Designed for web usage data analysis, it implements tools to process web sequences and identify web browsing profiles through sequential classification. Sequences' clusters are identified by using a model-based approach, specifically mixture of discrete time first-order Markov models for categorical web sequences. A Bayesian approach is used to estimate model parameters and identify sequences classification as proposed by Fruehwirth-Schnatter and Pamminger (2010) <doi:10.1214/10-BA606>.
Version: | 0.1 |
Imports: | DiscreteWeibull, mclust, MCMCpack, parallel |
Suggests: | seqHMM |
Published: | 2023-02-13 |
DOI: | 10.32614/CRAN.package.clickb |
Author: | Furio Urso [aut, cre], Reza Mohammadi [aut], Antonino Abbruzzo [aut], Maria Francesca Cracolici [aut] |
Maintainer: | Furio Urso <furio.urso at unipa.it> |
License: | MIT + file LICENSE |
NeedsCompilation: | no |
CRAN checks: | clickb results |
Reference manual: | clickb.pdf |
Package source: | clickb_0.1.tar.gz |
Windows binaries: | r-devel: clickb_0.1.zip, r-release: clickb_0.1.zip, r-oldrel: clickb_0.1.zip |
macOS binaries: | r-devel (arm64): clickb_0.1.tgz, r-release (arm64): clickb_0.1.tgz, r-oldrel (arm64): clickb_0.1.tgz, r-devel (x86_64): clickb_0.1.tgz, r-release (x86_64): clickb_0.1.tgz, r-oldrel (x86_64): clickb_0.1.tgz |
Please use the canonical form https://CRAN.R-project.org/package=clickb to link to this page.