## ----echo=FALSE--------------------------------------------------------------- required <- c("MASS") if (!all(sapply(required, requireNamespace, quietly = TRUE))) knitr::opts_chunk$set(eval = FALSE) knitr::opts_chunk$set(message = F, warning = F, fig.width = 6, fig.height = 4, dpi = 125, render = knitr::normal_print) library(jtools) ## ----------------------------------------------------------------------------- library(ggplot2) data(mpg) fit <- lm(cty ~ displ + year + cyl + class + fl, data = mpg[mpg$fl != "c",]) summ(fit) ## ----------------------------------------------------------------------------- effect_plot(fit, pred = displ) ## ----------------------------------------------------------------------------- effect_plot(fit, pred = displ, interval = TRUE) ## ----------------------------------------------------------------------------- effect_plot(fit, pred = displ, interval = TRUE, rug = TRUE) ## ----------------------------------------------------------------------------- effect_plot(fit, pred = displ, interval = TRUE, plot.points = TRUE) ## ----------------------------------------------------------------------------- fit_poly <- lm(cty ~ poly(displ, 2) + year + cyl + class + fl, data = mpg) effect_plot(fit_poly, pred = displ, interval = TRUE, plot.points = TRUE) ## ----------------------------------------------------------------------------- effect_plot(fit_poly, pred = displ, interval = TRUE, partial.residuals = TRUE) ## ----------------------------------------------------------------------------- library(MASS) data(bacteria) l_mod <- glm(y ~ trt + week, data = bacteria, family = binomial) summ(l_mod) ## ----------------------------------------------------------------------------- effect_plot(l_mod, pred = week, interval = TRUE, y.label = "% testing positive") ## ----------------------------------------------------------------------------- library(MASS) data(Insurance) Insurance$age_n <- as.numeric(Insurance$Age) p_mod <- glm(Claims ~ District + Group + age_n, data = Insurance, offset = log(Holders), family = poisson) summ(p_mod) ## ----------------------------------------------------------------------------- effect_plot(p_mod, pred = age_n, interval = TRUE) ## ----------------------------------------------------------------------------- effect_plot(p_mod, pred = age_n, interval = TRUE, plot.points = TRUE) ## ----------------------------------------------------------------------------- effect_plot(p_mod, pred = age_n, interval = TRUE, partial.residuals = TRUE) ## ----------------------------------------------------------------------------- effect_plot(p_mod, pred = age_n, interval = TRUE, partial.residuals = TRUE, jitter = c(0.1, 0)) ## ----------------------------------------------------------------------------- effect_plot(fit, pred = fl, interval = TRUE) ## ----------------------------------------------------------------------------- effect_plot(fit, pred = fl, interval = TRUE, plot.points = TRUE, jitter = .2) ## ----------------------------------------------------------------------------- effect_plot(fit, pred = fl, interval = TRUE, partial.residuals = TRUE, jitter = .2) ## ----------------------------------------------------------------------------- effect_plot(l_mod, pred = trt, interval = TRUE, y.label = "% testing positive") ## ----------------------------------------------------------------------------- effect_plot(l_mod, pred = trt, interval = TRUE, y.label = "% testing positive", cat.geom = "line")