measurements. At night time, the observations were either left-censored
(“short” eruption), interval-censored (“medium” eruption) or right-censored (“long” eruption)
as explained by Azzalini and Bowman (1990). This fact was widely ignored in analyses of the
Old Faithful data because most non-parametric density estimators cannot deal with censoring.
The key issue is the representation of the unknown transformation function by h(y) = a(y)¦ϑ

based on suitable basis functions a and parameters ϑ. We fit these parameters ϑ in the
transformation model

P(Y f y) = Φ(h(y)) = Φ(a(y)¦ϑ)

by maximisation of the exact likelihood as follows. After loading package mlt we specify the
duration variable we are interested in

R> library("mlt")

R> var_d <- numeric_var("duration", support = c(1.0, 5.0),

+ add = c(-1, 1), bounds = c(0, Inf))

This abstract representation refers to a positive and conceptually continuous variable duration.
We then set-up a basis function a for this variable in the interval [1, 5] (which can be evalu-
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ated in the interval [0, 6] as defined by the add argument), in our case a monotone increasing
Bernstein polynomial of order eight (details can be found in Section 2.1)

R> B_d <- Bernstein_basis(var = var_d, order = 8, ui = "increasing")

The (in our case unconditional) transformation model is now fully defined by the parameter-
isation h(y) = a(y)¦ϑ and FZ = Φ which is specified using the ctm() function as

R> ctm_d <- ctm(response = B_d, todistr = "Normal")

Because, in this simple case, the transformation function transforms Y ∼ FY to Z ∼ FZ = Φ,
the latter distribution is specified using the todistr argument. An equidistant grid of 200
duration times in the interval support + add = [0, 6] is generated by

R> str(nd_d <- mkgrid(ctm_d, 200))

List of 1

$ duration: num [1:200] 0 0.0302 0.0603 0.0905 0.1206 ...

Note that the model ctm_d has no notion of the actual observations. The support argument
of numeric_var defines the domain of the Bernstein polynomial and is the only reference to
the data. Only after the model was specified we need to load the data frame containing the
observations of duration as a Surv object

R> data("geyser", package = "TH.data")

R> head(geyser)

waiting duration

1 80 4.016667

2 71 2.150000

3 57 4.000000+

4 80 4.000000+

5 75 4.000000+

6 77 [0.000000, 2]

The most likely transformation (MLT) ĥN (y) = a(y)¦ϑ̂N is now obtained from the maximum
likelihood estimate ϑ̂N computed as

R> mlt_d <- mlt(ctm_d, data = geyser)

R> logLik(mlt_d)

'log Lik.' -317.766 (df=9)

The model is best visualised in terms of the corresponding density φ(a(y)¦ϑ̂N )a′(y)¦ϑ̂N ,
which can be extracted from the fitted model using

R> nd_d$d <- predict(mlt_d, newdata = nd_d, type = "density")
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Figure 2: Old Faithful Geyser. Estimated density for duration time obtained from an un-
conditional transformation model where the transformation function was parameterised as a
Bernstein polynomial of order eight. The plot reproduces Figure 1 (right panel) in Hothorn
et al. (2017).

The estimated density is depicted in Figure 2. The plot shows the well-known bimodal distri-
bution in a nice smooth way. Several things are quite unusual in this short example. First, the
model was specified using ctm() without reference to the actual observations, and second,
although the model is fully parametric, the resulting density resembles the flexibility of a
non-parametric density estimate (details in Section 2). Third, the exact likelihood, as defined
by the interval-censored observations, was used to obtain the model (Section 3). Fourth,
inspection of the parameter estimates ϑ̂N is uninteresting, the model is better looked at by
means of the estimated distribution, density, quantile, hazard or cumulative hazard functions
(Section 4). Fifth, no regularisation is necessary due to the monotonicity constraint on the
estimated transformation function (implemented as linear constraints for maximum likeli-
hood estimation) and thus standard likelihood asymptotics work for ϑ̂N (Section 5). Sixth,
because the model is a model for a full distribution, we can easily draw random samples from
the model and refit its parameters using the parametric or model-based bootstrap (Section 6).
Seventh, all of this is not only possible theoretically but readily implemented in package mlt.
The only remaining question is “Do all these nice properties carry over to the conditional
case, i.e. to regression models?”. The answer to this question is “yes!” and the rest of this
paper describes the details following the workflow sketched in this section.

2. Specifying Transformation Models

In this section we review a cascade of increasingly complex transformation models following
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Hothorn et al. (2018) and discuss how one can specify such models using the ctm() function
provided by the mlt package. The models are fitted via maximum likelihood by the mlt()

function (details are given in Section 3) to studies from different domains. Results obtained
from established implementations of the corresponding models in the R universe are used to
evaluate the implementation in package mlt whereever possible. We start with the simplest
case of models for unconditional distribution functions.

2.1. Unconditional Transformation Models

The distribution of an at least ordered response Y ∈ Ξ is defined by a transformation function
h and a distribution function FZ . The transformation function is parameterised in terms of
a basis function a

P(Y f y) = FZ(h(y)) = FZ(a(y)¦ϑ).

The triple (FZ , a, ϑ) fully defines the distribution of Y and is called transformation model.
The choice of the basis function a depends on the measurement scale of Y and we can
differentiate between the following situations.

Discrete Models for Categorical Responses

For ordered categorical responses Y from a finite sample space Ξ = {y1, . . . , yK} the distribu-
tion function FY is a step-function with jumps at yk only. We therefore assign one parameter
to each jump, i.e. each element of the sample space except yK . This corresponds to the basis
function a(yk) = eK−1(k), where eK−1(k) is the unit vector of length K − 1 with its kth
element being one. The transformation function h is

h(yk) = eK−1(k)¦ϑ = ϑk ∈ R, 1 f k < K, st ϑ1 < · · · < ϑK−1

with h(yK) = ∞, and the unconditional distribution function of FY is FY (yk) = FZ(ϑk). Note
that monotonicity of h is guaranteed by the K − 2 linear constraints ϑ2 − ϑ1 > 0, . . . , ϑK−1 −
ϑK−2 > 0 when constrained optimisation is performed. The density of a nominal variable Y
can be estimated in the very same way because it is invariant with respect to the ordering of
the levels (see Section 3).

Categorical Data Analysis: Chinese Health and Family Life Survey The Chinese
Health and Family Life Survey (Parish and Laumann 2009), conducted 1999–2000 as a collab-
orative research project of the Universities of Chicago, Beijing, and North Carolina, sampled
60 villages and urban neighbourhoods in China. Eighty-three individuals were chosen at ran-
dom for each location from official registers of adults aged between 20 and 64 years to target
a sample of 5000 individuals in total. Here, we restrict our attention to women with current
male partners for whom no information was missing, leading to a sample of 1534 women
with the following variables: R_edu (level of education of the responding woman), R_income

(monthly income in Yuan of the responding woman), R_health (health status of the respond-
ing woman in the last year) and R_happy (how happy was the responding woman in the last
year). We first estimate the unconditional distribution of happiness using a proportional odds
model (polr() from package MASS, Ripley and Venables 2024)
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R> data("CHFLS", package = "HSAUR3")

R> polr_CHFLS_1 <- polr(R_happy ~ 1, data = CHFLS)

The basis function introduced above corresponds to a model matrix for the ordered factor
R_happy with treatment contrasts using the largest level (“very happy”) as baseline group.
In addition, the parameters must satisfy the linear constraint Cϑ g m, C (argument ui)
being the difference matrix and m = 0 (argument ci)

R> nl <- nlevels(CHFLS$R_happy)

R> b_happy <- as.basis(~ R_happy, data = CHFLS, remove_intercept = TRUE,

+ contrasts.arg = list(R_happy = function(n)

+ contr.treatment(n, base = nl)),

+ ui = diff(diag(nl - 1)), ci = rep(0, nl - 2))

A short-cut for ordered factors avoids this rather complex definition of the basis function

R> b_happy <- as.basis(CHFLS$R_happy)

We are now ready to set-up the (unconditional) transformation model by a call to ctm()

using the basis function and a character defining the standard logistic distribution function
for FZ

R> ctm_CHFLS_1 <- ctm(response = b_happy, todist = "Logistic")

Note that the choice of FZ is completely arbitrary as the estimated distribution function is
invariant with respect to FZ . The model is fitted by calling the mlt() function with arguments
model and data

R> mlt_CHFLS_1 <- mlt(model = ctm_CHFLS_1, data = CHFLS)

The results are equivalent to the results obtained from polr(). The helper function RC()

prints its arguments along with the relative change to the mlt argument

R> logLik(polr_CHFLS_1)

'log Lik.' -1328.241 (df=3)

R> logLik(mlt_CHFLS_1)

'log Lik.' -1328.241 (df=3)

R> RC(polr = polr_CHFLS_1$zeta, mlt = coef(mlt_CHFLS_1))

polr mlt (polr - mlt)/mlt

Very unhappy|Not too happy -4.6874 -4.6874 1.0136e-06

Not too happy|Somewhat happy -1.9034 -1.9034 -1.9208e-07

Somewhat happy|Very happy 1.4993 1.4993 -1.7416e-06
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Of course, the above exercise is an extremely cumbersome way of estimating a discrete density
whose maximum likelihood estimator is a simple proportion but, as we will see in the rest of
this paper, a generalisation to the conditional case strongly relies on this parameterisation

R> RC(polr = predict(polr_CHFLS_1, newdata = data.frame(1), type = "prob"),

+ mlt = c(predict(mlt_CHFLS_1, newdata = data.frame(1),

+ type = "density", q = mkgrid(b_happy)[[1]])),

+ ML = xtabs(~ R_happy, data = CHFLS) / nrow(CHFLS))

polr mlt ML (polr - mlt)/mlt

Very unhappy 0.0091265 0.0091265 0.0091265 -4.7077e-06

Not too happy 0.1205998 0.1205997 0.1205997 6.9851e-07

Somewhat happy 0.6877444 0.6877449 0.6877445 -6.2653e-07

Very happy 0.1825293 0.1825289 0.1825293 2.1345e-06

(ML - mlt)/mlt

Very unhappy -4.6171e-06

Not too happy 6.0289e-07

Somewhat happy -6.1198e-07

Very happy 2.1384e-06

Continuous Models for Continuous Responses

For continuous responses Y ∈ Ξ ¦ R the parameterisation h(y) = a(y)¦ϑ should be smooth in
y, so any polynomial or spline basis is a suitable choice for a. We apply Bernstein polynomials
(for an overview see Farouki 2012) of order M (with M +1 parameters) defined on the interval
[
¯
ı, ı̄] with

aBs,M (y) = (M + 1)−1(fBe(1,M+1)(ỹ), . . . , fBe(m,M−m+1)(ỹ), . . . , fBe(M+1,1)(ỹ))¦ ∈ R
M+1

h(y) = aBs,M (y)¦ϑ =
M∑

m=0

ϑmfBe(m+1,M−m+1)(ỹ)/(M + 1)

h′(y) = a′
Bs,M (y)¦ϑ =

M−1∑

m=0

(ϑm+1 − ϑm)fBe(m+1,M−m)(ỹ)M/((M + 1)(̄ı −
¯
ı))

where ỹ = (y −
¯
ı)/(̄ı −

¯
ı) ∈ [0, 1] and fBe(m,M) is the density of the Beta distribution with

parameters m and M . This choice is computationally attractive because strict monotonicity
can be formulated as a set of M linear constraints on the parameters ϑm < ϑm+1 for all
m = 0, . . . , M (Curtis and Ghosh 2011). Therefore, application of constrained optimisation
guarantees monotone estimates ĥN . The basis contains an intercept.

Density Estimation: Geyser Data (Cont’d) We continue the analysis of the Old Faith-
ful data by estimating the unconditional distribution of waiting times, a positive variable
whose abstract representation can be used to generate an equidistant grid of 100 values

R> var_w <- numeric_var("waiting", support = c(40.0, 100), add = c(-5, 15),

+ bounds = c(0, Inf))

R> c(sapply(nd_w <- mkgrid(var_w, 100), range))
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[1] 35 115

A monotone increasing Bernstein polynomial of order eight for waiting in the interval [
¯
ı, ı̄]

= support(var_w) is defined as

R> B_w <- Bernstein_basis(var_w, order = 8, ui = "increasing")

The (here again unconditional) transformation model is now fully described by the parame-
terisation h(y) = a(y)¦ϑ and FZ = Φ, the latter choice again being not important (for larger
values of M)

R> ctm_w <- ctm(response = B_w, todistr = "Normal")

The most likely transformation ĥN (y) = a(y)¦ϑ̂N is now obtained from the maximum likeli-
hood estimate ϑ̂N computed as

R> mlt_w <- mlt(ctm_w, data = geyser)

and we compare the estimated distribution function

R> nd_w$d <- predict(mlt_w, newdata = nd_w, type = "distribution")

with the empirical cumulative distribution function (the non-parametric maximum likelihood
estimator) in the left panel of Figure 3.

The question arises how the degree of the polynomial affects the estimated distribution func-
tion. On the one hand, the model (Φ, aBs,1, ϑ) only allows linear transformation functions of a
standard normal and FY is restricted to the normal family. On the other hand, (Φ, aBs,N−1, ϑ)

has one parameter for each observation and F̂Y,N is the non-parametric maximum likelihood
estimator ECDF which, by the Glivenko-Cantelli lemma, converges to FY . In this sense, we
cannot choose M “too large”. This is a consequence of the monotonicity constraint on the
estimator a¦ϑ̂N which, in this extreme case, just interpolates the step-function F −1

Z ◦ ECDF.
The practical effect can be inspected in Figure 3 where two Bernstein polynomials of order
M = 8 and M = 40 are compared on the scale of the distribution function (left panel) and
density function (right panel). It is hardly possible to notice the difference in probabilities
but the more flexible model features a more erratic density estimate, but not overly so. The
subjective recommendation of choosing M between 5 and 10 is based on the quite remark-
able flexibility of distributions in this range and still managable computing times for the
corresponding maximum-likelihood estimator.

Continuous Models for Discrete Responses

Although a model for Y can assume an absolutely continuous distribution, observations from
such a model will always be discrete. This fact is taken into account by the exact likelihood
(Section 3). In some cases, for example for count data with potentially large number of counts,
one might use a continuous parameterisation of the transformation function aBs,M (y)¦ϑ which
is evaluated at the observed counts only as in the next example.
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Figure 3: Old Faithful Geyser. Estimated distribution (left, also featuring the empirical
cumulative distribution function as grey circles) and density (right) function for two transfor-
mation models parameterised in terms of Bernstein polynomials of order eight and 40. The
right plot reproduces the density for M = 8 shown in Figure 1 (left panel) in Hothorn et al.
(2017).

Analysis of Count Data: Deer-vehicle Collisions Hothorn et al. (2015) analyse roe
deer-vehicle collisions reported to the police in Bavaria, Germany, between 2002-01-01 and
2011-12-31. The daily counts range between 16 and 210. A model for the daily number of
roe deer-vehicle collision using a Bernstein polynomial of order six as basis function is fitted
using

R> var_dvc <- numeric_var("dvc", support = min(dvc):max(dvc))

R> B_dvc <- Bernstein_basis(var_dvc, order = 6, ui = "increasing")

R> dvc_mlt <- mlt(ctm(B_dvc), data = data.frame(dvc = dvc))

The discrete unconditional distribution function (evaluated for all integers between 16 and
210)

R> q <- support(var_dvc)[[1]]

R> p <- predict(dvc_mlt, newdata = data.frame(1), q = q,

+ type = "distribution")

along with the unconditional distribution function of the Poisson distribution with rate esti-
mated from the data are given in Figure 4. The empirical cumulative distribution function is
smoothly approximated using only seven parameters. There is clear evidence for overdisper-
sion as the variance of the Poisson model is much smaller than the variance estimated by the
transformation model.
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Figure 4: Deer-vehicle Collisions. Unconditional distribution of daily number of roe deer-
vehicle collisions in Bavaria, Germany, between 2002 and 2011. Grey circles represent the
empirical cumulative distribution function, the blue line the unconditional transformation
function and the red line the Poisson distribution fitted to the data.

Discrete Models for Continuous Responses

In some applications one might not be interested in estimating the whole distribution function
FY for a conceptually absolutely continuous response Y but in probabilities FY (yk) for some
grid y1, . . . , yK only. The discrete basis function h(yk) = eK−1(k)¦ϑ = ϑk can be used in
this case. For model estimation, only the discretised observations y ∈ (yk−1, yk] enter the
likelihood.

2.2. Linear Transformation Models

A linear transformation model features a linear shift of a typically non-linear transformation
of the response Y and is the simplest form of a regression model in the class of conditional
transformation models. The conditional distribution function is modelled by

P(Y f y | X = x) = FZ(h(y | x)) = FZ(hY (y) − x̃¦β).

The transformation hY , sometimes called “baseline transformation”, can be parameterised as
discussed in the unconditional situation using an appropriate basis function a

FZ(hY (y) − x̃¦β) = FZ(a(y)¦ϑ1 − x̃¦β).

The connection to more complex models is highlighted by the introduction of a basis function
c being conditional on the explanatory variables x, i.e.

FZ(h(y | x)) = FZ(hY (y) − x̃¦β) = FZ(c(y, x)¦ϑ) = FZ(a(y)¦ϑ1 − x̃¦β)
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with c = (a¦, −x̃¦)¦. The definition of a linear transformation model only requires the basis
a, the explanatory variables x and a distribution FZ . The latter choice is now important, as
additivity of the linear predictor is assumed on the scale of FZ . It is convenient to supply
negative linear predictors as E(hY (Y ) | X = x) = x̃¦β (up to an additive constant E(Z)).
One exception is the Cox model with positive shift and E(hY (Y ) | X = x) = −x̃¦β. Large
positive values of the linear predictor correspond to low expected survival times and thus a
high risk.

Discrete Responses

Categorical Data Analysis: Chinese Survey (Cont’d) We want to study the impact
of age and income on happiness in a proportional odds model, here fitted using polr() first

R> polr_CHFLS_2 <- polr(R_happy ~ R_age + R_income, data = CHFLS)

In order to fit this model using the mlt package, we need to set-up the basis function for
a negative linear predictor without intercept in addition to the basis function for happiness
(b_happy)

R> b_R <- as.basis(~ R_age + R_income, data = CHFLS, remove_intercept = TRUE,

+ negative = TRUE)

The model is now defined by two basis functions, one of the response and one for the shift
in addition to FZ and fitted using the mlt() function; the columns of the model matrix are
scaled to [−1, 1] before fitting the parameters by scale = TRUE

R> ctm_CHFLS_2 <- ctm(response = b_happy, shifting = b_R,

+ todistr = "Logistic")

R> mlt_CHFLS_2 <- mlt(ctm_CHFLS_2, data = CHFLS, scale = TRUE)

Again, the results of polr() and mlt() are equivalent

R> logLik(polr_CHFLS_2)

'log Lik.' -1322.021 (df=5)

R> logLik(mlt_CHFLS_2)

'log Lik.' -1322.021 (df=5)

R> RC(polr = c(polr_CHFLS_2$zeta, coef(polr_CHFLS_2)),

+ mlt = coef(mlt_CHFLS_2))

polr mlt (polr - mlt)/mlt

Very unhappy|Not too happy -4.80159236 -4.80157928 2.7237e-06

Not too happy|Somewhat happy -2.01169559 -2.01170305 -3.7091e-06

Somewhat happy|Very happy 1.41270713 1.41270342 2.6245e-06

R_age -0.00627896 -0.00627915 -2.9964e-05

R_income 0.00023501 0.00023501 -5.5093e-06
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The regression coefficients β are the log-odds ratios, i.e. the odds-ratio between any two
subsequent happiness categories is 0.9937 for each year of age and 1.0002 for each additional
Yuan earned. Therefore, there seems to be a happiness conflict between getting older and
richer.

Continuous Responses

Survival Analysis: German Breast Cancer Study Group-2 (GBSG-2) Trial This
prospective, controlled clinical trial on the treatment of node positive breast cancer patients
was conducted by the German Breast Cancer Study Group (GBSG-2, Schumacher et al. 1994).
Patients not older than 65 years with positive regional lymph nodes but no distant metastases
were included in the study. Out of 686 women, 246 received hormonal therapy whereas
the control group of 440 women did not receive hormonal therapy. Additional variables
include age, menopausal status, tumour size, tumour grade, number of positive lymph nodes,
progesterone receptor, and estrogen receptor. The right-censored recurrence-free survival time
is the response variable of interest, i.e. a positive absolutely continuous variable

R> data("GBSG2", package = "TH.data")

R> GBSG2y <- numeric_var("y", support = c(100.0, max(GBSG2$time)),

+ bounds = c(0, Inf))

R> GBSG2$y <- with(GBSG2, Surv(time, cens))

We start with the Cox model (FMEV, (a¦
Bs,10, x̃¦)¦, (ϑ¦

1 , β¦)¦), in more classical notation the
model

P(Y f y | X = x) = 1 − exp(− exp(aBs,10(y)¦ϑ1 + x̃¦β),

where x̃ contains the treatment indicator and all other explanatory variables in the trans-
formation function h(y | x) = aBs,10(y)¦ϑ1 + x̃¦β with log-cumulative baseline hazard
hY (y) = aBs,10(y)¦ϑ1 (the positive shift being in line with the implementation in coxph() in
package survival, Therneau and Grambsch 2000; Therneau 2024)

R> B_GBSG2y <- Bernstein_basis(var = GBSG2y, order = 10, ui = "increasing")

R> fm_GBSG2 <- Surv(time, cens) ~ horTh + age + menostat + tsize + tgrade +

+ pnodes + progrec + estrec

R> ctm_GBSG2_1 <- ctm(B_GBSG2y, shifting = fm_GBSG2[-2L], data = GBSG2,

+ todistr = "MinExtrVal")

fm_GBSG2[-2L] is the right hand side of the model formula and defines the basis function
for the shift term in the classical formula language. The distribution function FZ is the
distribution function of the minimum extreme value distribution. The specification of the
right-hand side of the formula as argument shifting along with the data (argument data)
is equivalent to a basis function

R> as.basis(fm_GBSG2[-2L], data = GBSG2, remove_intercept = TRUE)

Note that the model matrix is set-up with intercept term first, ensuring proper coding of
contrasts. Because the intercept in this model is the log-cumulative baseline hazard function
hY , the intercept column is removed from the model matrix prior to model estimation.
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In contrast to the classical Cox model where only β is estimated by the partial likelihood, we
estimate all model parameters (ϑ¦

1 , β¦) simultaneously under ten linear constraints

R> mlt_GBSG2_1 <- mlt(ctm_GBSG2_1, data = GBSG2, scale = TRUE)

The results obtained for β from the partial and the exact log-likelihood are practically equiv-
alent

R> coxph_GBSG2_1 <- coxph(fm_GBSG2, data = GBSG2, ties = "breslow")

R> cf <- coef(coxph_GBSG2_1)

R> RC(coxph = cf, mlt = coef(mlt_GBSG2_1)[names(cf)])

coxph mlt (coxph - mlt)/mlt

horThyes -0.34624162 -0.34870794 -0.00707273

age -0.00945341 -0.00993200 -0.04818718

menostatPost 0.25815655 0.26764267 -0.03544325

tsize 0.00779833 0.00776595 0.00416918

tgrade.L 0.55108381 0.56022306 -0.01631360

tgrade.Q -0.20110602 -0.20194242 -0.00414178

pnodes 0.04878180 0.04876198 0.00040649

progrec -0.00221749 -0.00221054 0.00314617

estrec 0.00019782 0.00018299 0.08103062

A practically important question is how the order M of the Bernstein polynomial affects the
results. Recall that the log-cumulative baseline hazard function hY is not specified when
the partial likelihood is maximised and thus coxph() makes no assumptions regarding this
function. To study the impact of M on the results, we refit the Cox model using mlt() for
M = 1, . . . , 30 and plot the log-cumulative hazard function hY for different M along with
the non-parametric Nelson-Aalen-Breslow estimator in the left panel of Figure 5. In the right
panel of Figure 5, the change in the regression coefficients β as a function of order M is shown.
Both the log-cumulative hazard function and the regression coefficients obtained from mlt()

are stable for M g 10 and very similar to the results one obtains from coxph(). This result
shows that a simple yet fully parametric model produces practically equivalent results when
compared to the semiparametric partial likelihood approach. There is no harm in choosing
M “too large”, except longer computing times of course. In this sense, there is no need to
“tune” M .

A comparison with the Royston and Parmar (2002) spline model as implemented in the
flexsurv package (Jackson 2024) shows that the two spline parameterisations of the log-
cumulative hazard function hY are also practically equivalent (see Figure 6)

R> kn <- log(support(GBSG2y)$y)

R> fss_GBSG2_1 <- flexsurvspline(fm_GBSG2, data = GBSG2, scale = "hazard",

+ k = 9, bknots = kn)

R> logLik(fss_GBSG2_1)

'log Lik.' -2555.888 (df=20)
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Figure 5: GBSG-2 Trial. Comparison of exact and partial likelihood for order M =
1, . . . , 30, 35, 40, 45, 50 of the Bernstein polynom approximating the log-cumulative hazard
function hY . In the left panel the estimated log-cumulative hazard functions for varying M
obtained by mlt() are shown in grey and the Nelson-Aalen-Breslow estimator obtained from
coxph() in red. The right panel shows the trajectories of the regression coefficients β ob-
tained for varying M from mlt() as dots. The horizonal lines represent the partial likelihood
estimates from coxph(). This figure reproduces Figure 6 in Hothorn et al. (2017).

R> logLik(mlt_GBSG2_1)

'log Lik.' -2559.151 (df=20)

R> cf <- coef(coxph_GBSG2_1)

R> RC(coxph = cf, mlt = coef(mlt_GBSG2_1)[names(cf)],

+ fss = coef(fss_GBSG2_1)[names(cf)])

coxph mlt fss (coxph - mlt)/mlt

horThyes -0.34624162 -0.34870794 -0.34758666 -0.00707273

age -0.00945341 -0.00993200 -0.00960265 -0.04818718

menostatPost 0.25815655 0.26764267 0.26547306 -0.03544325

tsize 0.00779833 0.00776595 0.00783218 0.00416918

tgrade.L 0.55108381 0.56022306 0.55663869 -0.01631360

tgrade.Q -0.20110602 -0.20194242 -0.20159770 -0.00414178

pnodes 0.04878180 0.04876198 0.04883544 0.00040649

progrec -0.00221749 -0.00221054 -0.00220415 0.00314617

estrec 0.00019782 0.00018299 0.00018431 0.08103062

(fss - mlt)/mlt
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Figure 6: GBSG-2 Trial. Estimated survivor functions for patient 1 by the most likely
transformation model (MLT) and the Royston and Parmar (2002) spline model fitted using
flexsurvspline() as well as based on the Nelson-Aalen-Breslow estimator from coxph().

horThyes -0.0032155

age -0.0331612

menostatPost -0.0081064

tsize 0.0085286

tgrade.L -0.0063981

tgrade.Q -0.0017070

pnodes 0.0015065

progrec -0.0028917

estrec 0.0072100

Accelerated Failure Time (AFT) models arise when one restricts the baseline transformation
hY (y) to a possibly scaled log-transformation. With hY (y) = ϑ1 log(y) + ϑ2 (with ϑ1 ≡ 1)
and FZ = FMEV the exponential AFT model arises which can be specified as the Cox model
above, only the Bernstein basis for time needs to be replaced by a log-transformation and the
corresponding parameter is restricted to one in the estimation

R> ly <- log_basis(GBSG2y, ui = "increasing")

R> ctm_GBSG2_2 <- ctm(ly, shifting = fm_GBSG2[-2L], data = GBSG2,

+ negative = TRUE, todistr = "MinExtrVal")

R> mlt_GBSG2_2 <- mlt(ctm_GBSG2_2, data = GBSG2, fixed = c("log(y)" = 1),

+ scale = TRUE)

The intercept ϑ2 is contained in the log basis function ly and not in the shift term. The
survreg() (package survival) and phreg() (package eha, Broström 2024) functions fit the
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same model, the results are again equivalent up to the sign of the regression coefficients

R> survreg_GBSG2_2 <- survreg(fm_GBSG2, data = GBSG2, dist = "exponential")

R> phreg_GBSG2_2 <- phreg(fm_GBSG2, data = GBSG2, dist = "weibull",

+ shape = 1)

R> logLik(survreg_GBSG2_2)

'log Lik.' -2599.383 (df=10)

R> logLik(phreg_GBSG2_2)

'log Lik.' -2599.383 (df=10)

R> logLik(mlt_GBSG2_2)

'log Lik.' -2599.383 (df=10)

R> RC(survreg = coef(survreg_GBSG2_2)[names(cf)],

+ phreg = -coef(phreg_GBSG2_2)[names(cf)],

+ mlt = coef(mlt_GBSG2_2)[names(cf)])

survreg phreg mlt (survreg - mlt)/mlt

horThyes 0.33216174 0.33216174 0.33216140 1.0187e-06

age 0.00941967 0.00941967 0.00941963 4.1560e-06

menostatPost -0.26853589 -0.26853589 -0.26853647 -2.1814e-06

tsize -0.00731794 -0.00731794 -0.00731801 -8.3217e-06

tgrade.L -0.51935212 -0.51935212 -0.51934918 5.6498e-06

tgrade.Q 0.21392176 0.21392176 0.21392108 3.1545e-06

pnodes -0.04616647 -0.04616647 -0.04616636 2.3530e-06

progrec 0.00206709 0.00206709 0.00206711 -1.0356e-05

estrec -0.00017885 -0.00017885 -0.00017883 1.1351e-04

(phreg - mlt)/mlt

horThyes 1.0187e-06

age 4.1560e-06

menostatPost -2.1814e-06

tsize -8.3217e-06

tgrade.L 5.6498e-06

tgrade.Q 3.1545e-06

pnodes 2.3530e-06

progrec -1.0356e-05

estrec 1.1351e-04

If we allow a scaled log-transformation hY (y) = ϑ1 log(y) + ϑ2 (the intercept ϑ2 is included in
the baseline transformation), the resulting Weibull AFT model is fitted by mlt(), survreg()

and phreg() using
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R> mlt_GBSG2_3 <- mlt(ctm_GBSG2_2, data = GBSG2, scale = TRUE)

R> survreg_GBSG2_3 <- survreg(fm_GBSG2, data = GBSG2, dist = "weibull")

R> phreg_GBSG2_3 <- phreg(fm_GBSG2, data = GBSG2, dist = "weibull")

R> logLik(survreg_GBSG2_3)

'log Lik.' -2579.695 (df=11)

R> logLik(phreg_GBSG2_3)

'log Lik.' -2579.695 (df=11)

R> logLik(mlt_GBSG2_3)

'log Lik.' -2579.695 (df=11)

R> RC(survreg = coef(survreg_GBSG2_3)[names(cf)] / survreg_GBSG2_3$scale,

+ phreg = - coef(phreg_GBSG2_3)[names(cf)],

+ mlt = coef(mlt_GBSG2_3)[names(cf)])

survreg phreg mlt (survreg - mlt)/mlt

horThyes 0.37309092 0.37309092 0.3730891 4.9645e-06

age 0.00947993 0.00947993 0.0094803 -3.4725e-05

menostatPost -0.27090274 -0.27090274 -0.2709161 -4.9430e-05

tsize -0.00801490 -0.00801490 -0.0080153 -4.8819e-05

tgrade.L -0.57279926 -0.57279926 -0.5727666 5.6947e-05

tgrade.Q 0.20505972 0.20505972 0.2050385 1.0359e-04

pnodes -0.05280165 -0.05280165 -0.0528004 2.3167e-05

progrec 0.00228486 0.00228486 0.0022848 3.2566e-05

estrec -0.00024843 -0.00024843 -0.0002484 1.3247e-04

(phreg - mlt)/mlt

horThyes 4.9645e-06

age -3.4725e-05

menostatPost -4.9430e-05

tsize -4.8819e-05

tgrade.L 5.6947e-05

tgrade.Q 1.0359e-04

pnodes 2.3167e-05

progrec 3.2566e-05

estrec 1.3247e-04

The estimated scale parameters ϑ̂1 are 1.3903 (survreg()), 1.3903 (phreg()) and 1.3903
(mlt()).

It is also possible to combine the log-transformation with the Bernstein polynomial. In this
case, Bernstein basis functions are computed for log-transformed survival times, thus a linear
Bernstein polynomial is equivalent to a Weibull model. The log_first = TRUE argument to
Bernstein_basis() implements this concept; the Cox model for the GBSG2 study can be
implemented as



20 The mlt Package

R> log_GBSG2y <- numeric_var("y", support = c(100.0, max(GBSG2$time)),

+ bounds = c(0.1, Inf))

R> lBy <- Bernstein_basis(log_GBSG2y, order = 10, ui = "increasing",

+ log_first = TRUE)

R> ctm_GBSG2_3a <- ctm(lBy, shifting = fm_GBSG2[-2L], data = GBSG2,

+ negative = FALSE, todistr = "MinExtrVal")

R> mlt_GBSG2_3a <- mlt(ctm_GBSG2_3a, data = GBSG2, scale = TRUE)

R> logLik(mlt_GBSG2_3a)

'log Lik.' -2557.929 (df=20)

R> RC(coxph = cf, mlt = coef(mlt_GBSG2_3a)[names(cf)])

coxph mlt (coxph - mlt)/mlt

horThyes -0.34624162 -0.35041763 -0.0119172

age -0.00945341 -0.00980487 -0.0358461

menostatPost 0.25815655 0.26653473 -0.0314337

tsize 0.00779833 0.00783054 -0.0041133

tgrade.L 0.55108381 0.55897252 -0.0141129

tgrade.Q -0.20110602 -0.20270598 -0.0078930

pnodes 0.04878180 0.04866347 0.0024316

progrec -0.00221749 -0.00220954 0.0036000

estrec 0.00019782 0.00019058 0.0379930

Non-normal Linear Regression: Boston Housing Data The Boston Housing data
are a prominent test-bed for parametric and non-parametric alternatives to a normal linear
regression model. Assuming a conditional normal distribution for the median value of owner-
occupied homes (medv, in USD 1000’s, we use the corrected version) in the normal linear
model with constant variance

medv | X = x ∼ N(α + x̃¦β, σ2)

as implemented in lm() is rather restrictive

R> data("BostonHousing2", package = "mlbench")

R> lm_BH <- lm(cmedv ~ crim + zn + indus + chas + nox + rm + age + dis +

+ rad + tax + ptratio + b + lstat, data = BostonHousing2)

We relax the model formulation without sacrificing the simplicity of a linear predictor of the
explanatory variables in the linear transformation model

P(medv f y | X = x) = Φ(hY (y) − x̃¦β) = Φ(aBs,6(y)¦ϑ1 − x̃¦β)

and estimate all model parameters (ϑ1, β) simultaneously, i.e. both the regression coefficients
and the baseline transformation hY . Because it is straightforward to evaluate the conditional
distribution function, the likelihood can deal with right-censored medvc observations (g 50).
This censoring was mostly ignored in other parametric or non-parametric analyses of this
data set.

We start with a suitable definition of median value of owner-occupied homes, set-up a Surv

object for this response and a model formula
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R> BostonHousing2$medvc <- with(BostonHousing2, Surv(cmedv, cmedv < 50))

R> var_m <- numeric_var("medvc", support = c(10.0, 40.0), bounds = c(0, Inf))

R> fm_BH <- medvc ~ crim + zn + indus + chas + nox + rm + age +

+ dis + rad + tax + ptratio + b + lstat

First, we aim at fitting a normal linear model taking censored observations properly into
account. With linear baseline transformation hY , i.e. a Bernstein polynomial of order one
or a linear function with intercept and positive slope, the model is equivalent to the model
underlying lm() as explained in the introduction. Only the likelihood changes when we fit
the model via

R> B_m <- polynomial_basis(var_m, coef = c(TRUE, TRUE),

+ ui = matrix(c(0, 1), nrow = 1), ci = 0)

R> ctm_BH <- ctm(B_m, shift = fm_BH[-2L], data = BostonHousing2,

+ todistr = "Normal")

R> lm_BH_2 <- mlt(ctm_BH, data = BostonHousing2, scale = TRUE)

R> logLik(lm_BH_2)

'log Lik.' -1496.301 (df=15)

In a second step, we are interested in a possibly non-linear transformation of the response and
use a Bernstein polynomial of order six. In principle, this approach is equivalent to using a
Box-Cox transformation but with a more flexible transformation function. In a sense, we don’t
need to worry too much about the error distribution FZ as only the additivity assumption on
our linear predictor depends on this choice (which may or may not be a strong assumption!).
The conditional transformation model is now given by this transformation of the response, a
linear predictor of the explanatory variables the model and the normal distribution function;
the mlt() function fits the model to the data

R> B_m <- Bernstein_basis(var_m, order = 6, ui = "increasing")

R> ctm_BH <- ctm(B_m, shift = fm_BH[-2L], data = BostonHousing2,

+ todistr = "Normal")

R> mlt_BH <- mlt(ctm_BH, data = BostonHousing2, scale = TRUE)

R> logLik(mlt_BH)

'log Lik.' -1324.698 (df=20)

The model can be compared with a normal linear model (fitted by lm()) on the scale of
the fitted conditional distribution functions. Figure 7 shows the fitted values, i.e. the linear
predictor x̃¦

i β̂N for each observation, and the observed response overlayed with the condi-
tional distribution function for the corresponding observations. For the normal linear model
featuring a linear baseline transformation hY , the fit seems appropriate for observations with
linear predictor less than 30. For larger values, the linear predictor underestimates the obser-
vations. The conditional distribution obtained from the linear transformation model captures
observations with large values of the response better. For smaller values of the response, the
fit resembles the normal linear model, although with a smaller conditional variance.
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Figure 7: Boston Housing. Predicted vs. observed for the normal linear model (left) and the
linear transformation model with smooth baseline transformation (right). The observations
are overlayed with the conditional quantiles of the response given the linear predictor.

Truncated Regression: Panel Study of Income Dynamics Mroz (1987) analysed the
University of Michigan Panel Study of Income Dynamics (PSID) for the year 1975 (interview
year 1976). The data consists of 753 married white women between the ages of 30 and 60 in
1975, with 428 working at some time during the year. The dependent variable is the wife’s
annual hours of work and we are interested in modelling the distribution of hours of work
conditional on participation in the labour force, i.e. more than zero hours of work in 1975.
We first set-up a subset consisting of those who actually worked (for money!) in 1975 and a
model formula

R> data("PSID1976", package = "AER")

R> PSID1976$nwincome <- with(PSID1976, (fincome - hours * wage)/1000)

R> PSID1976$hours <- as.double(PSID1976$hours)

R> PSID1976_0 <- subset(PSID1976, participation == "yes")

R> fm_PSID1976 <- hours ~ nwincome + education + experience +

+ I(experience^2) + age + youngkids + oldkids

We use a linear regression model for left-truncated data and compare the results to truncreg()

from package truncreg (Croissant and Zeileis 2018)

R> tr_PSID1976 <- truncreg(fm_PSID1976, data = PSID1976_0)

We use the R() function (see Appendix C.1) to specify left-truncation at zero, set-up a linear
transformation function with positive slope for the response (we want to stay within the
normal family) and a shift term
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R> PSID1976_0$hours <- R(PSID1976_0$hours, tleft = 0)

R> b_hours <- as.basis(~ hours, data = PSID1976,

+ ui = matrix(c(0, 1), nr = 1), ci = 0)

R> ctm_PSID1976_1 <- ctm(b_hours, shift = fm_PSID1976[-2L],

+ data = PSID1976_0, todistr = "Normal")

R> mlt_PSID1976_1 <- mlt(ctm_PSID1976_1, data = PSID1976_0, scale = TRUE)

The mlt() function does a slightly better job at maximising the likelihood than truncreg()

which explains the differences in the estimated coefficients

R> logLik(tr_PSID1976)

'log Lik.' -3391.478 (df=9)

R> logLik(mlt_PSID1976_1)

'log Lik.' -3390.648 (df=9)

R> cf <- coef(mlt_PSID1976_1)

R> RC(truncreg = coef(tr_PSID1976),

+ mlt = c(-cf[-grep("hours", names(cf))], 1) / cf["hours"])

truncreg mlt (truncreg - mlt)/mlt

(Intercept) 2055.71277 2123.56614 -0.0319526

nwincome -0.50115 0.15365 -4.2616537

education -31.26965 -29.85120 0.0475172

experience 73.00661 72.61009 0.0054609

I(experience^2) -0.96951 -0.94364 0.0274208

age -25.33598 -27.44358 -0.0767978

youngkids -318.85212 -484.70140 -0.3421679

oldkids -91.61953 -102.65171 -0.1074719

sigma 822.47929 850.76319 -0.0332453

Of course, we might want to question the normal assumption by allowing a potentially non-
linear transformation function. We simply change the linear to a non-linear baseline trans-
formation hY at the price of five additional parameters in the model

R> var_h <- numeric_var("hours", support = range(PSID1976_0$hours$exact),

+ bounds = c(0, Inf))

R> B_hours <- Bernstein_basis(var_h, order = 6, ui = "increasing")

R> ctm_PSID1976_2 <- ctm(B_hours, shift = fm_PSID1976[-2L],

+ data = PSID1976_0, todistr = "Normal")

R> mlt_PSID1976_2 <- mlt(ctm_PSID1976_2, data = PSID1976_0,

+ scale = TRUE)

R> logLik(mlt_PSID1976_2)

'log Lik.' -3375.477 (df=14)
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and there might be a small advantage with the non-normal model.

2.3. Stratified Linear Transformation Models

Stratification in linear transformation models refers to a strata-specific transformation func-
tion but a shift term those regression coefficients are constant across strata. The model then
reads

P(Y f y | stratum = s, X = x) = FZ(h(y | s, x)) = FZ(hY (y | s) − x̃¦β) = FZ(c(y, s, x)¦ϑ)

with basis function c = (a¦ ¹ b¦
stratum, −b¦

shift)
¦. The basis function b¦

stratum is a dummy
coding for the stratum variable and is defined using the interacting argument of ctm().
The constraints for the parameters of a have to be met for each single stratum, i.e. the total
number of linear constraints is the number of constraints for a multiplied by the number of
strata.

Discrete Responses

Categorical Data Analysis: Chinese Survey (Cont’d) We first estimate the distribu-
tion of happiness given health without taking any other explanatory variables into account,
i.e. by treating health as a stratum variable (with dummy coding) but without any regression
coefficients β in the model

R> b_health <- as.basis(~ R_health - 1, data = CHFLS)

R> ctm_CHFLS_3 <- ctm(b_happy, interacting = b_health, todist = "Logistic")

R> mlt_CHFLS_3 <- mlt(ctm_CHFLS_3, data = CHFLS, scale = TRUE)

R> logLik(mlt_CHFLS_3)

'log Lik.' -1192.226 (df=15)

R> predict(mlt_CHFLS_3, newdata = mkgrid(mlt_CHFLS_3), type = "distribution")

R_health

R_happy Poor Not good Fair Good Excellent

Very unhappy 0.1999991 0.05035963 0.008676796 0.001718215 5.012443e-08

Not too happy 0.5999982 0.38129488 0.154013080 0.073883186 7.602344e-02

Somewhat happy 0.8999975 0.93525179 0.913232107 0.862542897 5.614034e-01

Very happy 1.0000000 1.00000000 1.000000000 1.000000000 1.000000e+00

The conditional distribution for happiness given each health category is returned by predict()

as a matrix. There is a clear tendency of people being happier with better health. We now
‘adjust’ for age and income by including a linear shift term which is constant across strata

R> ctm_CHFLS_4 <- ctm(b_happy, interacting = b_health, shifting = b_R,

+ todist = "Logistic")

R> mlt_CHFLS_4 <- mlt(ctm_CHFLS_4, data = CHFLS, scale = TRUE)

R> coef(mlt_CHFLS_4)[c("R_age", "R_income")]
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R_age R_income

0.0117386981 0.0002492629

Because the shift basis b_R is negative, the effects of both age and income on the happiness
distribution are towards larger values of happiness, i.e. older and richer people are happier
for all health levels (this is, of course, due to the restrictive model not allowing interactions
between health and the other two variables). The “health-adjusted” log-odds ratios are now
1.0118 for each year of age and 1.0002 for each additional Yuan earned and, conditional on
health, people are getting happier as they get older and richer.

Continuous Responses

Survival Analysis: GBSG-2 Trial (Cont’d) The Cox model presented in Section 2.2
features one baseline function for all observations, an assumption which we are now going to
relax. As a first simple example, we want to estimate two separate survivor functions for the
two treatment regimes in the model

(FMEV, (aBs,10(y)¦ ¹ (1(hormonal therapy), 1 − 1(hormonal therapy)))¦, (ϑ¦
1 , ϑ¦

2 )¦)

Here, the transformation functions aBs,10(y)¦ϑ1 and aBs,10(y)¦ϑ2 correspond to the un-
treated and treated groups, respectively

R> b_horTh <- as.basis(GBSG2$horTh)

R> ctm_GBSG2_4 <- ctm(B_GBSG2y, interacting = b_horTh,

+ todistr = "MinExtrVal")

R> mlt_GBSG2_4 <- mlt(ctm_GBSG2_4, data = GBSG2)

The two survivor functions, along with the corresponding Kaplan-Meier estimates, are shown
in Figure 8, the low-dimensional Bernstein polynomials produce a nicely smoothed version of
the Kaplan-Meier step-functions.

In a second step, we allow treatment-specific baseline hazard functions while estimating a
constant age effect in the model

(FMEV, (aBs,10(y)¦ ¹ (1(hormonal therapy), 1 − 1(hormonal therapy)), age)¦, (ϑ¦
1 , ϑ¦

2 , β)).

This model is fitted by

R> ctm_GBSG2_5 <- ctm(B_GBSG2y, interacting = b_horTh, shifting = ~ age,

+ data = GBSG2, todistr = "MinExtrVal")

R> mlt_GBSG2_5 <- mlt(ctm_GBSG2_5, data = GBSG2, scale = TRUE)

The corresponding stratified Cox model with parameter estimation based on the partial like-
lihood is

R> coxph_GBSG2_5 <- coxph(Surv(time, cens) ~ age + strata(horTh),

+ data = GBSG2)

R> cf <- coef(coxph_GBSG2_5)

R> RC(coxph = cf, mlt = coef(mlt_GBSG2_5)[names(cf)])
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Figure 8: GBSG-2 Trial. Estimated survivor functions by the most likely transformation
model (MLT) and the Kaplan-Meier (KM) estimator in the two treatment groups. The plot
reproduces Figure 4 (left panel) in Hothorn et al. (2017).

coxph mlt (coxph - mlt)/mlt

age -0.00036957 -0.00046247 -0.20088

The Cox model fitted via the stratified partial likelihood (coxph()) and the transformation
model agree on a positive age effect β̂, i.e. older patients seem to survive longer (note that
coxph() estimates a positive shift effect as does the transformation model specified above).

2.4. Conditional Transformation Models

The most complex class of models currently supported by the ctm() function allows basis
functions of the form

c = (a¦ ¹ (b¦
1 , . . . , b¦

J ), −b¦
shift).

The model may include response-varying coefficients (as defined by the basis a) correspond-
ing to the bases (b¦

1 , . . . , b¦
J ) and constant shift effects (bshift). Such a model is set-up using

ctm() with arguments response (basis a), interacting (basis (b¦
1 , . . . , b¦

J )) and shifting

(basis −b¦
shift). It would be conceptually possible to fit even more complex conditional trans-

formation models of the form

c = (a¦
1 ¹ b¦

1 , . . . , a¦
J ¹ b¦

J )

with a less restrictive user interface.

Discrete Responses
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Categorical Data Analysis: Chinese Survey (Cont’d) In a series of non-proportional
odds models for the conditional distribution of happiness we study the impact of health,
age and income on happiness. Similar to the stratified model ctm_CHFLS_3, we estimate the
conditional distribution of happiness separately for each health level, but instead of using a
dummy coding we use treatment contrasts

R> contrasts(CHFLS$R_health) <- "contr.treatment"

R> b_health <- as.basis(~ R_health, data = CHFLS)

R> ctm_CHFLS_5 <- ctm(b_happy, interacting = b_health, todist = "Logistic")

R> mlt_CHFLS_5 <- mlt(ctm_CHFLS_5, data = CHFLS, scale = TRUE)

R> predict(mlt_CHFLS_5, newdata = mkgrid(mlt_CHFLS_5), type = "distribution")

R_health

R_happy Poor Not good Fair Good Excellent

Very unhappy 0.2001065 0.05036008 0.008680778 0.001712238 5.612700e-07

Not too happy 0.6001098 0.38129239 0.154015362 0.073877847 7.602102e-02

Somewhat happy 0.9003905 0.93524848 0.913234513 0.862546398 5.614128e-01

Very happy 1.0000000 1.00000000 1.000000000 1.000000000 1.000000e+00

R> logLik(mlt_CHFLS_5)

'log Lik.' -1192.226 (df=15)

The log-likelihood and the fitted distribution are, of course, equivalent but the parameters
allow a direct interpretation of the effect of health relative to the baseline category Poor. In
a second step, we fit a non-proportional odds model where the effects of age and income are
allowed to vary with happiness

R> b_R <- as.basis(~ R_age + R_income, data = CHFLS, remove_intercept = TRUE,

+ scale = TRUE)

R> ctm_CHFLS_6 <- ctm(b_happy, interacting = b_R, todist = "Logistic")

R> mlt_CHFLS_6 <- mlt(ctm_CHFLS_6, data = CHFLS, scale = TRUE)

R> logLik(mlt_CHFLS_6)

'log Lik.' -1472.42 (df=6)

and finally we include all three variables (health, age and income) allowing happiness-varying
effects as

R> ctm_CHFLS_7 <- ctm(b_happy, interacting = c(h = b_health, R = b_R),

+ todist = "Logistic")

R> mlt_CHFLS_7 <- mlt(ctm_CHFLS_7, data = CHFLS, scale = TRUE)

R> logLik(mlt_CHFLS_7)

'log Lik.' -1182.778 (df=21)
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Categorical Data Analysis: Iris Data For an unordered response in a multi-class prob-
lem, the conditional distribution can be estimated using a multinomial regression. In a non-
proportional odds model allowing response-specific regression coefficients, the ordering of the
response levels only affects the corresponding regression coefficients but the fitted density is
invariant with respect to the ordering applied as a comparison with multinom() from package
nnet (Venables and Ripley 2002; Ripley 2023) for the iris data shows

R> fm_iris <- Species ~ Sepal.Length + Sepal.Width +

+ Petal.Length + Petal.Width

R> multinom_iris <- nnet::multinom(fm_iris, data = iris, trace = FALSE)

R> logLik(multinom_iris)

'log Lik.' -5.949867 (df=10)

R> iris$oSpecies <- ordered(iris$Species)

R> b_Species <- as.basis(iris$oSpecies)

R> b_x <- as.basis(fm_iris[-2L], data = iris, scale = TRUE)

R> ctm_iris <- ctm(b_Species, interacting = b_x,

+ todistr = "Logistic")

R> mlt_iris <- mlt(ctm_iris, data = iris, scale = TRUE)

R> logLik(mlt_iris)

'log Lik.' -5.94987 (df=10)

R> p1 <- predict(mlt_iris, newdata = iris, q = sort(unique(iris$oSpecies)),

+ type = "density")

R> p2 <- predict(multinom_iris, newdata = iris, type = "prob")

R> max(abs(t(p1) - p2))

[1] 0.001739043

From this point of view, the multinomial model for an unordered categorical response is
equivalent to a non-proportional odds model with response-varying effects.

Continuous Responses

Survival Analysis: GBSG-2 Trial (Cont’d) The Cox model for the comparison of the
survivor distribution between the untreated and treated group assuming proportional hazards,
i.e. the model (FMEV, (a¦

Bs,10,1(hormonal therapy))¦, (ϑ¦
1 , β)¦), implements the transforma-

tion function h(y | treatment) = aBs,10(y)¦ϑ1 + 1(hormonal therapy)β where a¦
Bs,10ϑ1 is the

log-cumulative baseline hazard function parameterised by a Bernstein polynomial and β ∈ R

is the log-hazard ratio of hormonal therapy

R> ctm_GBSG2_6 <- ctm(B_GBSG2y, shifting = ~ horTh, data = GBSG2,

+ todistr = "MinExtrVal")

R> mlt_GBSG2_6 <- mlt(ctm_GBSG2_6, data = GBSG2)

R> logLik(mlt_GBSG2_6)
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'log Lik.' -2607.361 (df=12)

This is the classical Cox model with one treatment parameter β but fully parameterised
baseline transformation function which was fitted by the exact log-likelihood under ten lin-
ear constraints. The model assumes proportional hazards, an assumption whose appro-
priateness we want to assess using the non-proportional hazards model (FMEV, (a¦

Bs,10 ¹

(1,1(hormonal therapy)))¦, ϑ) with transformation function

h(y | treatment) = aBs,10(y)¦ϑ1 + 1(hormonal therapy)aBs,10(y)¦ϑ2.

The function a¦
Bs,10ϑ2 is the time-varying treatment effect and can be interpreted as the de-

viation, on the scale of the transformation function, induced by the hormonal therapy. Under
the null hypothesis of no treatment effect, we would expect ϑ2 ≡ 0. It should be noted that
the log-cumulative hazard function aBs,10(y)¦ϑ1 must by monotone. The deviation function
aBs,10(y)¦ϑ2 does not need to be monotone, however, the sum of the two functions needs
to be monotone. Sums of such Bernstein polynomials with coefficients ϑ1 and ϑ2 are again
Bernstein polynomials with coefficients ϑ1 +ϑ2. Thus, monotonicity of the sum can be imple-
mented by monotonicity of ϑ1 +ϑ2. The argument sumconstr = TRUE implements the latter
constraint (the default, in this specific situation). Figure 9 shows the time-varying treatment
effect a¦

Bs,10ϑ̂2,N , together with a 95% confidence band (see Section 5 for a description of the

method). The 95% confidence interval around the log-hazard ratio β̂ is plotted in addition
and since the latter is fully covered by the confidence band for the time-varying treatment
effect there is no reason to question the treatment effect computed under the proportional
hazards assumption.

R> b_horTh <- as.basis(~ horTh, data = GBSG2)

R> ctm_GBSG2_7 <- ctm(B_GBSG2y, interacting = b_horTh,

+ todistr = "MinExtrVal")

R> nd <- data.frame(y = GBSG2$time[1:2], horTh = unique(GBSG2$horTh))

R> attr(model.matrix(ctm_GBSG2_7, data = nd), "constraint")

$ui

20 x 22 sparse Matrix of class "dgCMatrix"

[1,] -1 1 . . . . . . . . . . . . . . . . . . . .

[2,] . -1 1 . . . . . . . . . . . . . . . . . . .

[3,] . . -1 1 . . . . . . . . . . . . . . . . . .

[4,] . . . -1 1 . . . . . . . . . . . . . . . . .

[5,] . . . . -1 1 . . . . . . . . . . . . . . . .

[6,] . . . . . -1 1 . . . . . . . . . . . . . . .

[7,] . . . . . . -1 1 . . . . . . . . . . . . . .

[8,] . . . . . . . -1 1 . . . . . . . . . . . . .

[9,] . . . . . . . . -1 1 . . . . . . . . . . . .

[10,] . . . . . . . . . -1 1 . . . . . . . . . . .

[11,] -1 1 . . . . . . . . . -1 1 . . . . . . . . .

[12,] . -1 1 . . . . . . . . . -1 1 . . . . . . . .

[13,] . . -1 1 . . . . . . . . . -1 1 . . . . . . .
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Figure 9: GBSG-2 Trial. Verification of proportional hazards: The log-hazard ratio β̂ (dashed
line) with 95% confidence interval (dark grey) is fully covered by a 95% confidence band for
the time-varying treatment effect (light grey, the estimate is the solid line) computed from
a non-proportional hazards model. The plot reproduces Figure 4 (right panel) in Hothorn
et al. (2017).

[14,] . . . -1 1 . . . . . . . . . -1 1 . . . . . .

[15,] . . . . -1 1 . . . . . . . . . -1 1 . . . . .

[16,] . . . . . -1 1 . . . . . . . . . -1 1 . . . .

[17,] . . . . . . -1 1 . . . . . . . . . -1 1 . . .

[18,] . . . . . . . -1 1 . . . . . . . . . -1 1 . .

[19,] . . . . . . . . -1 1 . . . . . . . . . -1 1 .

[20,] . . . . . . . . . -1 1 . . . . . . . . . -1 1

$ci

[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R> mlt_GBSG2_7 <- mlt(ctm_GBSG2_7, data = GBSG2)

R> logLik(mlt_GBSG2_7)

'log Lik.' -2605.949 (df=22)

In a second step, we allow an age-varying treatment effect in the model (FMEV, (aBs,10(y)¦ ¹
(1(hormonal therapy), 1 − 1(hormonal therapy)) ¹ bBs,3(age)¦)¦, ϑ). For both treatment
groups, we estimate a conditional transformation function of survival time y given age pa-
rameterised as the tensor basis of two Bernstein bases. Each of the two basis functions comes
with 10 × 3 linear constraints, so the model was fitted under 60 linear constraints
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Figure 10: GBSG-2 Trial. Prognostic and predictive effect of age. The contours depict the
conditional survivor functions given treatment and age of the patient. The plot reproduces
Figure 5 in Hothorn et al. (2017).

R> var_a <- numeric_var("age", support = range(GBSG2$age))

R> B_age <- Bernstein_basis(var_a, order = 3)

R> b_horTh <- as.basis(GBSG2$horTh)

R> ctm_GBSG2_8 <- ctm(B_GBSG2y,

+ interacting = b(horTh = b_horTh, age = B_age),

+ todistr = "MinExtrVal")

R> mlt_GBSG2_8 <- mlt(ctm_GBSG2_8, data = GBSG2)

R> logLik(mlt_GBSG2_8)

'log Lik.' -2588.754 (df=88)

Figure 10 allows an assessment of the prognostic and predictive properties of age. As the
survivor functions are clearly larger under hormonal treatment for all patients, the positive
treatment effect applies to all patients. However, the size of the treatment effect varies
greatly. For women younger than 30, the effect is most pronounced and levels-off a little for
older patients. In general, the survival times are longest for women between 40 and 60 years
old. Younger women suffer the highest risk; for women older than 60 years, the risk starts to
increase again. This effect is shifted towards younger women by the application of hormonal
treatment.

Quantile Regression: Head Circumference The Fourth Dutch Growth Study (Fredriks
et al. 2000) is a cross-sectional study on growth and development of the Dutch population
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Figure 11: Head Circumference Growth. Observed head circumference and age for 7040 boys
with estimated quantile curves for τ = 0.04, 0.02, 0.1, 0.25, 0.5, 0.75, 0.9, 0.98, 0.996. The plot
reproduces Figure 3 in Hothorn et al. (2017).

younger than 22 years. Stasinopoulos and Rigby (2007) fitted a growth curve to head circum-
ferences (HC) of 7040 boys using a GAMLSS model with a Box-Cox t distribution describing
the first four moments of head circumference conditionally on age. The model showed evidence
of kurtosis, especially for older boys. We fit the same growth curves by the conditional trans-
formation model (Φ, (aBs,3(HC)¦ ¹ bBs,3(age1/3)¦)¦, ϑ) by maximisation of the approximate
log-likelihood under 3 × 4 linear constraints

R> data("db", package = "gamlss.data")

R> db$lage <- with(db, age^(1/3))

R> var_head <- numeric_var("head", support = quantile(db$head, c(.1, .9)),

+ bounds = range(db$head))

R> B_head <- Bernstein_basis(var_head, order = 3, ui = "increasing")

R> var_lage <- numeric_var("lage", support = quantile(db$lage, c(.1, .9)),

+ bounds = range(db$lage))

R> B_age <- Bernstein_basis(var_lage, order = 3, ui = "none")

R> ctm_head <- ctm(B_head, interacting = B_age)

R> mlt_head <- mlt(ctm_head, data = db, scale = TRUE)

Figure 11 shows the data overlaid with quantile curves obtained via inversion of the estimated
conditional distributions. The figure very closely reproduces the growth curves presented in
Figure 16 of Stasinopoulos and Rigby (2007) and also indicates a certain asymmetry towards
older boys.
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Non-normal Linear Regression: Boston Housing Data (Cont’d) A response-varying
coefficient model, also called distribution regression (Foresi and Peracchi 1995; Chernozhukov
et al. 2013; Koenker et al. 2013), for the Boston Housing data is

P(medv f y | X = x) = Φ



hY (y) −
J

∑

j=1

βj(y)x̃j





= Φ



aBs,6(y)¦ϑ0 −
J

∑

j=1

aBs,6(y)¦ϑjx̃j





= Φ



aBs,6(y)¦



ϑ0 −
J

∑

j=1

ϑjx̃j









= Φ
(

aBs,6(y)¦ (ϑ0 − ϑ(x))
)

The model requires the parameters ϑ0−ϑ(x) to be monotone increasing for all possible values
of x. This type of constraint can be implemented using the sumconstr = TRUE argument to
ctm(). The model is implemented using the basis function c = (a¦

Bs,6 ¹ (1, x̃¦))¦, the
intercept is required here and x̃ should be scaled to the unit interval. This model, here using
parameters ϑ0 + ϑ(x), can be fitted using

R> b_BH_s <- as.basis(fm_BH[-2L], data = BostonHousing2, scale = TRUE)

R> ctm_BHi <- ctm(B_m, interacting = b_BH_s, sumconstr = TRUE)

R> mlt_BHi <- mlt(ctm_BHi, data = BostonHousing2, dofit = FALSE)

R> coef(mlt_BHi) <- start

R> logLik(mlt_BHi)

'log Lik.' -1224.481 (df=NULL)

This takes quite some time (we therefore use precomputed coefficients start in the vignette
to keep CRAN maintains happy), simply because the number of constraints is is very large,
depending on the number of explanatory variables. It might make sense to restrict all partial
functions, and thus all partial parameters ϑj to be monotone (argument sumconstr = FALSE):

R> ctm_BHi2 <- ctm(B_m, interacting = b_BH_s, sumconstr = FALSE)

R> mlt_BHi2 <- mlt(ctm_BHi2, data = BostonHousing2)

R> logLik(mlt_BHi2)

'log Lik.' -1274.395 (df=98)

Figure 12 compares the fitted densities for the linear transformation model with constant re-
gression coefficients mlt_BH and the two distribution regression models mlt_BHi and mlt_BHi2.
For some observations, the variance of the conditional distribution functions seems to be
smaller in the more complex model distribution regression models with response-varying ef-
fects, compared to a linear transformation model with constant shift effects β. There is not
very much difference between the distribution regression models with different constraints.

Count Responses

Finally, we study a transformation model with response-varying coefficients for count data.
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Figure 12: Boston Housing. Fitted conditional densities for the linear transformation model
with constant regression coefficients (mlt_BH) and the response-varying coefficient models
mlt_BHi and mlt_BHi2, the last model assumes monotone response-varying coefficient func-
tions.

Analysis of Count Data: Tree Pipit Counts Müller and Hothorn (2004) reported data
on the number of tree pipits Anthus trivialis, a small passerine bird, counted on 86 forest
plots at a light gradient ranging from open and sunny stands (small cover storey) to dense
and dark stands (large cover storey). We model the conditional distribution of the number
of tree pipits at one plot given the cover storey at this plot by the transformation model
(Φ, (a¦ ¹ bBs,4(cover storey)¦)¦, ϑ), where a(y) = e5(y + 1), y = 0, . . . , 4; the model is fitted
under 4 × 5 linear constraints. In this model for count data, the conditional distribution
depends on both the number of counted birds and the cover storey and the effect of cover
storey may change with different numbers of birds observed

R> data("treepipit", package = "coin")

R> treepipit$ocounts <- ordered(treepipit$counts)

R> B_cs <- Bernstein_basis(var = numeric_var("coverstorey", support = 1:110),

+ order = 4)

R> B_c <- as.basis(treepipit$ocounts)

R> ctm_treepipit <- ctm(B_c, interacting = B_cs)

R> mlt_treepipit <- mlt(ctm_treepipit, data = treepipit, scale = TRUE,

+ optim = mltoptim()["spg"])

The left panel of Figure 13 depicts the observations and the center panel shows the condi-
tional distribution function evaluated for 0, . . . , 5 observed birds. The conditional distribution
function obtained from a generalised additive Poisson (GAM) model with smooth mean effect
of cover storey (computed using mgcv, Wood 2006, 2023) is given in the right panel

R> gam_treepipit <- gam(counts ~ s(coverstorey), data = treepipit,

+ family = "poisson")
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Figure 13: Tree Pipit Counts. Observations (left panel, the size of the points is proportional
to the number of observations) and estimated conditional distribution of number of tree
pipits given cover storey by the most likely transformation model (MLT, center panel) and
a generalised additive Poisson model (function gam() in package mgcv, GAM, right panel).
The plot reproduces Figure 7 in Hothorn et al. (2017).

Despite some overfitting, this model is more restrictive than the transformation model because
one mean function determines the whole distribution (the local minima of the conditional
distributions as a function of cover storey are constant in the right panel whereas they are
shifted towards higher values of cover storey in the center panel).

3. Most Likely Transformations

In this Section we review the underpinnings of the mlt() function implementing the most
likely transformation estimator. Most of the material in this section originates from Hothorn
et al. (2018). For a given transformation function h, the likelihood contribution of a datum
C = (

¯
y, ȳ] ∈ C is defined in terms of the distribution function (Lindsey 1996):

L(h | Y ∈ C) :=

∫

C
fY (y | h)dµ(y) = FZ(h(ȳ)) − FZ(h(

¯
y)).

This “exact” definition of the likelihood applies to most practically interesting situations and,
in particular, allows discrete and (conceptually) continuous as well as censored or truncated
observations C. For a discrete response yk we have ȳ = yk and

¯
y = yk−1 such that L(h |

Y = yk) = fY (yk | h) = FZ(h(ȳ)) − FZ(h(
¯
y)). For absolutely continuous random variables

Y we always practically observe an imprecise datum (
¯
y, ȳ] ¢ R and, for short intervals (

¯
y, ȳ],

approximate the exact likelihood L(h | Y ∈ (
¯
y, ȳ]) by the term (ȳ −

¯
y)fY (y | h) or simply

fY (y | h) with y = (
¯
y + ȳ)/2 (Lindsey 1999). This approximation only works for relatively

precise measurements, i.e. short intervals. If longer intervals are observed, one speaks of
“censoring” and relies on the exact definition of the likelihood contribution instead of using the
above approximation (Klein and Moeschberger 2003). In summary, the likelihood contribution
of a conceptually “exact continuous” or left, right or interval-censored continuous or discrete
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observation (
¯
y, ȳ] is given by

L(h | Y ∈ (
¯
y, ȳ])



















≈ fZ(h(y))h′(y) y = (
¯
y + ȳ)/2 ∈ Ξ “‘exact continuous”’

= 1 − FZ(h(
¯
y)) y ∈ (

¯
y, ∞) ∩ Ξ ‘right-censored’

= FZ(h(ȳ)) y ∈ (−∞, ȳ] ∩ Ξ ‘left-censored’
= FZ(h(ȳ)) − FZ(h(

¯
y)) y ∈ (

¯
y, ȳ] ∩ Ξ ‘interval-censored’,

under the assumption of random censoring. The likelihood is more complex under dependent
censoring (Klein and Moeschberger 2003) but this is is not covered by the mlt implementation.
The likelihood contribution L(h | Y ∈ (yk, yk−1]) of an ordered factor in category yk is
equivalent to the term L(h | Y ∈ (

¯
y, ȳ]) contributed by an interval-censored observation (

¯
y, ȳ]

when category yk was defined by the interval (
¯
y, ȳ]. Thus, the expression FZ(h(ȳ))−FZ(h(

¯
y))

for the likelihood contribution reflects the equivalence of interval-censoring and categorisation
at corresponding cut-off points.

For truncated observations in the interval (yl, yr] ¢ Ξ, the above likelihood contribution is
defined in terms of the distribution function conditional on the truncation

FY (y | Y ∈ (yl, yr]) = FZ(h(y) | Y ∈ (yl, yr]) =
FZ(h(y))

FZ(h(yr)) − FZ(h(yl))
∀y ∈ (yl, yr]

and thus the likelihood contribution changes to (Klein and Moeschberger 2003)

L(h | Y ∈ (
¯
y, ȳ])

FZ(h(yr)) − FZ(h(yl))
=

L(h | Y ∈ (
¯
y, ȳ])

L(h | Y ∈ (yl, yr])
when yl <

¯
y < ȳ f yr.

It is important to note that the likelihood is always defined in terms of a distribution function
(Lindsey 1999) and it therefore makes sense to directly model the distribution function of
interest. The ability to uniquely characterise this distribution function by the transformation
function h gives rise to the following definition of an estimator ĥN . For an independent sample
of possibly censored or truncated observations C1, . . . , CN from PY the estimator

ĥN := arg max
h̃∈H

N
∑

i=1

log(L(h̃ | Y ∈ Ci))

is called the most likely transformation (MLT). In mlt, we parameterise the transformation
function h(y) as a linear function of its basis-transformed argument y using a basis function
a : Ξ → R

P such that h(y) = a(y)¦ϑ, ϑ ∈ R
P . The choice of the basis function a is problem-

specific, practically relevant examples were discussed in Section 2. In the conditional case
we use the basis c(y, x) instead of a(y). The likelihood L only requires evaluation of h, and
only an approximation thereof using the Lebesgue density of “exact continuous” observations
makes the evaluation of the first derivative of h(y) with respect to y necessary. In this case,
the derivative with respect to y is given by h′(y) = a′(y)¦ϑ and we assume that a′ is available.
In the following we write h = a¦ϑ and h′ = a′¦ϑ for the transformation function and its first
derivative omitting the argument y and we assume that both functions are bounded away
from −∞ and ∞. For the basis functions discussed in Section 2, the constraint ϑ ∈ Θ can be
written as Cϑ g 0, thus the solution to the optimisation problem

ϑ̂N := arg max
Cϑg0

N
∑

i=1

log(L(a¦ϑ | Y ∈ Ci))
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is the maximum likelihood estimator. The plug-in estimator for the most likely transformation
is ĥN := a¦ϑ̂N .

The score contribution of an “exact continuous” observation y = (
¯
y + ȳ)/2 from an absolutely

continuous distribution is approximated by the gradient of the log-density

s(ϑ | Y ∈ (
¯
y, ȳ]) ≈

∂ log(fY (y | ϑ))

∂ϑ
=

∂ log(fZ(a(y)¦ϑ))) + log(a′(y)¦
ϑ)

∂ϑ

= a(y)
f ′

Z(a(y)¦ϑ)

fZ(a(y)¦ϑ)
+

a′(y)

a′(y)¦
ϑ

.

For an interval-censored or discrete observation
¯
y and ȳ (the constant terms FZ(a(±∞)¦ϑ) =

FZ(±∞) = 1 or 0 vanish) the score contribution is

s(ϑ | Y ∈ (
¯
y, ȳ]) =

∂ log(L(a¦ϑ | Y ∈ (
¯
y, ȳ]))

∂ϑ

=
∂ log(FZ(a(ȳ)¦ϑ) − FZ(a(

¯
y)¦ϑ))

∂ϑ

=
fZ(a(ȳ)¦ϑ)a(ȳ) − fZ(a(

¯
y)¦ϑ)a(

¯
y)

FZ(a(ȳ)¦ϑ) − FZ(a(
¯
y)¦ϑ)

.

For a truncated observation, the score function is s(ϑ | Y ∈ (
¯
y, ȳ]) − s(ϑ | Y ∈ (yl, yr]).

The mlt() function uses the convenience interfaces auglag() for augmented Lagrangian
minimization (Varadhan 2023, package alabama) and BB() for spectral projected gradients
implemented in the spg() function of package BB (Varadhan and Gilbert 2009, 2019) for
maximising this log-likelihood. Starting values are obtained from an estimate of the un-
conditional distribution function P(Y f y) (for example, the empirical cumulative distribu-
tion function, a Kaplan-Meier or Turnbull estimate) via a (constrained) linear regression of
zi = F −1

Z (P(Y f yi)) on the design matrix of the transformation model. Optionally, columns
of the underlying model matrices are scaled to [−1, 1] (argument scale = TRUE to mlt())
which leads to considerable faster optimisation in many cases.

4. Transformation Analysis

Based on the maximum likelihood estimator ϑ̂N and the most likely transformation is ĥN ,
transformation models can be analysed on different scales. Plug-in estimators for the dis-
tribution and cumulative hazard functions are given by F̂Y,N = FZ ◦ a¦ϑ̂N and Λ̂Y,N =

− log(1−F̂Y,N ). For a continuous model, the density is given by f̂Y,N = fZ◦a¦ϑ̂N ×a′¦ϑ̂N and
the quantile function is obtained by numerical inversion of the distribution function. For a dis-
crete model we get f̂Y,N (yk) = FZ(a(yk)¦ϑ̂N ) − FZ(a(yk−1)¦ϑ̂N ) (with FZ(a(y0)¦ϑ̂N ) := 0

and FZ(a(yK)¦ϑ̂N ) := 1). The hazard function is λ̂Y,N = f̂Y,N /(1 − F̂Y,N ).

The predict() method for mlt objects is the main user interface for the evaluation of these
functions, the type of which is selected by its type argument. Conceptually, all functions
are evaluated on the support of Y , i.e. on a grid y1, . . . , yK (arguments q for the vector of
grid points or K for the number of grid point to be generated) for continuous responses for
observations with explanatory variables as given in the newdata argument. That means the
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transformation function

ĥN (yk | xi) = c(yk, xi)
¦ϑ̂N , k = 1, . . . , K; i = 1, . . . , Nnew

is evaluated for potentially large numbers K and Nnew by predict() and is returned as a
K × Nnew matrix (columns correspond to observations). Because in the most general case of
a conditional distribution function the transformation function is

ĥN (yk | xi) = (a1(yk)¦ ¹ (b1(xi)
¦, . . . , b(xi)

¦
J ), −b(xi)

¦
shift)

¦ϑ̂N

with A being the matrix with rows a1(yk) for k = 1, . . . , K, B the matrix with rows
(−b1(xi)

¦, . . . , b(xi)
¦
J ) for i = 1, . . . , Nnew and Bshift the matrix with rows b(xi)

¦ for i =
1, . . . , Nnew, the transformation function can be simultaneously evaluated for all k = 1, . . . , K
and i = 1, . . . , Nnew as

(A ¹ B | 1K ¹ Bshift)
¦ϑ̂N .

This product is in the special form of an array model (Currie et al. 2006) and is computed
very quickly by mlt using the tricks described by Currie et al. (2006).

5. Classical Likelihood Inference

Because the problem of estimating an unknown distribution function is embedded in the
maximum likelihood framework in mlt, the asymptotic analysis benefits from standard results
on the asymptotic behaviour of maximum likelihood estimators. The contribution of an
“exact continuous” observation y from an absolutely continuous distribution to the Fisher
information is approximately

F (ϑ | Y ∈ (
¯
y, ȳ]) ≈ −

∂2 log(fY (y | ϑ))

∂ϑ∂ϑ¦

= −



a(y)a(y)¦







f ′′
Z(a(y)¦ϑ)

fZ(a(y)¦ϑ)
−

[

f ′
Z(a(y)¦ϑ)

fZ(a(y)¦ϑ)

]2






−
a′(y)a′(y)¦

(a′(y)¦
ϑ)2



 .

For a censored or discrete observation, we have the following contribution to the Fisher
information

F (ϑ | Y ∈ (
¯
y, ȳ]) = −

∂2 log(L(a¦ϑ | Y ∈ (
¯
y, ȳ]))

∂ϑ∂ϑ¦

= −

{

f ′
Z(a(ȳ)¦ϑ)a(ȳ)a(ȳ)¦ − f ′

Z(a(
¯
y)¦ϑ)a(

¯
y)a(

¯
y)¦

FZ(a(ȳ)¦ϑ) − FZ(a(
¯
y)¦ϑ)

−
[fZ(a(ȳ)¦ϑ)a(ȳ) − fZ(a(

¯
y)¦ϑ)a(

¯
y)]

[FZ(a(ȳ)¦ϑ) − FZ(a(
¯
y)¦ϑ]2

×

[fZ(a(ȳ)¦ϑ)a(ȳ)¦ − fZ(a(
¯
y)¦ϑ)a(

¯
y)¦]

}

.

For a truncated observation, the Fisher information is given by F (ϑ | Y ∈ (
¯
y, ȳ])−F (ϑ | Y ∈

(yl, yr]).

Based on these results, we can construct asymptotically valid confidence intervals and confi-
dence bands for the conditional distribution function from confidence intervals and bands for
the linear functions a¦ϑ.
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Categorical Data Analysis: Chinese Survey (Cont’d) For the proportional odds
model for happiness given age and income, we compare the score function (using the estfun()

method from package sandwich, Zeileis 2004; Zeileis and Lumley 2024) by their relative change

R> sc_polr <- estfun(polr_CHFLS_2)

R> sc_mlt <- -estfun(mlt_CHFLS_2)[,c(4, 5, 1:3)]

R> summary((sc_polr - sc_mlt) /

+ pmax(sqrt(.Machine$double.eps), sc_mlt))

R_age R_income Very unhappy|Not too happy

Min. :-6484.9 Min. :-168809.6 Min. : 0.00

1st Qu.:-1296.4 1st Qu.: -11288.0 1st Qu.: 0.00

Median : -231.0 Median : -575.6 Median : 0.00

Mean : -710.6 Mean : -2095.6 Mean : 13.12

3rd Qu.: 0.0 3rd Qu.: 0.0 3rd Qu.: 0.00

Max. : 6113.3 Max. :1421703.1 Max. :115.78

Not too happy|Somewhat happy Somewhat happy|Very happy

Min. :-42.139 Min. :-131.370

1st Qu.:-21.276 1st Qu.: 0.000

Median : -6.376 Median : 0.000

Mean :-10.019 Mean : 4.493

3rd Qu.: 0.000 3rd Qu.: 0.000

Max. : 32.054 Max. : 67.507

and the standard errors of the regression coefficients

R> RC(polr = sqrt(diag(vcov(polr_CHFLS_2))),

+ mlt = sqrt(diag(vcov(mlt_CHFLS_2)))[c(4, 5, 1:3)])

polr mlt (polr - mlt)/mlt

R_age 5.6840e-03 5.6845e-03 -0.00007372

R_income 8.5091e-05 7.0993e-05 0.19858100

Very unhappy|Not too happy 3.5362e-01 3.5227e-01 0.00385550

Not too happy|Somewhat happy 2.4196e-01 2.4005e-01 0.00797315

Somewhat happy|Very happy 2.3724e-01 2.3550e-01 0.00739456

The positive effect of income is “significant” by standard measures (the classical coefficient
table was obtained using cftest() from package multcomp, Hothorn et al. 2008, 2024b)

R> cftest(polr_CHFLS_2)

Simultaneous Tests for General Linear Hypotheses

Fit: polr(formula = R_happy ~ R_age + R_income, data = CHFLS)

Linear Hypotheses:
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Estimate Std. Error z value Pr(>|z|)

R_age == 0 -6.279e-03 5.684e-03 -1.105 0.26930

R_income == 0 2.350e-04 8.509e-05 2.762 0.00575 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Univariate p values reported)

R> cftest(mlt_CHFLS_2, parm = names(coef(polr_CHFLS_2)))

Simultaneous Tests for General Linear Hypotheses

Fit: mlt(model = ctm_CHFLS_2, data = CHFLS, scale = TRUE)

Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|)

R_age == 0 -6.279e-03 5.684e-03 -1.105 0.269326

R_income == 0 2.350e-04 7.099e-05 3.310 0.000932 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Univariate p values reported)

Survival Analysis: GBSG-2 Trial (Cont’d) For the “classical” Cox model mlt_GBSG2_1,
the standard errors of all three methods applied (coxph(), mlt(), flexsurvspline()) are
more or less identical

R> cf <- coef(coxph_GBSG2_1)

R> RC(coxph = sqrt(diag(vcov(coxph_GBSG2_1))),

+ mlt = sqrt(diag(vcov(mlt_GBSG2_1)))[names(cf)],

+ fss = sqrt(diag(vcov(fss_GBSG2_1)))[names(cf)])

coxph mlt fss (coxph - mlt)/mlt

horThyes 0.12907328 0.12937336 0.1290350 -0.00231954

age 0.00930024 0.00931233 0.0088418 -0.00129758

menostatPost 0.18347998 0.18368050 0.1834060 -0.00109164

tsize 0.00393906 0.00393833 0.0031478 0.00018401

tgrade.L 0.18984428 0.18989980 0.1896434 -0.00029239

tgrade.Q 0.12196457 0.12201979 0.1218439 -0.00045250

pnodes 0.00744800 0.00741501 0.0031478 0.00444864

progrec 0.00057348 0.00057401 0.0031478 -0.00091413

estrec 0.00045037 0.00045155 0.0031478 -0.00261472

(fss - mlt)/mlt

horThyes -0.0026157

age -0.0505321

menostatPost -0.0014942

tsize -0.2007278
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tgrade.L -0.0013503

tgrade.Q -0.0014413

pnodes -0.5754830

progrec 4.4838856

estrec 5.9711304

As a consequence, the corresponding coefficient tables, here produced using cftest(), are
also rather similar

R> cftest(coxph_GBSG2_1)

Simultaneous Tests for General Linear Hypotheses

Fit: coxph(formula = fm_GBSG2, data = GBSG2, ties = "breslow")

Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|)

horThyes == 0 -0.3462416 0.1290733 -2.683 0.00731 **

age == 0 -0.0094534 0.0093002 -1.016 0.30941

menostatPost == 0 0.2581565 0.1834800 1.407 0.15943

tsize == 0 0.0077983 0.0039391 1.980 0.04773 *

tgrade.L == 0 0.5510838 0.1898443 2.903 0.00370 **

tgrade.Q == 0 -0.2011060 0.1219646 -1.649 0.09917 .

pnodes == 0 0.0487818 0.0074480 6.550 5.77e-11 ***

progrec == 0 -0.0022175 0.0005735 -3.867 0.00011 ***

estrec == 0 0.0001978 0.0004504 0.439 0.66049

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Univariate p values reported)

R> cftest(mlt_GBSG2_1, parm = names(cf))

Simultaneous Tests for General Linear Hypotheses

Fit: mlt(model = ctm_GBSG2_1, data = GBSG2, scale = TRUE)

Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|)

horThyes == 0 -0.3487079 0.1293734 -2.695 0.007031 **

age == 0 -0.0099320 0.0093123 -1.067 0.286178

menostatPost == 0 0.2676427 0.1836805 1.457 0.145086

tsize == 0 0.0077660 0.0039383 1.972 0.048622 *

tgrade.L == 0 0.5602231 0.1898998 2.950 0.003177 **

tgrade.Q == 0 -0.2019424 0.1220198 -1.655 0.097925 .

pnodes == 0 0.0487620 0.0074150 6.576 4.83e-11 ***
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progrec == 0 -0.0022105 0.0005740 -3.851 0.000118 ***

estrec == 0 0.0001830 0.0004515 0.405 0.685294

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Univariate p values reported)

R> cftest(fss_GBSG2_1, parm = names(cf))

Simultaneous Tests for General Linear Hypotheses

Fit: flexsurvspline(formula = fm_GBSG2, data = GBSG2, k = 9, bknots = kn,

scale = "hazard")

Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|)

horThyes == 0 -0.3475867 0.1290350 -2.694 0.00707 **

age == 0 -0.0096026 0.0088418 -1.086 0.27745

menostatPost == 0 0.2654731 0.1834060 1.447 0.14777

tsize == 0 0.0078322 0.0031478 2.488 0.01284 *

tgrade.L == 0 0.5566387 0.1896434 2.935 0.00333 **

tgrade.Q == 0 -0.2015977 0.1218439 -1.655 0.09801 .

pnodes == 0 0.0488354 0.0031478 15.514 < 2e-16 ***

progrec == 0 -0.0022041 0.0031478 -0.700 0.48379

estrec == 0 0.0001843 0.0031478 0.059 0.95331

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Univariate p values reported)

Density Estimation: Geyser Data (Cont’d) A relatively simple method for the con-
struction of asymptotic confidence bands is based on the multivariate joint normal distribution
of the model coefficients ϑ̂N . A confidence band for the unconditional transformation func-
tion of waiting times is derived from simultaneous confidence intervals for the linear function
Aϑ̂N as implemented in package multcomp. Here A is the matrix of Bernstein basis functions
evaluated on a grid of K waiting times y1, . . . , yK . The quantile adjusted for multiplicity is
then used on a finer grid of cheat values for plotting purposes

R> cb_w <- confband(mlt_w, newdata = data.frame(1), K = 20, cheat = 100)

The result is shown in Figure 14 on the scale of the transformation and distribution function.

6. Simulation-based Likelihood Inference

The fully specified probabilistic model (FZ , a, ϑ̂N ) allows sampling from the distribution P̂Y .
For estimated parameters ϑ̂N , this model-based or “parametric” bootstrap from P̂Y can be

implemented by the probability integral transform, i.e. Z1, . . . , ZN
iid
∼ PZ is drawn and then
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Figure 14: Old Faithful Geyser. Estimated transformation (left) and distribution functions
(right) with asymptotic confidence bands.

Y ⋆
i = inf{y ∈ Ξ | a(y)¦ϑ̂N g Zi} is determined by numerical inversion of the distribution

function. The simulation() method for mlt objects first computes the distribution function
over a grid of K response values, draws nsim times nrow(newdata) random samples from PZ

and returns the intervals yk < Y ⋆
i < yk+1 (interpolate = FALSE) or a linear interpolation

thereof (interpolate = TRUE).

Density Estimation: Geyser Data (Cont’d) The model-based bootstrap analogue of
the confidence band for the distribution function of waiting times (Figure 14, right panel)
based on 100 bootstrap samples is generated from the following code. First, 100 samples of
size N = 299 are drawn from the fitted unconditional model mlt_w for waiting times. For
each sample, the model ctm_w is refitted, using the parameters ϑ̂N as starting values (theta)
to speed-up the computations. Next, the log-likelihood ratio

N
∑

i=1

log(L(a¦ϑ̂⋆
N | Y ⋆

i ) −
N

∑

i=1

log(L(a¦ϑ̂N | Y ⋆
i )

is computed for each sample. Last, distribution and density functions are obtained for each
of the models in this small loop

R> new_w <- simulate(mlt_w, nsim = 100)

R> llr <- numeric(length(new_w))

R> pdist <- vector(mode = "list", length = length(new_w))

R> pdens <- vector(mode = "list", length = length(new_w))

R> ngeyser <- geyser
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Figure 15: Old Faithful Geyser. Model-based bootstrap for distribution (left, the blue area
depicts the asymptotic confidence band from Figure 14) and density (right) function for the
unconditional transformation model parameterised in terms of a Bernstein polynomials of
order 8.

R> q <- mkgrid(var_w, 100)[[1]]

R> for (i in 1:length(new_w)) {

+ ngeyser$waiting <- new_w[[i]]

+ mlt_i <- mlt(ctm_w, data = ngeyser, scale = TRUE,

+ theta = coef(mlt_w))

+ llr[[i]] <- logLik(mlt_i) - logLik(mlt_i, parm = coef(mlt_w))

+ pdist[[i]] <- predict(mlt_i, newdata = data.frame(1),

+ type = "distribution", q = q)

+ pdens[[i]] <- predict(mlt_i, newdata = data.frame(1),

+ type = "density", q = q)

+ }

The distribution and density functions corresponding to log-likelihood ratios less then the
95% quantile of the 100 log-likelihood ratios, i.e. after removal of five extreme curves, are
plotted in Figure 15 and can be interpreted as a band around the distribution and density
function. The asymptotic band for the distribution function nicely fits the band obtained
from the bootstrap sample but the latter does not deteriorate for probabilities close to zero
and one.

In the conditional case, nsim samples from the N conditional distributions P̂Y |X=xi
, i =

1, . . . , N are drawn by simulate().



Hothorn 45

7. Summary

The computational framework implemented in package mlt allows fitting of a large class of
transformation models. Many established R add-on packages implement special cases, mostly
in the survival analysis context. The most prominent one is the survival package (Therneau
and Grambsch 2000; Therneau 2024) with partial likelihood estimation of the Cox model in
coxph() and parametric linear transformation models in survreg(). Parametric proportional
hazards (phreg()) and accelerated failure time models are also available from package eha

(Broström 2024). The results obtained using these functions are practically identical to those
obtained from the unified implementation of transformation models in mlt as shown in the
various examples presented in Section 2. Other packages offer estimation of the Cox model
for interval-censored responses, for example coxinterval (Boruvka and Cook 2015), MIICD

(Delord 2017) and ICsurv (McMahan and Wang 2022). No special treatment of this situation
is necessary in mlt as the likelihood maximised by mlt() allows arbitrary schemes of random
censoring and also truncation.

Alternative likelihood approaches to transformation models often parameterise the hazard
or log-hazard function by some spline, including the R add-on packages polspline (Kooper-
berg 2023b), logspline (Kooperberg 2023a), bshazard (Paola Rebora and Reilly 2018) and
gss (Gu 2014, 2023). Packages muhaz (Hess and Gentleman 2021) and ICE (Braun 2013)
implement kernel smoothing for hazard function estimation, the latter package allows for
interval-censored responses. The penalised maximum likelihood estimation procedure for si-
multaneous estimation of the baseline hazard function and the regression coefficients in a
Cox model is available from package survivalMPL (Couturier et al. 2022). Estimation of the
unconstrained log-hazard function is theoretically attractive but too erratic estimates have to
be dealt with by some form of penalisation. A direct parameterisation of the transformation
function, i.e. the log-cumulative baseline hazard in the Cox model, only requires monotone
increasing functions to be fitted. Thus, penalisation is not necessary but one has to deal with
a constrained problem. Package mlt follows the latter approach.

Based on the estimation equation procedure by Chen et al. (2002), TransModel (Zhou et al.
2022) implements continuous time proportional hazards and proportional odds linear trans-
formation models. Time-varying coefficients can be estimated using packages dynsurv (Wang
et al. 2023) and timereg (Scheike and Martinussen 2006; Scheike and Zhang 2011; Scheike
et al. 2023) Discrete proportional odds or proportional hazards models for the analysis of or-
dered categorical responses are implemented in packages MASS (Venables and Ripley 2002;
Ripley and Venables 2024), ordinal (Christensen 2023) and VGAM (Yee 2010, 2024).

Maximum likelihood estimators for a fair share of the models implemented in these established
packages can be re-implemented using the computational infrastructure offered by package
mlt. The availability of (at least) two independent implementations allows package developers
to validate their implementation. In fact, some errors in earlier development versions of mlt

could be detected by comparing model outputs. Because the implementation of maximum
likelihood estimation for conditional transformation models presented in this paper relies on
a rather dense code base (200 lines of pure R code in variables, 860 lines in basefun and
1450 lines in mlt, all convenience functions and user interfaces included), the likelihood of
implementation errors is smaller compared the likelihood of errors in any of the plethora of
alternative implementations of special linear transformation models (but not zero, of course).

The modelling abilities of mlt go beyond what is currently available in R. Maybe the practically
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most interesting example is distribution regression, i.e. transformation models with response-
varying regression coefficients. The only special case available in R we are aware of are Cox
models with time-varying effects in packages dynsurv and timereg. For other models, such
as the distribution regression analysis of the Boston Housing data presented here, or for non-
proportional odds or non-proportional hazards models, implementations are lacking. Our
analysis of the bird counts example is novel also from a modelling point of view as linear
transformation models for count data are still waiting to be kissed awake.

One unique feature of mlt is the strict separation of model specification (using ctm()) and
model estimation (using mlt()) allowing computations on unfitted models. Models are speci-
fied by combinations of basis functions instead of using the rather restrictive formula language.
In addition, model coefficients can be altered by the user, for example for computing condi-
tional distribution or density functions or for the evaluation of the log-likelihood at arbitrary
values of the parameters. The simulate() method for mlt objects can always be used to
draw samples from fitted (or unfitted) transformation models. Thus, the implementation of
parametric bootstrap procedures is a straightforward exercise.

The very flexible and powerful user interface of mlt will, however, be incomprehensible for
most of its potential users. Because transformation models seldomly receive the attention they
deserve in statistics courses, the unorthodox presentation of regression models ignoring the
fences between the traditionally compartmentalised fields of “regression analysis”, “survival
analysis”, or “categorical data analysis” in this documentation of mlt will likely also confuse
many statisticians, let alone data or subject-matter scientists. Current efforts concentrate on
the implementation of convenience interfaces, i.e. higher-level user interfaces for special forms
of transformation models, which resemble the traditional notational and naming conventions
from the statistical modelling literature. Standard formula-based interfaces to the underlying
mlt implementation of Cox models, parametric survival models, models for ordered categorical
data, normal linear and non-normal linear models (including Colr() implementing continuous
outcome logistic regression, Lohse et al. 2017) are available in package tram (Hothorn et al.
2024a). The corresponding package vignette demonstrates how some of the model outputs
presented in this paper can be obtained in simpler ways.

The core functionality provided by mlt was instrumental in developing statistical learning
procedures based on transformation models. Transformation trees and corresponding trans-
formation forests were introduced by Hothorn and Zeileis (2017) and implemented in pack-
age trtf; an application to conditional distributions for body mass indices was described by
Hothorn (2018) and novel survival forests have been evaluated by Korepanova et al. (2019).
Two different gradient boosting schemes allowing complex models to be built in the trans-
formation modelling framework were proposed by Hothorn (2019) and are implemented in
package tbm.
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Appendix

A. The variables Package

The variables package (Hothorn 2021) offers a small collection of classes and methods for
specifying and computing on abstract variable descriptions. The main purpose is to allow
querying properties of variables without having access to observations. A variable description
allows to extract the name (variable.name()), description (desc()) and unit (unit()) of the
variable along with the support (support()) and possible bounds (bounds()) of the measure-
ments. The mkgrid() method generates a grid of observations from the variable description.
The package differentiates between factors, ordered factors, discrete, and continuous numeric
variables.

A.1. Unordered Factors

We use eye color as an example of an unordered factor. The corresponding variable description
is defined by the name, description and levels of this factor

R> f_eye <- factor_var("eye", desc = "eye color",

+ levels = c("blue", "brown", "green", "grey", "mixed"))

The properties of this factor are

R> variable.names(f_eye)

[1] "eye"

R> desc(f_eye)

[1] "eye color"

R> variables::unit(f_eye)

[1] NA

R> support(f_eye)

$eye

[1] blue brown green grey mixed

Levels: blue brown green grey mixed

R> bounds(f_eye)

$eye

[1] NA
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R> is.bounded(f_eye)

[1] TRUE

and we can generate values, i.e. an instance of this factor with unique levels, via

R> mkgrid(f_eye)

$eye

[1] blue brown green grey mixed

Levels: blue brown green grey mixed

A.2. Ordered Factors

An ordered factor, temperature in categories is used here as an example, is defined as in the
unordered case

R> o_temp <- ordered_var("temp", desc = "temperature",

+ levels = c("cold", "lukewarm", "warm", "hot"))

and the only difference is that explicit bounds are known

R> variable.names(o_temp)

[1] "temp"

R> desc(o_temp)

[1] "temperature"

R> variables::unit(o_temp)

[1] NA

R> support(o_temp)

$temp

[1] cold lukewarm warm hot

Levels: cold < lukewarm < warm < hot

R> bounds(o_temp)

$temp

[1] cold hot

Levels: cold < lukewarm < warm < hot
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R> is.bounded(o_temp)

[1] TRUE

R> mkgrid(o_temp)

$temp

[1] cold lukewarm warm hot

Levels: cold < lukewarm < warm < hot

A.3. Discrete Numeric Variables

Discrete numeric variables are defined by numeric_var() with integer-valued support argu-
ment, here using age of a patient as example

R> v_age <- numeric_var("age", desc = "age of patient",

+ unit = "years", support = 25:75)

The variable is bounded with finite support

R> variable.names(v_age)

[1] "age"

R> desc(v_age)

[1] "age of patient"

R> variables::unit(v_age)

[1] "years"

R> support(v_age)

$age

[1] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

[24] 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

[47] 71 72 73 74 75

R> bounds(v_age)

$age

[1] 25 75

R> is.bounded(v_age)
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[1] TRUE

and the support is returned in

R> mkgrid(v_age)

$age

[1] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

[24] 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

[47] 71 72 73 74 75

A.4. Continuous Numeric Variables

For conceptually continuous variables the support argument is a double vector with two
elements representing an interval acting as the support for any basis function to be defined
later. The variable may or may not be bounded (±∞ is allowed). For generating equidistant
grids, support + add is used for unbounded variables or the corresponding finite boundaries
if add is zero. Daytime temperature at Zurich, for example, could be presented as

R> v_temp <- numeric_var("ztemp", desc = "Zurich daytime temperature",

+ unit = "Celsius", support = c(-10.0, 35.0),

+ add = c(-5, 5), bounds = c(-273.15, Inf))

Basis functions for this variable shall be defined for temperatures between −10 and 35 degrees
Celsius

R> variable.names(v_temp)

[1] "ztemp"

R> desc(v_temp)

[1] "Zurich daytime temperature"

R> variables::unit(v_temp)

[1] "Celsius"

R> support(v_temp)

$ztemp

[1] -10 35

R> bounds(v_temp)

$ztemp

[1] -273.15 Inf
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R> is.bounded(v_temp)

[1] TRUE

One might be interested in evaluating model predictions outside support as defined by the
add argument, so mkgrid() generates a equidistant grid between −15 and 40 degrees Celsius

R> mkgrid(v_temp, n = 20)

$ztemp

[1] -15.0000000 -12.1052632 -9.2105263 -6.3157895 -3.4210526

[6] -0.5263158 2.3684211 5.2631579 8.1578947 11.0526316

[11] 13.9473684 16.8421053 19.7368421 22.6315789 25.5263158

[16] 28.4210526 31.3157895 34.2105263 37.1052632 40.0000000

A.5. Multiple Variables

We can join multiple variable descriptions via c()

R> vars <- c(f_eye, o_temp, v_age, v_temp)

and all methods discussed above work accordingly

R> variable.names(vars)

eye temp age ztemp

"eye" "temp" "age" "ztemp"

R> desc(vars)

eye temp

"eye color" "temperature"

age ztemp

"age of patient" "Zurich daytime temperature"

R> variables::unit(vars)

eye temp age ztemp

NA NA "years" "Celsius"

R> support(vars)

$eye

[1] blue brown green grey mixed

Levels: blue brown green grey mixed
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$temp

[1] cold lukewarm warm hot

Levels: cold < lukewarm < warm < hot

$age

[1] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

[24] 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

[47] 71 72 73 74 75

$ztemp

[1] -10 35

R> bounds(vars)

$eye

[1] NA

$temp

[1] cold hot

Levels: cold < lukewarm < warm < hot

$age

[1] 25 75

$ztemp

[1] -273.15 Inf

R> is.bounded(vars)

eye temp age ztemp

TRUE TRUE TRUE TRUE

R> mkgrid(vars, n = 20)

$eye

[1] blue brown green grey mixed

Levels: blue brown green grey mixed

$temp

[1] cold lukewarm warm hot

Levels: cold < lukewarm < warm < hot

$age

[1] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

[24] 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

[47] 71 72 73 74 75
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$ztemp

[1] -15.0000000 -12.1052632 -9.2105263 -6.3157895 -3.4210526

[6] -0.5263158 2.3684211 5.2631579 8.1578947 11.0526316

[11] 13.9473684 16.8421053 19.7368421 22.6315789 25.5263158

[16] 28.4210526 31.3157895 34.2105263 37.1052632 40.0000000

Calling

R> nd <- expand.grid(mkgrid(vars))

generates a data.frame with all possible values of the variables and all combinations thereof.
The generic as.vars() takes a data frame of observations as input and derives abstract
variable descriptions using the available information. The generic function check() returns
TRUE if data matches the abstract description

R> check(vars, data = nd)

[1] TRUE

B. The basefun Package

The basefun package (Hothorn 2024a) implements Bernstein, Legendre, log and polynomial
basis functions. In addition, facilities for treating arbitrary model matrices as basis functions
evaluated on some data are available. Basis functions can be joined column-wise using c()

or the box product can be generated using b(). The definition of basis functions does not
require any actual observations, only variable descriptions (see Appendix A) are necessary.
Each basis offers model.matrix() and predict() methods. We illustrate how one can set-up
some of these basis functions in the following sections.

B.1. Polynomial Basis

For some positive continuous variable x we want to deal with the polynomial α + β1x + β3x3

and first set-up a variable description (see Appendix A) and the basis function (we set-up a
basis of order three ommiting the quadratic term)

R> xvar <- numeric_var("x", support = c(0.1, pi), bounds= c(0, Inf))

R> x <- as.data.frame(mkgrid(xvar, n = 20))

R> class(pb <- polynomial_basis(xvar, coef = c(TRUE, TRUE, FALSE, TRUE)))

[1] "polynomial_basis" "basis" "function"

The basis function pb is a function, therefore we can evaluate the basis as

R> head(pb(x))
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(Intercept) x x^2 x^3

[1,] 1 0.0000000 0 0.000000000

[2,] 1 0.1653470 0 0.004520524

[3,] 1 0.3306940 0 0.036164195

[4,] 1 0.4960409 0 0.122054158

[5,] 1 0.6613879 0 0.289313560

[6,] 1 0.8267349 0 0.565065547

or, equivalently, using the corresponding model.matrix() method (which is preferred)

R> head(model.matrix(pb, data = x))

(Intercept) x x^2 x^3

[1,] 1 0.0000000 0 0.000000000

[2,] 1 0.1653470 0 0.004520524

[3,] 1 0.3306940 0 0.036164195

[4,] 1 0.4960409 0 0.122054158

[5,] 1 0.6613879 0 0.289313560

[6,] 1 0.8267349 0 0.565065547

Evaluating the polynomial for some coefficients is done by the predict() method

R> predict(pb, newdata = x, coef = c(1, 2, 0, 1.75))

[1] 1.000000 1.338605 1.724675 2.205677 2.829075 3.642335 4.692922

[8] 6.028303 7.695942 9.743305 12.217857 15.167065 18.638393 22.679308

[15] 27.337274 32.659757 38.694222 45.488136 53.088963 61.544169

which also allows derivatives to be computed

R> predict(pb, newdata = x, coef = c(1, 2, 0, 1.75), deriv = c(x = 1L))

[1] 2.000000 2.143533 2.574132 3.291797 4.296528 5.588326 7.167189

[8] 9.033118 11.186114 13.626175 16.353303 19.367496 22.668756 26.257082

[15] 30.132473 34.294931 38.744455 43.481045 48.504701 53.815423

B.2. Logarithmic Basis

The monotone increasing logarithmic basis ϑ1 + ϑ2 log(x) being subject to ϑ2 > 0 is defined
as

R> class(lb <- log_basis(xvar, ui = "increasing"))

[1] "log_basis" "basis" "function"

R> head(X <- model.matrix(lb, data = x))
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(Intercept) log(x)

[1,] 1 -36.0436534

[2,] 1 -1.7997091

[3,] 1 -1.1065619

[4,] 1 -0.7010968

[5,] 1 -0.4134147

[6,] 1 -0.1902712

The model matrix contains a constraint attribute

R> attr(X, "constraint")

$ui

[,1] [,2]

[1,] 0 1

$ci

[1] 0

where the linear constraints Aϑ ≥ m are represented by a matrix A (ui) and a vector m

(ci). For ϑ = (1, 2) the function and its derivative can be computed as

R> predict(lb, newdata = x, coef = c(1, 2))

[1] -71.0873068 -2.5994182 -1.2131238 -0.4021936 0.1731705

[6] 0.6194576 0.9841008 1.2924021 1.5594649 1.7950310

[11] 2.0057520 2.1963724 2.3703951 2.5304805 2.6786965

[16] 2.8166822 2.9457593 3.0670085 3.1813253 3.2894598

R> predict(lb, newdata = x, coef = c(1, 2), deriv = c(x = 1L))

[1] 9.007199e+15 1.209578e+01 6.047888e+00 4.031925e+00 3.023944e+00

[6] 2.419155e+00 2.015963e+00 1.727968e+00 1.511972e+00 1.343975e+00

[11] 1.209578e+00 1.099616e+00 1.007981e+00 9.304443e-01 8.639840e-01

[16] 8.063850e-01 7.559860e-01 7.115162e-01 6.719875e-01 6.366198e-01

B.3. Bernstein Basis

A monotone increasing Bernstein polynomial aBs,3 can be defined and evaluated as

R> class(bb <- Bernstein_basis(xvar, order = 3, ui = "increasing"))

[1] "Bernstein_basis" "basis" "function"

R> head(X <- model.matrix(bb, data = x))
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Bs1(x) Bs2(x) Bs3(x) Bs4(x)

[1,] 1.0986325 -0.09863254 0.000000000 0.000000e+00

[2,] 0.9369214 0.06171364 0.001354996 9.916843e-06

[3,] 0.7892824 0.19433218 0.015949084 4.363204e-04

[4,] 0.6580299 0.29552260 0.044239941 2.207583e-03

[5,] 0.5421999 0.36817664 0.083335831 6.287617e-03

[6,] 0.4408286 0.41518604 0.130345023 1.364033e-02

We can check if the constraints are met for some parameters

R> cf <- c(1, 2, 2.5, 2.6)

R> (cnstr <- attr(X, "constraint"))

$ui

3 x 4 sparse Matrix of class "dgCMatrix"

[1,] -1 1 . .

[2,] . -1 1 .

[3,] . . -1 1

$ci

[1] 0 0 0

R> all(cnstr$ui %*% cf > cnstr$ci)

[1] TRUE

where a Matrix object (from package Matrix, Bates et al. 2024) represents the linear con-
straints. Other possible constraints include a decreasing function (ui = "decreasing"),
positive and negative functions (ui = "positive" or ui = "negative"), as well as cyclic
or integral zero functions (ui = "cyclic" or ui = "zerointegral"). The polynomial de-
fined by the basis functions and parameters and its first derivative can be evaluated using
predict()

R> predict(bb, newdata = x, coef = cf)

[1] 0.9013675 1.0637620 1.2189539 1.3654146 1.5032406 1.6325281 1.7533736

[8] 1.8658735 1.9701242 2.0662220 2.1542634 2.2343447 2.3065623 2.3710127

[15] 2.4277922 2.4769972 2.5187240 2.5530692 2.5801291 2.6000000

R> predict(bb, newdata = x, coef = cf, deriv = c(x = 1))

[1] 0.98632537 0.96518023 0.91208351 0.85956975 0.80763896 0.75629112

[7] 0.70552625 0.65534435 0.60574540 0.55672942 0.50829640 0.46044634

[13] 0.41317925 0.36649512 0.32039395 0.27487574 0.22994050 0.18558821

[19] 0.14181889 0.09863254
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B.4. Model Matrices

Model matrices are basis functions evaluated at some data. The basefun package offers
an as.basis() method for formula objects which basically represents unevaluated calls to
model.matrix() with two additional arguments (remove_intercept removes the intercept
after appropriate contrasts were computed and negative multiplies the model matrix with
−1). Note that the data argument does not need to be a data.frame with observations, a
variable description is sufficient. If data is a data frame of observations, scale = TRUE scales
each columns of the model matrix to the unit interval. Here is an example using the iris data

R> iv <- as.vars(iris)

R> fb <- as.basis(~ Species + Sepal.Length + Sepal.Width, data = iv,

+ remove_intercept = TRUE, negative = TRUE,

+ contrasts.args = list(Species = "contr.sum"))

R> class(fb)

[1] "formula_basis" "basis" "function"

R> head(model.matrix(fb, data = iris))

Speciesversicolor Speciesvirginica Sepal.Length Sepal.Width

1 0 0 -5.1 -3.5

2 0 0 -4.9 -3.0

3 0 0 -4.7 -3.2

4 0 0 -4.6 -3.1

5 0 0 -5.0 -3.6

6 0 0 -5.4 -3.9

B.5. Combining Bases

Two (or more) basis functions can be concatenated by simply joining the corresponding model
matrices column-wise. If constraints Aiϑi ≥ mi are present for i = 1, 2, . . . the overall con-
straints are given by a block-diagonal matrix A = blockdiag(A1, A2, . . . ), ϑ = (ϑ¦

1 , ϑ
¦

2 , . . . )¦

and m = (m¦
1

, m
¦
2

, . . . )¦. As an example we add a positive log-transformation to a Bernstein
polynomial

R> class(blb <- c(bern = bb,

+ log = log_basis(xvar, ui = "increasing",

+ remove_intercept = TRUE)))

[1] "cbind_bases" "bases"

R> head(X <- model.matrix(blb, data = x))

Bs1(x) Bs2(x) Bs3(x) Bs4(x) log(x)

[1,] 1.0986325 -0.09863254 0.000000000 0.000000e+00 -36.0436534
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[2,] 0.9369214 0.06171364 0.001354996 9.916843e-06 -1.7997091

[3,] 0.7892824 0.19433218 0.015949084 4.363204e-04 -1.1065619

[4,] 0.6580299 0.29552260 0.044239941 2.207583e-03 -0.7010968

[5,] 0.5421999 0.36817664 0.083335831 6.287617e-03 -0.4134147

[6,] 0.4408286 0.41518604 0.130345023 1.364033e-02 -0.1902712

R> attr(X, "constraint")

$ui

4 x 5 sparse Matrix of class "dgCMatrix"

[1,] -1 1 . . .

[2,] . -1 1 . .

[3,] . . -1 1 .

[4,] . . . . 1

$ci

[1] 0 0 0 0

The box product of two basis functions is defined by the row-wise Kronecker product of the
corresponding model matrices but not the Kronecker product of the model matrices (which
would result in a matrix with the same number of columns but squared number of rows). The
following definition leads to one intercept and one deviation function

R> fb <- as.basis(~ g, data = factor_var("g", levels = LETTERS[1:2]))

R> class(bfb <- b(bern = bb, f = fb))

[1] "box_bases" "bases"

R> nd <- expand.grid(mkgrid(bfb, n = 10))

R> head(X <- model.matrix(bfb, data = nd))

Bs1(x):(Intercept) Bs2(x):(Intercept) Bs3(x):(Intercept)

[1,] 1.0986325 -0.09863254 0.00000000

[2,] 0.7739072 0.20707468 0.01846902

[3,] 0.5184574 0.38073757 0.09320027

[4,] 0.3264921 0.44297161 0.20033547

[5,] 0.1889422 0.42098449 0.31266696

[6,] 0.0967384 0.34198388 0.40298705

Bs4(x):(Intercept) Bs1(x):gB Bs2(x):gB Bs3(x):gB Bs4(x):gB

[1,] 0.0000000000 0 0 0 0

[2,] 0.0005490848 0 0 0 0

[3,] 0.0076047915 0 0 0 0

[4,] 0.0302008070 0 0 0 0

[5,] 0.0774063566 0 0 0 0

[6,] 0.1582906656 0 0 0 0



64 The mlt Package

R> attr(X, "constraint")

$ui

14 x 8 sparse Matrix of class "dgCMatrix"

[1,] -1 1 . . . . . .

[2,] . -1 1 . . . . .

[3,] . . -1 1 . . . .

[4,] . . . . -1 1 . .

[5,] . . . . . -1 1 .

[6,] . . . . . . -1 1

[7,] 1 . . . . . . .

[8,] . 1 . . . . . .

[9,] . . 1 . . . . .

[10,] . . . 1 . . . .

[11,] . . . . 1 . . .

[12,] . . . . . 1 . .

[13,] . . . . . . 1 .

[14,] . . . . . . . 1

$ci

[1] 0 0 0 0 0 0 -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf

If sumconstr = TRUE, only the sum of the two functions is expected to meet the monotonicity
constraint

R> bfb <- b(bern = bb, f = fb, sumconstr = TRUE)

R> head(X <- model.matrix(bfb, data = nd))

Bs1(x):(Intercept) Bs2(x):(Intercept) Bs3(x):(Intercept)

[1,] 1.0986325 -0.09863254 0.00000000

[2,] 0.7739072 0.20707468 0.01846902

[3,] 0.5184574 0.38073757 0.09320027

[4,] 0.3264921 0.44297161 0.20033547

[5,] 0.1889422 0.42098449 0.31266696

[6,] 0.0967384 0.34198388 0.40298705

Bs4(x):(Intercept) Bs1(x):gB Bs2(x):gB Bs3(x):gB Bs4(x):gB

[1,] 0.0000000000 0 0 0 0

[2,] 0.0005490848 0 0 0 0

[3,] 0.0076047915 0 0 0 0

[4,] 0.0302008070 0 0 0 0

[5,] 0.0774063566 0 0 0 0

[6,] 0.1582906656 0 0 0 0

R> attr(X, "constraint")

$ui

6 x 8 sparse Matrix of class "dgCMatrix"
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[1,] -1 1 . . . . . .

[2,] . -1 1 . . . . .

[3,] . . -1 1 . . . .

[4,] -1 1 . . -1 1 . .

[5,] . -1 1 . . -1 1 .

[6,] . . -1 1 . . -1 1

$ci

[1] 0 0 0 0 0 0

C. The mlt Package

C.1. Specifying Response Observations

The generic function R() is an extention of Surv() (package survival) to possibly trun-
cated, categorical or integer-valued response variables with methods for objects of class Surv,
ordered, factor, integer and numeric. The main purpose is to set-up the interval (

¯
y, ȳ]

for the evaluation of the likelihood contribution FZ(h(ȳ))−FZ(h(
¯
y)). For ordered categorical

responses, ȳ is the observed level and
¯
y the level preceding ȳ (which is missing when the first

or last level was observed)

R> head(R(sort(unique(CHFLS$R_happy))))

[1] (NA, Very unhappy] (Very unhappy, Not too happy]

[3] (Not too happy, Somewhat happy] (Somewhat happy, NA]

For integers, ȳ is the observation and
¯
y = ȳ − 1

R> R(1:5, bounds = c(1, 5))

[1] (NA, 1] ( 1, 2] ( 2, 3] ( 3, 4] ( 4, NA]

Numeric observations can be “exact” (meaning that the likelihood is approximated by the
density evaluated at the observation), interval-censored (with left- and right-censoring as
special cases) and left- or right-truncated in arbitrary combinations thereof. For example,
consider ten draws from the standard normal, truncated to (−1, 2] and possibly censored

R> x <- rnorm(10)

R> xt <- round(x[x > -1 & x <= 2], 3)

R> xl <- xt - sample(c(Inf, (0:(length(xt) - 2)) / length(xt)),

+ replace = FALSE)

R> xr <- xt + sample(c(Inf, (0:(length(xt) - 2)) / length(xt)),

+ replace = FALSE)

R> R(c(1.2, rep(NA, length(xt))), cleft = c(NA, xl), cright = c(NA, xr),

+ tleft = -1, tright = 2)
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[1] { 1.20| (-1, 2]} {( -Inf, 1.256]| (-1, 2]}

[3] {(-0.941, Inf]| (-1, 2]} {-0.55| (-1, 2]}

[5] {(-1.306, -0.181]| (-1, 2]} {( 0.646, 1.271]| (-1, 2]}

[7] {(-0.172, 0.328]| (-1, 2]} {( 0.443, 1.443]| (-1, 2]}

[9] {(-0.695, -0.195]| (-1, 2]}

Censoring and truncation (via the cleft, cright, tleft and tright arguments) are also
implemented for ordered categorical and integer responses. Surv objects are simply converted
to the alternative format without the possibility to define extra arguments

R> head(geyser$duration)

[1] 4.016667 2.150000 4.000000+ 4.000000+ 4.000000+

[6] [0.000000, 2]

R> head(R(geyser$duration))

[1] 4.016667 2.150000 ( 4, Inf] ( 4, Inf] ( 4, Inf] ( 0, 2]

It should be noted that the measurement scale of the observations has nothing to do with
the measurement scale of the response Y in the model and the corresponding basis func-
tions. Discrete or continuous models are specified based on the abstract variable description
(Appendix A).

C.2. Methods for Conditional Transformation Models

Methods for the generic functions bounds(), variable.names(), model.matrix(), mkgrid()

are available for abstract model descriptions in ctm objects are returned by ctm().

C.3. Methods for Fitted Transformation Models

For transformation models fitted using mlt(), the following methods are available: update()

(for refitting the model), logLik() (the log-likelihood, optionally also as a function of param-
eters ϑ), estfun() (the scores), coef() and vcov() (model parameters and their covariance),
predict (model predictions at various scales), confband() (confidence bands for the transfor-
mation and distribution function), simulate() (sampling from the model) as well as print(),
summary() and plot(). In addition, variable.names(), mkgrid() and bounds() are also
implemented. The coef<-() method changes the parameters in the model. One last exam-
ple, the approximation of a χ2

20
distribution by an unconditional transformation model, shall

illustrate how one interacts with ctm and mlt objects. We first define the “true” distribution

R> pY <- function(x) pchisq(x, df = 20)

R> dY <- function(x) dchisq(x, df = 20)

R> qY <- function(p) qchisq(p, df = 20)

and set-up a Bernstein polynomial for the transformation function
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R> yvar <- numeric_var("y", support = qY(c(.001, 1 - .001)),

+ bounds = c(0, Inf))

R> By <- Bernstein_basis(yvar, order = ord <- 15, ui = "increasing")

The unfitted model is now

R> mod <- ctm(By)

and we compute the true transformation function

R> h <- function(x) qnorm(pY(x))

R> x <- seq(from = support(yvar)[["y"]][1], to = support(yvar)[["y"]][2],

+ length.out = ord + 1)

and set the parameters of the model using

R> mlt::coef(mod) <- h(x)

We can now simulate from this purely theoretical model

R> d <- as.data.frame(mkgrid(yvar, n = 500))

R> d$grid <- d$y

R> d$y <- simulate(mod, newdata = d)

fit this model to the simulated data

R> fmod <- mlt(mod, data = d, scale = TRUE)

and compare the true (mod) and fitted (fmod) models by looking at the coefficients and log-
likelihoods (evaluated for the estimated and true coefficients)

R> coef(mod)

Bs1(y) Bs2(y) Bs3(y) Bs4(y) Bs5(y) Bs6(y)

-3.09023231 -2.24395775 -1.56832579 -0.99651738 -0.49547433 -0.04621458

Bs7(y) Bs8(y) Bs9(y) Bs10(y) Bs11(y) Bs12(y)

0.36325683 0.74104644 1.09291321 1.42310925 1.73487215 2.03072963

Bs13(y) Bs14(y) Bs15(y) Bs16(y)

2.31269685 2.58240889 2.84121268 3.09023231

R> coef(fmod)

Bs1(y) Bs2(y) Bs3(y) Bs4(y) Bs5(y) Bs6(y)

-3.6786176 -1.7403509 -1.7403489 -1.7401924 0.1041638 0.1041640

Bs7(y) Bs8(y) Bs9(y) Bs10(y) Bs11(y) Bs12(y)

0.1041650 0.5391209 1.5019309 1.5019345 1.5019344 1.5019345

Bs13(y) Bs14(y) Bs15(y) Bs16(y)

2.4156006 2.5552935 2.5553029 3.5817682
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R> logLik(fmod)

'log Lik.' -1608.866 (df=16)

R> logLik(fmod, parm = coef(mod))

'log Lik.' -1611.785 (df=16)

The corresponding density functions of the χ2
20

distribution, the approximating true trans-
formation model mod and the estimated transformation model fmod are plotted in Figure 16
using the code shown on top of the plot.

R> ## compute true density

R> d$dtrue <- dY(d$grid)

R> d$dest <- predict(fmod, q = sort(d$grid), type = "density")

R> plot(mod, newdata = d, type = "density", col = "black",

+ xlab = "y", ylab = "Density", ylim = c(0, max(d$dest)))

R> lines(d$grid, d$dtrue, lty = 2)

R> lines(sort(d$grid), d$dest[order(d$grid)], lty = 3)

R> legend("topright", lty = 1:3, bty = "n",

+ legend = c("True", "Approximated", "Estimated"))
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Figure 16: χ2
20

Data. Density of a χ2
20

(true), an approximating unconditional transformation
model and the density fitted to a sample from the approximating model.
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