Full site with more examples and vignettes on https://ropengov.github.io/giscoR/
giscoR is a package designed to provide a simple interface to the GISCO API.
Within Eurostat, GISCO meets the European Commission’s geographical information needs at three levels: the European Union, its member countries, and its regions. GISCO provides shapefiles in different formats, focusing especially on the European Union but also offering some worldwide datasets such as country polygons, labels, borders, and coastlines.
GISCO supplies data at multiple resolutions: high-detail datasets for small areas (01M, 03M) and lightweight datasets for larger areas (10M, 20M, 60M). Datasets are available in three projections: EPSG:4326, EPSG:3035, and EPSG:3857.
giscoR returns sf
objects; see https://r-spatial.github.io/sf/ for details.
giscoR supports caching of downloaded datasets. Set the cache directory with:
If a file is not available locally, it will be downloaded to that directory so subsequent requests for the same data will load from the local cache.
If you experience any problems downloading, you can also manually download the file from the GISCO API website and store it in your local cache directory.
Please note the following attribution and licensing requirements when using GISCO data:
Eurostat’s general copyright notice and licence policy applies. Moreover, there are specific rules that apply to some of the following datasets available for downloading. The download and use of these data are subject to these rules being accepted. See our administrative units and statistical units for more details.
There is a function, gisco_attributions(), that provides
guidance on this topic and returns attributions in several
languages.
library(giscoR)
c(
gisco_attributions(lang = "en"),
gisco_attributions(lang = "fr"),
gisco_attributions(lang = "de")
) |> cat(sep = "\n\n")
#> © EuroGeographics for the administrative boundaries
#>
#> © EuroGeographics pour les limites administratives
#>
#> © EuroGeographics bezüglich der VerwaltungsgrenzenExamples of downloading data: EU member states and candidate countries as of 2024:
library(dplyr)
library(ggplot2)
world <- gisco_get_countries(resolution = 3, epsg = 3035)
world <- world |>
mutate(
status = case_when(
EU_STAT == "T" ~ "Current members",
CC_STAT == "T" ~ "Candidate countries",
TRUE ~ NA
),
# As levels
status = factor(status, levels = c("Current members", "Candidate countries"))
)
ggplot(world) +
geom_sf(fill = "#c1c1c1") +
geom_sf(aes(fill = status), color = "white") +
guides(fill = guide_legend(direction = "horizontal")) +
# Center in Europe: EPSG 3035
coord_sf(
xlim = c(2377294, 7453440),
ylim = c(1313597, 5628510)
) +
scale_fill_manual(
values = c("#039", "#2782bb"), na.value = "#c1c1c1",
na.translate = FALSE
) +
theme_minimal() +
theme(
panel.background = element_rect(fill = "grey90", color = NA),
axis.line = element_blank(),
axis.text = element_blank(),
panel.grid = element_blank(),
legend.position = "bottom"
) +
labs(
title = "EU Member states and Candidate countries (2024)",
caption = gisco_attributions(),
fill = ""
)EU Member states and Candidate countries (2024)
You can select specific countries by name (in any language), ISO3 codes, or Eurostat codes. However, you cannot mix these identifier types in a single call.
You can also combine different datasets — set resolution
and epsg (and optionally year) to the same
value:
cntr <- c("Morocco", "Algeria", "Tunisia", "Libya", "Egypt")
africa_north <- gisco_get_countries(
country = cntr,
resolution = "03",
epsg = "4326", year = "2024"
)
# For ordering the plot
africa_north$NAME_ENGL <- factor(africa_north$NAME_ENGL, levels = cntr)
# Coastlines
coast <- gisco_get_coastal_lines(
resolution = "03",
epsg = "4326",
year = "2016"
)
# Plot
ggplot(coast) +
geom_sf(color = "#B9B9B9") +
geom_sf(data = africa_north, fill = "#346733", color = "#335033") +
coord_sf(xlim = c(-13, 37), ylim = c(18.5, 40)) +
facet_wrap(vars(NAME_ENGL), ncol = 2) +
labs(caption = gisco_attributions("fr"))Political map of North Africa
This example shows how giscoR can be used together
with Eurostat data. For plotting we use ggplot2;
however, any package that supports sf objects (e.g.,
tmap, mapsf, leaflet)
can be used.
# EU members
library(giscoR)
library(dplyr)
library(eurostat)
library(ggplot2)
nuts2 <- gisco_get_nuts(
year = "2021", epsg = "3035", resolution = "10",
nuts_level = "2"
)
# Borders from countries
borders <- gisco_get_countries(epsg = "3035", year = "2020", resolution = "3")
eu_bord <- borders |>
filter(CNTR_ID %in% nuts2$CNTR_CODE)
# Eurostat data - Disposable income
pps <- get_eurostat("tgs00026") |>
filter(TIME_PERIOD == "2022-01-01")
nuts2_sf <- nuts2 |>
left_join(pps, by = "geo") |>
mutate(
values_th = values / 1000,
categ = cut(values_th, c(0, 15, 30, 60, 90, 120, Inf))
)
# Adjust the labels
labs <- levels(nuts2_sf$categ)
labs[1] <- "< 15"
labs[6] <- "> 120"
levels(nuts2_sf$categ) <- labs
# Finally the plot
ggplot(nuts2_sf) +
# Background
geom_sf(data = borders, fill = "#e1e1e1", color = NA) +
geom_sf(aes(fill = categ), color = "grey20", linewidth = .1) +
geom_sf(data = eu_bord, fill = NA, color = "black", linewidth = .15) +
# Center in Europe: EPSG 3035
coord_sf(xlim = c(2377294, 6500000), ylim = c(1413597, 5228510)) +
# Legends and color
scale_fill_manual(
values = hcl.colors(length(labs), "Geyser", rev = TRUE),
# Label NA
labels = function(x) {
ifelse(is.na(x), "No Data", x)
},
na.value = "#e1e1e1"
) +
guides(fill = guide_legend(nrow = 1)) +
theme_void() +
theme(
text = element_text(colour = "grey0"),
panel.background = element_rect(fill = "#97dbf2"),
panel.border = element_rect(fill = NA, color = "grey10"),
plot.title = element_text(hjust = 0.5, vjust = -1, size = 12),
plot.subtitle = element_text(
hjust = 0.5, vjust = -2, face = "bold",
margin = margin(b = 10, t = 5), size = 12
),
plot.caption = element_text(
size = 8, hjust = 0, margin =
margin(b = 4, t = 8)
),
legend.text = element_text(size = 7, ),
legend.title = element_text(size = 7),
legend.position = "bottom",
legend.direction = "horizontal",
legend.text.position = "bottom",
legend.title.position = "top",
legend.key.height = rel(0.5),
legend.key.width = unit(.1, "npc")
) +
# Annotate and labels
labs(
title = "Disposable income of private households (2022)",
subtitle = "NUTS-2 level",
fill = "euros (thousands)",
caption = paste0(
"Source: Eurostat, ", gisco_attributions()
)
)Disposable income of private households by NUTS 2 regions (2022)