## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) old <- options(scipen = 999) ## ----stations , eval=T, fig.width=7,fig.height=7, fig.fullwidth=TRUE---------- library(climate) ns = nearest_stations_ogimet(country = c("United Kingdom", "France"), point = c(-3, 50), no_of_stations = 50, add_map = TRUE) ## ----stations-2, eval=T------------------------------------------------------- if (is.data.frame(ns)) { knitr::kable(head(ns, 15)) } ## ----stations-3, eval=T, fig.width=7, fig.height=7, fig.fullwidth=T----------- library(climate) PL = stations_ogimet(country = "Poland", add_map = TRUE) if (is.data.frame(PL)) { knitr::kable(head(PL)) } ## ----noaa_svalbard, include=FALSE--------------------------------------------- df = readRDS(system.file("extdata/vignettes/svalbard_noaa.rds", package = "climate")) ## ----windrose,eval=F---------------------------------------------------------- # # downloading data with NOAA service: # df = meteo_noaa_hourly(station = "010080-99999", year = 2016) # # # You can also download the same (but more granular) data with Ogimet.com (example for year 2016): # # df = meteo_ogimet(interval = "hourly", # # date = c("2016-01-01", "2016-12-31"), # # station = c("01008")) ## ----noaa-kable,eval=T-------------------------------------------------------- knitr::kable(head(df)) ## ----sonda-read, eval=T, include=F, echo=F------------------------------------ library(climate) data("profile_demo") df2 = profile_demo[[1]] colnames(df2)[c(1, 3:4)] = c("PRESS", "TEMP", "DEWPT") # changing column names ## ----sonda, eval=F, include=T------------------------------------------------- # profile_demo <- sounding_wyoming(wmo_id = 12120, # yy = 2000, # mm = 3, # dd = 23, # hh = 0) # df2 = profile_demo[[1]] # colnames(df2)[c(1, 3:4)] = c("PRESS", "TEMP", "DEWPT") # changing column names ## ----sonda2, echo=FALSE------------------------------------------------------- knitr::kable(head(df2, 10), caption = "Exemplary data frame of sounding preprocessing") ## ----imgw_meteo, include=FALSE------------------------------------------------ df = readRDS(system.file("extdata/vignettes/leba_monthly.rds", package = "climate")) ## ----imgw_meteo-2, eval=FALSE, include=TRUE----------------------------------- # library(climate) # df = meteo_imgw(interval = "monthly", rank = "synop", year = 1991:2000, station = "ŁEBA") # # please note that sometimes 2 names are used for the same station in different years ## ----imgw_meteo-3, fig.width=7, fig.height=7, fig.fullwidth=TRUE, error=TRUE, eval=TRUE, include=TRUE---- suppressMessages(library(dplyr)) df2 = dplyr::select(df, station:t2m_mean_mon, rr_monthly) monthly_summary = df2 %>% dplyr::group_by(mm) %>% dplyr::summarise(tmax = mean(tmax_abs, na.rm = TRUE), tmin = mean(tmin_abs, na.rm = TRUE), tavg = mean(t2m_mean_mon, na.rm = TRUE), precip = sum(rr_monthly) / n_distinct(yy)) monthly_summary = as.data.frame(t(monthly_summary[, c(5, 2, 3, 4)])) monthly_summary = round(monthly_summary, 1) colnames(monthly_summary) = month.abb ## ----imgw_meteo2, echo=FALSE, error=TRUE-------------------------------------- knitr::kable(head(monthly_summary), caption = "Exemplary data frame of meteorological preprocessing.") ## ----data, eval=TRUE, include=FALSE, echo=FALSE------------------------------- h = readRDS(system.file("extdata/vignettes/hydro_monthly.rds", package = "climate")) ## ----data-2, eval=FALSE, include=TRUE----------------------------------------- # library(climate) # library(dplyr) # library(tidyr) # h = hydro_imgw(interval = "monthly", year = 2001:2002, coords = TRUE) ## ----data-3, eval=TRUE, include=TRUE, echo=TRUE------------------------------- knitr::kable(head(h)) ## ----filtering, eval=TRUE, include=TRUE--------------------------------------- h2 = h %>% dplyr::filter(idex == 3) %>% dplyr::select(id, station, X, Y, hyy, Q) %>% dplyr::group_by(hyy, id, station, X, Y) %>% dplyr::summarise(annual_mean_Q = round(mean(Q, na.rm = TRUE), 1)) %>% tidyr::pivot_wider(names_from = hyy, values_from = annual_mean_Q) knitr::kable(head(h2)) ## ----filtering2, echo=FALSE, eval=FALSE--------------------------------------- # # knitr::kable(head(h2), # caption = "Exemplary data frame of hydrological preprocesssing.") ## ----setup_restore, include = FALSE------------------------------------------- options(old)