## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(tidyverse) library(biogrowth) ## ----------------------------------------------------------------------------- my_model <- "modGompertz" my_time <- seq(0, 100, length = 1000) ## ----------------------------------------------------------------------------- set.seed(12412) niter <- 500 par_sample <- tibble(logN0 = rnorm(niter, mean = 0, sd = 1), C = 6, mu = rgamma(niter, shape = 3, rate = 5), lambda = rgamma(niter, shape = 2, rate = 2)) par_sample %>% pivot_longer(everything()) %>% ggplot() + geom_histogram(aes(value)) + facet_wrap("name", scales = "free") ## ----------------------------------------------------------------------------- my_predictions <- par_sample %>% pmap(., function(logN0, mu, lambda, C) list(model = my_model, logN0 = logN0, mu = mu, lambda = lambda, C = C) ) %>% map(., ~ predict_growth(my_time, .) ) ## ----------------------------------------------------------------------------- summary_preds <- my_predictions %>% map(., ~.$simulation) %>% imap_dfr(., ~ mutate(.x, sim = .y)) %>% group_by(time) %>% summarize(m_logN = median(logN), q10 = quantile(logN, .1), q90 = quantile(logN, .9)) ## ----------------------------------------------------------------------------- summary_preds %>% ggplot(aes(x = time)) + geom_ribbon(aes(ymin = q10, ymax = q90), alpha = .5) + geom_line(aes(y = m_logN))